
JFP 13 (1): 223–224, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S095679680300251X Printed in the United Kingdom

Chapter 23

System Functions

module System (
ExitCode(ExitSuccess,ExitFailure),
getArgs, getProgName, getEnv, system, exitWith, exitFailure

) where

data ExitCode = ExitSuccess | ExitFailure Int
deriving (Eq, Ord, Read, Show)

getArgs :: IO [String]
getProgName :: IO String
getEnv :: String -> IO String
system :: String -> IO ExitCode
exitWith :: ExitCode -> IO a
exitFailure :: IO a

This library describes the interaction of the program with the operating system.

Any System operation could raise an isIllegalOperation, as described in Section 21.1; all
other permissible errors are described below. Note that, in particular, if an implementation does not
support an operation it must raise an isIllegalOperation.

The ExitCode type defines the exit codes that a program can return. ExitSuccess indicates
successful termination; and ExitFailure ���� indicates program failure with value ����. The

223

https://doi.org/10.1017/S095679680300251X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680300251X


224 CHAPTER 23. SYSTEM FUNCTIONS

exact interpretation of ���� is operating-system dependent. In particular, some values of ���� may
be prohibited (for instance, 0 on a POSIX-compliant system).

Computation getArgs returns a list of the program’s command line arguments (not including the
program name). Computation getProgName returns the name of the program as it was invoked.
Computation getEnv ��� returns the value of the environment variable ��� . If variable ��� is
undefined, the isDoesNotExistError exception is raised.

Computation system �	� returns the exit code produced when the operating system processes
the command �	� .

Computation exitWith ���� terminates the program, returning ���� to the program’s caller. Be-
fore the program terminates, any open or semi-closed handles are first closed. The caller may in-
terpret the return code as it wishes, but the program should return ExitSuccess to mean normal
completion, and ExitFailure � to mean that the program encountered a problem from which it
could not recover. The value exitFailure is equal to exitWith (ExitFailure �������
),
where �������
 is implementation-dependent. exitWith bypasses the error handling in the I/O
monad and cannot be intercepted by catch.

If a program terminates as a result of calling error or because its value is otherwise determined to
be �, then it is treated identically to the computation exitFailure. Otherwise, if any program
� terminates without calling exitWith explicitly, it is treated identically to the computation

(� >> exitWith ExitSuccess) ‘catch‘ \ _ -> exitFailure

https://doi.org/10.1017/S095679680300251X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680300251X

