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LOCAL DEFINITIONS OF LOCAL HOMOMORPHS AND
FORMATIONS OF FINITE GROUPS

P. FORSTER AND E. SaLomon

It is well known that every local formation of finite soluble
groups possesses three distinguished local definitions consisting
of finite soluble groups: the minimal one, the full and
integrated one, and the maximal one. As far as the first and the
second of these are concerned, this statement remains true in the
context of arbitrary finite groups. Doerk, Semetkov, and Schmid
have posed the problem of whether every local formation of finite
groups has a distinguished (that is, unique) maximal local
definition. In this paper a description of local formations with
a unique maximal local definition is given, from which counter-
examples emerge. Furthermore, a criterion for a formation
function to be a local definition of a given local formation is

obtained.

Consider a local formation of finite soluble groups, F say. Carter,
Hawkes [3] and Doerk [4] have shown that there is a unique full and

integrated local definition fD of F , whereas existence of a unique

minimal local definition fb of F 1is evident from the mere definitions.

Doerk has used the first of these to prove that the formula
fl(p) = {G € S|F - normalisers of G belong to fD(p)} (p €P)
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defines the unique maximal local definition of F (in the universe of all

finite soluble groups).
Now let F denote a local formation of finite (not necessarily
soluble) groups. The definitions of fb and fo (see Propositions 2.1

and 1.2 below) make perfectly good sense for insoluble groups, too, and
yield the corresponding results in the universe of all finite groups.
Unfortunately, F-normalisers of arbitrary finite groups are not available,
so Doerk's approach to the question of uniqueness of maximal local
definitions cannot be generalised. (More precisely, one may indeed define
F-normalisers, but these would not meet the requirements needed in the
present context.) Somewhat surprisingly, in this note a more naive
approach shall be shown to work (thus yielding a new proof of Doerk's
result - of course, as our paper is essentially self-contained, this proof

is more elaborate than the original one).

For the purpose of greater generality, and as it can be done without
much additional effort, we shall employ the notion of an X-local formation
as introduced in [8]. Our main result on formations suggests that greater
clarity can be gained by starting with an investigation into X-local

homomorphs, and this is confirmed in Section 1.

The reader is referred to [2], [3], [5], [7, §] for definitions and
basic results in the theory of homomorphs and formations. As in [7, §], XO

denotes the class of all finite simple groups, P E-XO is the class of all

groups of prime order (and is sometimes identified with the set of all

prime numbers). Throughout this paper, X denotes a fixed subclass of X0
subject to the following:

HYPOTHESIS.

X(X) € X (where x(X) = {Cp | p € m(X) for some X € X} ).

As usual, Cp is the cyclic group of order p . All groups shall be

assumed to have finite order. Notation is (hopefully) standard.

1. Semiformations and X-local homomorphs

A semiformation is a homomorph H such that H = RgH , Where Rg is
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the closure operation on the class of all homomorphs defined by
R(’;K = {G ¢ R K | @6} n Mc K} for each KCE ;
recall that M and E denote the classes of all monolithic groups and of

all finite groups, respectively. Equivalently, H <€ E is a semiformation,
if and only if H = @H and
b(H) (= {G € E\H | G/N € H whenever 1 # N 2 G} )
is contained in M ; ef. [7], 2.1c (footnote 1). Of course, Ré—closed
Schunck classes (in the sense of [7], §6) as well as formations are semi-
formations. 1In addition, Schunck classes are closed with respect to the
closure operation E’g , which is defined by
E3K = {6 € E | G/N €K for some N = &(G) such that (G/C,(H/K)}(H/K) € K
whenever H/K is a chief factor of G below N} for each Kc E .
The following property of E’g—-closed semiformations shall be needed in an

application of our main result.

PROPOSITION 1.1. Let H =¢gH = RSH = E* , and put

flH]l = {¢ ¢ E | (H/K) * G € H for every chief factor H/K of G} ,
where

(Gre(ar))(a/x) , if H/K is abelian,

(H/K) * G =
G/CG(H/K) R otherwise.

Then fIH] = QR.fIHl1 cH , and F = QRFcH implies Fc fIH] ;
moreover, flH] = Ea*)f[H] .

Proof. Obviously, fIH] is a formation. Assume that f[H] iH and
choose G € f[H]\H of least order. Then G € b(H)c M. 1Ir S(6) ¥ ¥G),
we infer that G =~ 5(G) * G ¢ H , a contradiction. If S(G) = & G) , then
S(G) » ¢ € H forces G to be in E'y = H , another contradiction. Hence

flH} < H , and F c f[H] for every formation F ocontained in H follows
from a well-known result of Barnes and Kegel ([7], 1.1) together with the

definition of f[H] . Finally, E(’i—closure of f[H] 1is immediate from
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flHl c H . 0

We now go on to introduce the notion of an X-local definition of a
homomcrph in a manner which is dictated by the aims of this paper. (The
most general notion of an X-local homomorph would require to state the
definition in a way not serving our purposes, and yet would yield a class
of X-local homomorphs only slightly larger than ours, and containing the

same semiformations.)

In §2 of [8] we have indicated various ways of defining an X-Frattini

subgroup @X(G) of a finite group & such that

A

(20 (@) = 2,(6) = &G) 0 0,(6))
and a Gaschutz-Lubeseder-Baer theorem holds with respect to X-local and
X-saturated formations ([8], 3.8), X-saturation being defined via ‘I>x .

For the purpose of the present paper, we fix an arbitrary one of the

possible definitions of QX (subject only to the requirements pointed out
in [&]).

An X-homomorph function Kk associates to each X € X(X) u X' a
homomorph k(X) such that k(X) = ng(X) for all X € X' ; here

X' = XO\X . Given an X-homomorph function k , we let LHx(k) , the

X-local homomorph defined by k , be the class of all G € E such that the
monolithic quotients G/K of G satisfy the following conditions:

(1) G/CG(S(G/K)) € k(p) for each p € TT(S(G/K)) , whenever
S(G/K) $ <I>X(G/K) is an \X—group {(that is, a group all of
whose composition factors belong to X ), and

(2) G/K € k(E) , whenever S(G/XK) is an X'-group of

characteristic E .
Clearly, LHX(k) is a semiformation (but is not necessarily X-saturated

in the sense of [§]1, §3). H = QH is said to be an X-local homomorph
provided that H = LHX(k) for a suitable X-homomorph function k , which

then is called an X-local definition of H . An X-homomorph function Kk
is called integrated, if k(X) c LHX(k) for each X € X(X) v X' , and
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full, if Epk(p) = k(p) and LHX(k) EEE,,k(E') whenever p € Xx(X) and
E € X' , respectively (Ep [E ,] denotes the class of all p-groups [groups

without composition factor isomorphic to & ]). The class of all X-
homomorph functions is partially ordered by means of the following
definition of k = k' : for each X € x(X) u X' , k(X) c k'(X) .

With this terminology at hand we can formulate the obvious general-
isation of the Carter-Hawkes result on certain canonical local definitions
of formations of finite soluble groups, the proof of which is straight-
forward from the definitions together with the previous discussion and [7],
2.1.

PROPOSITION 1.2. Let H = LHx(k) . Then the wnique minimal X-local

definition ko of H is given by

Qlereg(s(@)) | ¢ €H, S(6) £ 9,(6) Xp-chief factor of G} ,
ko(X) = if X=p €xX),
{@, RS}{GéHnMIS(G) eEE}, if X=FE €X'

[Xp ={X eX|penX)}, E, equals the class of all groups all of whose

composition factors are isomorphic to E ), the wnique minimal full [and
integrated] X-local definition kl of H by

Epko(p) » if X=p ex(X),

k(1) =
' fo, R2He/0,,(0) | ¢ €H} , if X=F €X'

(where OE'(G) is the largest normal subgroup of G without composition
factors isomorphic to E ), and the wnique maximal [full and] integrated
X-local definition x° of H 4is given by

{¢ €H | GV € H for any irreducible GF(p)[Gl-module V}
K°(x) = if X=p €xX),
H, if X €X' .

The following observation of Doerk [5] will be applied in the proof of

the main result of this section.

LEMMA 1.3. Let H and K be homomorphs, and put F = h(b(K) n H} .

https://doi.org/10.1017/50004972700002240 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002240

10 P. Forster and E. Salomon

(Recall that h(B) 4is the class of all groups without quotients in B .)
Then F 1is the unique largest homomorph such that F n H € K ; moreover,
if KS€H, FnH=K.

To facilitate our discussion of X-local homomorphs H with a unique
maximal X-local definition, we give a criterion for an X-homomorph
function to be an X-local definition of H . The following definitions
shall turn out to be crucial.

Let H = LHX(k) with maximal integrated X-local definition ko (see
Proposition 1.2). A group G € b,(H) (= {c e b(H) | 5(6) € Ex}) is called
X-dense (with respect to H ), if G € b(ko(p)) for each p € H[S(G)) .
Further, b(H) is said to be X-wide, if there does not exist an X-dense
group G € bX(H) . Note that a group G € bX(H) with abelian socle S(G)

cannot possibly be X-dense, as otherwise G € Epko(p) C H , where

{p} = n(S(G)} ; see Proposition 1.2. Thus in the defining condition of
X-width of b(H) we may write "G ¢ bX(H) with non-abelian socle" instead

of "G ¢ bx(H)" .

THEOREM 1.4, et H = LHX(k) , and consider an X-homomorph function

g . Then H = 1H,(g) if and only if the following two conditions hold:

(1) if G €by(H) is X-dense, then G £ glp) for some
p €w{s(®)) ; and

(2) ko < g =<k, where the Xhomomorph function Kk is defined
by

nEECE)] nH) L if X=p e x(X),

k(x) =
h(bE[ko(E)]] ,if X=E €X' .

Proof. First suppose that g is an X-local definition of H . Then
every X-dense group G € by(H) satisfying G ¢ n{glp) | p € 7(s(a))}

belongs to b(H) n LHX(g) =b(H) nH=¢ , and so (1) holds. As for (2),

ko < g is immediate from Proposition 1.2. To get that g(p) = k(p) ,
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p € X(X) , we apply Lemma 1.3: it suffices to show that

glp) nH = ko(p) , which again follows from Proposition 1.2 when
H = LHX(gH} is taken into account, where gH(X) = g(x) nH for each

X € x(X) u X! . TFinally, if g(E) ¢ k(E) for some E € X' , then there

exists G € g(E) n bE,(kO(E’)} ; G can be found as a group of least order

in g(E)Vk(E) . Now kO(E) = H , whence G ¢ bE,(H) c M, and from
H= LHy(g) we readily get that G € H , the desired contradiction.
Consequently, (2) is satisfied.

Conversely, suppose that g satisfies (1) and (2). Then it remains

to show that LHy(g) € H , since then H = LHX,(kO) c LHX(g) cH ; here
Proposition 1.2 and (2) have been applied. Consider a group G € LHX(g)\H
of least order. Then G € b(H) , while G € bE(H) for some E € X' is

impossible: otherwise, as g =< k and bE(H) c M , we should have that G

is in g(E) € k(E) = h(bE,[ko(E)]] = h(bE(H)) . Thus G is necessarily in
bx(H) . If S(G) is abelian, of characteristic p (é x(X) ), say, then we

deduce that

G/C,(5(@) € glp) n H c&(p) n H < k%(p) (by Lemma 1.3),

which together with G € b(H) yields @ ¢ LHX[RO) = H , a contradiction.
Hence S(G) is non-abelian and we have

G = G/CG[S(G)) € glp) € k(p) for each p € w(s(G)) .

As G € b(H) , an argument as above shows that G/S(G) € ko(p) and from
ko(p) C H we may nov infer that G € by(H) n b(ko(p)] for each
p € n(S(G)) . That is to say, G € bx(H) is X-dense, and is in each
glp) , p € ‘n[S(G)) , which contradicts (1). |

COROLLARY 1.5. Let H = LHX(k) . Then H has a wique maximal

X-local definition if and only if b(H) is X-wide; in this case k (as
defined in Theorem 1.4) is the maximal X-local definition.
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Proof. In case that D(H) is X-wide, we apply Theorem 1.l to see
that Kk is the unique maximal X-local definition of H - observe that
=k
kO

Conversely, suppose that H possesses a unique maximal X-local

definition g . Then Theorem 1.4 yields that kO <g=<k anda G f g(p)
for some p € m(S(G))} whenever G ébx(H) is X-dense. We shall show
that b(H) is X-wide by proving that every X-dense group G € bX(H)
belongs to g(p) for each p € T(S(G)) , and therefore cannot exist. We
have to find an X-local definition hg of H such that G € hg(p) .

Such an X-local definition is provided by the formula
0 .
k(p)v {6, it x=p ,
Wex) =
KO(%) , if p #X € x(X) u X' ;

in fact, to verify that H = LHX(hZé) , Theorem 1.4 may be applied. O

From the examples below it shall become clear that an X-local
homomorph may or may not have a unique X-local definition. (Though our
examples include local formations, this does not yet settle the Doerk-

Semetkov-Schmid problem - to do so, we have to add a few remarks; cf. §2.)

EXAMPLES 1.6. (a) Suppose that X contains a non-abelian group E .
Then E is X-dense with respect to any X-local homomorph H satisfying

E’tH_D_{Cp | p € "(E)} ; for example, take H = N, N ,or S

w(E)
(nilpotent groups, nilpotent 7(E)-groups, soluble groups).

(b) Let F = NFO , where Fo = QROFO - Further, let Ry  denote the

class of all X-groups without abelian chief factors; clearly RX = R)Q( is
a Fitting formation. Then F is an X-local homomorph with maximal

integrated X-local definition fo given by fo(p) = EpFO (p € x(X)) and

PE) = F (B €X) , ana b(F) is Xwide if and only if RyFy = F, .
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2. X-local formations

An X-formation function is an X-homomorph function f such that
flx) = Rof(X) for each X € ¥(X) u X' . Given an X-formation function

f , the X-local formation LFX(f) defined by f 1is the class comprising
all groups G such that
(17) G/CG(H/K) € f(p) whenever H/K 1is an Xp—chief factor,
and

(2') G/K € f(E) whenever S(G/K) is an X'-chief factor of G

of characteristic F .
Observe that LFX(f) c LHX(f) for every X-formation function f .
PROPOSITION 2.1, Let flk] denote an X-formation [-homomorph ]
funetion.

(a) LHX(f) i8 a formation, and LHX(f) = LFX(f) .

(b) If 1H (k) <s a formation, then LHX(k) = LFX(g) for a suitable

X
X-formation funetion g . The unique minimal X-formation function fo
such that LHx(k) = LFX(fO) is the one gemerated by Kk, (that is,
fO(X) = QROkO(X) for each X ¢ x(X) u X' ), the wnique maximal [full and)
integrated X-formation function fo with the same property is the one
defined in Proposition 1.2 (that is, f° =%° ).

Proof. (a) As mentioned above LFx(f) c LHx(f) . Moreover, both of

these classes are clearly semiformations; in fact, by [§], 3.1, the former

class is a formation, and is Eg -closed by [§], 3.8. A group of least
X

order in LHX(f')\LFX(f) is therefore necessarily in

b(LFX(f)) n LHx(f') C M , and thus cannot possibly exist.
(b) 1In order to verify LHX(k) = LFX(g) for a suitable X-formation

function g , it suffices to show that ko (as defined in Proposition 1.2)

is a formation function. Since kO(E) = LHX(k) for any E ¢ X' , it
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. 0 .
remains to deal with k (p) , p € x(X) . This, however, can be done by

using a standard argument (from the proof of the Gaschiutz-Lubeseder

Theorem) together with the description of ko(p) given in Proposition 1.2.
The additional assertions in (b) are clear; ef. [8], 3.8. a

Consider an X-formation function f . The most natural candidate to

serve as a unique maximal X-location definition of F = LFx(f) is the

A

X-homomorph function f - provided only that f is an X-formation

function -, where

{eeelan (P viencrm},ir x-pexn,
Fx) = {r(bg(F)) , it X =E ¢ X'\P
{GEE | QRO(fO(q) u {6}) g?(q)} ,if X =g eX' nP

note that h(bE(F)) is a (saturated) formation (ef. [8], 6.3); here f
is defined as in Theorem 1.h.

THEOREM 2.2, Let F = LF,(f) for some X-formation function f ,
and let g be any X-formation function. Then F = LFX(g) if and only i1f
the following two conditions hold:

(1) <f G €by(F) is X-dense, then G t glp) for some

p €n(s(&)) ;

(2) fy=gs= 7.

Proof. Immediate from Theorem 1.4, Proposition 2.1 and the next
result. (0]

LEMMA 2.3. Using the above notation we have

F(x) = u{6 = QR,G | 6 Ff(X)} for each X € x(X) u X' .
In particular, if f(X) contains a wnique maximal formation, then the
latter coinetdes with f(X) .
Proof. By our remark above }'(X) = QRO%(X) for non-abelian X , and

in this case the assertions hold trivially. Therefore in what follows, we
may assume that X € P . It is clearly sufficient to verify the following

statement:

https://doi.org/10.1017/50004972700002240 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002240

Local definitions of homomorphs 5

(%) QR (G}  F(x) = RO(fO(X) v QRO{G}] c flx .

By way of contradiction, let H € R [fO(X) v QR {G}] \AX) be of least

QR, {c}

Let A = Hfo(x) and B < H be minimal normal subgroups of

order.
H ; note that neither H ¢ fo(X) nor H € QRO{G} is possible. From our
choice of H we have that H/A, H/B € ?‘(X) . Furthermore, there exists

K <H such that H/K € bD‘o(p)] nF or H/K € bq(F) , according to
whether X =p € x(X) or X=q € X" nP ; ecf. [7], 2.1b. For any choice
of A and B , subject only to the conditions stated above, we have
KnA=KnB=1, and so KanO(X) =KnHQRO{G}=1 : indeed,

F(X) n F= fD(X) has been pointed out earlier.

First assume that X =p € x(X) . Then H/K € F together with

H/Hfo(p) € fo(p) C F yields that H is in ROF = F . Consequently, by
the hypothesis of (%),

Qr _{G}
am °

i) Tl

H € fo(p) < flp) , a contradiction.

¢FneR @ cFnfp) = £,

Hfo(p)

and then =1 forces to be trivial; that is,

Now suppose that X =q € X' nP . In this case, H/K € bq(F) , and

HF <L =5(H md K) . In addition, we know that HF = fo(q) is minimal

normal in H . If B is as above then

L=KXHF=KXB, HFnB=l,and HF'EL/KGEq,

@r {c}

whence H/H 0 € QRO{G} c ?(q) = h(bq(F)) has a factor éroup belonging

to bq(F) , Which is sabsurd. 0

LEMA 2.4, Let G be a formtion, and let G € M with non-abelian
socle be such that G/S(G) € G . Then
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QR,(G u {¢})

={X€E|XG$S(X),YSXGminimZnormaZinXaY*X%'G} .

Proof. It is easy to see that the right hand side of the above
equation defines a formation containing both G and {G} . Conversely,
the Jordan-Holder Theorem may be applied to show that every group in
RO(G u {¢}) has the desired structure. O

Applying Lemma 2.4 enables one to deduce from Theorem 2.2 the
following result in much the same way as Corollary 1.5 was obtained as a

consequence of Theorem 1.4.
COROLLARY 2.5. Let F = LFX(f) . Then F has a unique maximal

X-local definition (as a formation) if and only if b(F) is X-wide and
?(X) is a formation for each X € P ; 1in this case ?‘ is the maximal
X-local definition.

PROPOSITION 2.6. Let Yy € XS Xy be such that both X and Y
satisfy the hypothesis stated in the introduction.

(a) If F = LFX(f) , them F = LFy(g) , where g(p) = f(p)
b e x(Y)) and g(E) =F (E €VY').

(b) If F= LFX(f) has a wnique maximal X-local definition, then F

has a wique maximal Y-local definition. If, in addition, X(X) = x(¥) ,
then the reverse implication is valid if, and only i1f, b(F) is X-wide.

Proof. (a) 1is easy from the definitions.

(b) Applying Corollary 2.5, we are left to show that a(q) is a
formation whenever ¢ € x(X) n ¥’ ; here g is as defined in the state-

ment of (a)J. We claim that

g(q) = h(bg(F)) (q € x(X) n V')
contains a unique maximal formation, which will give the desired result
(see Lemma 2.3).

Aiming at an application of Proposition 1.1, we shall prove that

G = g(q) is an E%—closed semiformation. Trivially,
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b(G) = b[h(bq(F))) qu(F) cM,
as F is a formation. Hence G is a semiformation. To get that
G = E‘;G , we consider a group G € E;G\G of least order. Since QE'(’I; < E(’I')Q
and G = @G ,
G € b(G) g_bq(F) M,

and therefore the definition of E; yields
5(6) = ®6) , (G/CG(S(G)))S(G) =5(G) * G €6 .

In fact, from G € bq(F) we have G/S(G) € F , which when combined with

S(G) * G € G forces S(G) * G to be in F : otherwise
S(G) * G ¢ bq(F) NnG=¢g . This, in turn, together with G/S(G) € F leads

to G € F , because F is an X-local formation, and S(G) is a ¢g-group
with g € x(X) . We have obtained a contradiction. a

For application in the next section we state a result which emerges

from our proof of Proposition 2.6 (b).

COROLLARY 2.7. 1f F = {aq, RS}F satisfies E&‘,F n EqF = F for some
prime q , then h(bq(F)) is an Es—closed semi formation, and so contains
a wnique maximal formation.

In a similar fashion we get the following

COROLLARY 2.8. et F = {g, RS}F , H= QROH , and assume that
E;F nHcCF. Then h(b(F) nH) is an E}-closed semiformation, and so

econtains a wnique maximal formation.

3. Some special cases
In contrast to the condition that b(F) be X-wide (F = LFX(f)) .

the other condition from our main result Corollary 2.5 - namely, that ?‘(X)
be a formation for any X € P -~ is not always easy to check when a

specific formation F 1is given. Imposing the closure property introduced

in §1 on fo(X) for each X ¢ P , however, removes this problem, thus

providing us with a simple method to exhibit examples (which will be given
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in §h4).
LEMMA 3.1. Let f be an X-formation function, and put
F = LFX(f) . If f(p) 1is Es—olosed for each p € x(X) and

o

formation for each X € P ; in particular, f(X) contains a unique

E§F 0 EqF =F foreach q €P n X', then f(X) is an E*-closed semi-

largest formation, namely ?'(X) .
Proof. First we show that F is Es—closed. Assume that G € E&;F\F
of least order, so G € br( F) for some »r €¢P . Since F is an X-local

formation, it is clear that » cannot be in X(X) ; but then

G € E;F N ErF =F ,as r €P n X' . This contradiction yields that
F = E(;F . Now the assertions follow from Corocllaries 2.7 and 2.8 together
with the next observation. a
REMARK 3.2, If f is an X-formation function such that both
F = LFx(f) and f(p) for some p € xX(X) are E'g—closed, then fo(p) is

also E’&;—closed.

Proof. If F and f(p) are E’g-closed, then so is f(p) n F as

well as Ep(f(P) n F) = fO(P) . o
As a consequence of Corollary 2.5 and Lemma 3.1 we record

COROLLARY 3.3. Let F = LF(f) = B be such that f(p) is B3

eclosed for each p € x(X) . Then F has a unique maximal local definition
if and only if b(F) is X-wide.

Before discussing examples we reprove Doerk's result on formations of

finite soluble groups without using the theory of F-normalisers.

THEOREM 3.4 ([41, Satz). In the wiiverse S of all finite soluble
groups, every local (that is XO-ZocaZ, P-local) formation possesses

a wnique maximl local definition.

Proof. It is clear that all of our previous results remain true in
S , the obvious modifications of definitions, and so on, being understood.

It is therefore sufficient to show that for every prime p , ?(p)
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contains a unique maximal formation: recall that X-dense groups have non-

abelian socles.
In [6], §2, we have introduced a closure operation Sw , Which is

generated by the operation of taking supplements of the Fitting subgroup,
and we have applied a result of Bryant, Bryce and Hartley [2] to show that

formations are {Q, Sw}—closed. Moreover, it is clear that .any class K

of finite groups contains a unique maximal {Q, Sw}—closed class (which we

{@.s,}

shall denote by K }. 1In order to prove that f(p) contains a

unique maximal formation, it therefore suffices to verify the same state-

5,

_ e _
ment with H = (f(p)) Y’ in place of f(p) . Indeed, it suffices to
show that R < flp) , since then QRMH < f(p) implies that

{@.s,}
QROH g,[fﬁ?ﬂ = H , and this will complete the proof.

Suppose that R f ¢ f(p) and let G € ROH\?(p) be of least order.

Then a standard argument yields hﬁ, e Mh » N<9 (G such that

G/M. € H ,
Z
n 0
n M, =1, G/N eb(fip)) cb(F(P)) nF .
=1
Now N % ®(G) : otherwise we should have that G € E¢F = F ,
- 0 0, v _ .0
G/MiEHanf(p)nF—f(p) » G €Ryf (p) =f(p),

which contradicts G/N € b(fp(p)] . Consequently, there is a chief factor
T/5 of G such that S =N n &G) and T <N . Solubility of G forces
7/S to be abelian, and then a well-known result of Caschutz shows that

7 < F(G) . Since T/3 $ o(G/S) , we may choose a complement U of T/S
in G , that is, a subgroup U =< G satisfying G =UT and UnT=§5 .

In particular,
G/, = (oM /m.) (/M) = (M, /m.) (F(e)m /M) = (UMi/Mi]F[G/Mi) .

whence
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U/un M =M /M €S fG/M}cSH=H (i=1,..,n)

By choice of G , we see that U € ROH n }kp) , while G = UT = UN yields

14

that U/U n N = UN/N = G/N € b(f(p)) , a contradiction. a

In contrast to Doerk's original result, the above does not give a
(more or less explicit) description of ?(p) , but such a description can
be extracted from our proof. (Incidentally, a similar remark applies to
our results in §2.) Nevertheless, this description does not coincide with

the one obtained by Doerk, though the classes are necessarily the same.

Finally we would point out that it is easy to construct examples of
local formations in S , locally defined by a formation function f , say,

where ? does not coincide with ? [and is not Eé—closed, too - note

i

that ng(p) flp) if and only if E'i;fo(p) = fo(p) , P €X(X)): choose

F=NAO = ¢ ¢ N2 | G/F(G) has elementary abelian Sylow subgroups} , so
fD(p) = EpAO , whence Ch € E;}%3)\?(3) and Ch y GL(2, 3) (direct

product with Frattini subgroups amalgamated) is in }%3)\?(3).

4. Examples and concluding remarks
For the sake of simplicity, when dealing with particular examples, in
this section we shall choose X to be X0 3 and in this case we shall
omit X from our notations. (Observe that "Xo—local" actually means

"local" in the sense of, for example, [3], [4]J

The most simple example of a local formation with a unique maximal

local definition is given by the class E‘,T of all mw-groups, W a set of
primes. Indeed, none of our preceding results is necessary to show that

E,if pemnm,
Fp) =
g ,if pEm,

defines the unique maximal local definition % of ETT .

As an example of how to apply Corollary 3.3, we derive from Example
1.6 (b) that
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NR = {¢ € E | G/F(G) does not have an abelian composition factor}

has a unique maximal local definition: by Example 1.6 (b), b(NR) is
wide, while E%(E R) = E R is obvious.
%'p p

On the other hand, Example 1.6 (a) provides us with many examples of
local formations without unique maximal local definition: for example,
take NS FC S - and note that F = LF(f) may be chosen such that all of
its full and integrated p-local definitions are saturated, and therefore
are E%—closed.

Now consider Fl = Ep and F2 = NR . We have just seen that Fi has
a unique maximal local definition fé (¢ =1, 2) . However, despite the

fact that Fl is contained in F2 ,» the corresponding inclusion between

1

order q # p belongs to b[EpR) n AR = b[}g(pi] n F2 , and is therefore

and fé does not hold: indeed, fi(p) = E but every group of prime

not in ?é(p) .

The latter example shows (when combined with Lemma 3.1) that in
Corollary 2.5 we cannot dispense with the requirement that b(F) be X-
wide. (Of course, it is already apparent from the results of §1 that this
condition must not be omitted.) Far less trivial is the corresponding
statement concerning the requirement that ?(X) be a formation for each
X € P ., We shall give a rather complete account on an example of this
type, because it involves a construction of a group, together with some
formations, to yield a configuration, which is likely to serve as a sort of
standard counterexample with respect to various questions in formation

theory.

EXAMPLE 4.1. Let F = NRN (retaining from Example 1.6 (b) the
meaning of N and R ). By Example 1.6 (b), for each prime p ,

fo(p) = EpRN is the full and integrated p-local definition of F . Then

b(F) s wide, yet }'(p) s P>5, is not Ro-closed.

Proof. By Example 1.6 (b), b(F) is wide. Therefore it remains to
find a group G € RO?(p)\%(p) , P >5 . To this purpose we construct a
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group G € RO?(p) such that § = SL(2, 5) € @{G} ; since f(p) = Qf(p) ,

and as S € b[fo(p)] n F - it is well known that ®(8) = Z(S) is of order
2 and S/Z2(8) = A5 - this will complete the proof.

Clearly, S has an irreducible module V over GF(p) such that
QS(V) = Z(S) . Let
X =5V
be the semi-direct product, and let
Y=5 N?(X) X
be the wreath product of S and X with respect to the permutation

representation of X on the set of cosets of Z(X) = 2(S) in X . As

usual, for any U <S5 ,
Ur = U x ... x U(|x/2(X)| copies of U)

shall denote the canonical subgroup of S* , the base group of Y ,

isomorphic to a direct sum of |X/Z(X)| copies of U . Then

Z(5)* = 2(s%) =, or(2)[x/2(0)] ,

and so there exists Z < Y such that
z=28)*, C,=12(8)*2 = 2(¥/Z) n ¥(5*/2)
Now we are in a position to define the above-mentioned group G by putting
G =Y/2
Then S € @{X} € @Q{G} is trivial.

In what follows, we use the bar convention for subgroups U of

Y : U=U2/2 wvhenever U <Y . Employing this notation we see that

A=2(X) , B=12(8)*=2(G) =AXB

are both of order 2 and intersect trivially. Hence there exists
D = 2(G) such that DnA=DnB=1 and |D| =2 . 1In particular,
G € RO{G/A, G/D}, and so it remains to show that {G/A, 6/D} < F(p) ,

which (by Lemma 2.3) is equivalent to

(*) Qr,{c/a} , Qry{c/D} < Flp)
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To within isomorphism, G/A4 is a semi-direct product XOT satisfying

Xy = AV, 2(T) = ®(1) =C, , X T/%T) = 4

product). In order to show that QRO{G/A} S.?(p) we observe that

~ XO {a regular wreath

AS(AS), V(AS}, T/%(T) (XOT/Z(T)}, C,(1)

is the set of all isomorphism types of chief factors of XbT (together
with the automorphism groups induced by XOT in these chief factors); of
course, the same remark applies to G/D . We set

~ 7, o

K =
{AS,A v, A

5 5

that is, K 1is the set of all (H/K) * [Xoiq , where H/K ranges over the

set of chief factors of XbT ; and we put
L= {L € AgDAgD | H/K chief factor of [ = (H/K) * L € K} ,

where Ag is the class of all elementary abelian g-groups (q any

prime), and D = DO{AS} . Clearly, L is a formation containing both
L = L =
| = QR {G/A} ana o = @R, {¢/p} .

We claim that every element of Ll has an Nvo-projector belonging to
i N DE D = ; 7
the formation p,51%2 > where D {1, AS} ; see [7] for a theory of

Schunck classes and their projectors in finite (not necessarily soluble)

groups, and note that NDO = Q(va) satisfies b[NUb) CP and so is a
Schunck class. Aiming at an application of [9], Corollary, we show that

X T =G/A ND - § i is i N DE_ .
o G/A has an o projector which is in .51 (Actually,
application of [9], Corollary, requires a somewhat stronger statement,

the verification of which will be left to the reader.)

Consider XOT/Z(XOT) EAAsrv Xb . We shall show that this group has an

ND -projector contained in N D, H /Z(X T} say, and it shall become
0 {p,5} 0 0

clear that Z(Xbiq s, a group of order 2 , is complemented in HO . Ve
define HO by constructing its inverse image in A5 «rXb . Let @ Dbe a

https://doi.org/10.1017/50004972700002240 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002240

24 P. Forster and E. Salomon

Sylow 5-subgroup of CA*( V) . Then V<« Xo yields that XOQ is a group
5
isomorphic to C5 ~y X0 , where ~v indicates that the wreath product is

to be taken with respect to the permutation representation of X0 on the

set of cosets in XO of V¥V . 8Since XOQ covers A5 ~ XO/A‘; (with
A; = S(A5 ~ XO)) being minimal normal , and as VQ is N-maximal in VA;

it is easy to see that XOQ € PrOJNDO (AS ~ XO) , as desired.

We have shown that Ll is a formation contained in
=19 E j N D
Now Ll = QRO{XOT} c f(p) will be a consequence of

(+) if B eLnb(EpRN) NNRN , then B=SYSY...ys f[a
direct product of copies of S = SL(2, 5) with centres
amalgamated} .

From B € L n NRN we infer that B € AgAgD : otherwise there should

i = ~ NRN
be a chief factor Bl/BO of B such that [Bl/BO) *B = A~ X, :

It is now clear that

0,(B) = 2,(8) €AY , KB) = 0,(B) x 0,(B) #1,

B/F(B) gAS X ... XAS ;
note that Dc L n EpRN . Since B € b[EpRN) is monolithic, OP(B) =1,

and so

c, = Z(B) = F(B)

observe that a perfect group acting hypercentrally on some group must act
trivially. WNow either 2(B) ¥ ®B) , in which case B € M coincides with

02 €L n EpRN - a contradiction; or B is a central product of some

copies of S - here we rely on the well-known fact that every group So
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such that SO/Z[SO) ~A_ and Z(SO) = (I>(SO) >~ ¢, is isomorphic to S .

5 2

This proves (+), and we deduce that Ll C f(p) by assuming that
Ll\?(p) # @ and choosing B € Ll\?Kp) of least order. Then
B el nb(f(p)) cL nb(EpRN) 0 NRN . Hence from (+), B=Sy ...y S,
but then we see that every Nﬁb-projector of B is isomorphic to
s ¢ N{p,S}DEQ . This contradicts B € Ll c Fl , and so G/4 = X7
generates a formation contained in f(p) .

To get the same conclusion with G/D in place of G/A , we argue

similarly, applying (+) to a group B € LZ\?Yp) of least order. Then,

without loss of generality, B € {S, Sy S} ; indeed, both S and S yS5S
are not in ?(p) , and if B =Sy e Y S with n =2 , then QRO{B}

contains one of S and 5y S (ef. 2], §3).

5 & QR,{G/D} is a consequence of L, S F, b 5, where

F,o=1{6, € E | ProjEQD(Gzl n QR (S y S} # ¢}

note that (as D is a formation) EQD is a Schunck class, and S § F2
follows from S € EQU\QRO{S Yy 5} (see [21, §3), while G/D € F2 is seen

from the construction of & .
To complete the proof, Sy S § QRO{G/D} has to be verified. By the

way of contradiction, let H Dbe a subdirect subgroup of

(6/D) x ... x (G/D) such that H/K =Sy S for some K< H . Since each
n I

p'-subgroup G/D is contained in a Hall p'-subgroup of G/D , H has a

Hall p’-subgroup Hp' , which is subdirect in (G/D)p, X ... X (G/D)p' ,

n

where (G/D)p, denotes a Hall p'-subgroup of G/D . Clearly,
Hb,/Hp, NnK=SyS . Hence from the construction of G/D a contradiction

against the conclusion of Lemma 4.2 below is easily obtained, and we are

done. O

LEMMA 4.2. Let S = 8SL(2, 5) , and let X be the wnique quotient of
s ~3(8) S (the wreath product with respect to the permutation
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representation of S on the cosets of Z(S) ) which is a non-split
extension of the direct product of |S/2(S)| copies of S with centres
amlgamated by S/Z(S) . Then Sy S § QR {x} .

Proof. Suppose that there exists a subdirect subgroup H of some
X x ... XX with a normal subgroup K such that H/X =Sy S , and choose

7 to be minimal with respect to the property that X X ... X X has such a
n

subdirect subgroup # .
Recall that X has a unique chief series

lZY <X,

where - Z2=C. , Y/Z=A_ % ...%xA_, X/Y=>~A_ . For subgroups U of
2 5 60 5 5
X, U*=U><...XUEX*=X1><...><Xn shall be given a similar
n

interpretation as previously, and we put Ui = J* n X’L (so

u* = Up x ... x u, }. To begin with we have
(l)HnXi=Zi and KnXi=l(i=l,...,n),andso Z* < H .
n
Indeed, Hn X. <9H X. = X* (as H 1is subdirect in x X, ) and
CTogr Y =1

Ho X, #1 (by minimality of =z ). Similarly, X n Xi < X* , and thus
Hn Xi/K n Xi =~ [H n XiJK/K is isomorphic to a normal section of both X

and S Y S . From the structure of X and Sy S we see that

Hn Xi/K n Xi is either 1 or C Since H n Xi = K is excluded by

5 -
choice of n , we get that H n Xi/K n Xi = S[Xi)/l = Zi/l , as desired.

In what follows we shall consider X*/Z* = X* _ using a bar convention
for subgroups of X* (containing Z* ). Since H is subdireet in X* .

it is readily seen that

(2) S(H) =Hn S(X*) =H n S(X)* is subdirect in S(Ylj X ... X sﬁnj .

Further, as H/S(H) = HS(X*)/S(X*) , which is subdirect in

?*/Y*gAs X ... X A_ , we have

5
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(3) H/S(H) = El/S(ﬁ) X ... X Zm/s(ﬁ) ,

where Zi/S(ﬁ) 2 A, and {Zi/s(ﬁ) | 2 =1, ..., m} is the set of all

5
minimal normal subgroups of HA/S(H) .
In view of (2), every minimal normal subgroup of H is isomorphic to

S(AS ~ A5) (as a group with operators). Hence combination of (2) and (3)

yields
- =D
(W) S(H) = # {where D= DO{AS} ).
Let Qi (£ =1, ..., m) be the set of all 4 € {1, ..., n} such

.
that .9 = X. , where 7. : X X .., XX > X. denotes the projection
1 J J 1 n J

map. Then from 7; = Yj and [Ei’ Zi’] < S(H) = 8(X*) (2 #1') we

deduce that {1, ..., n} is a disjoint union of the sets Qi #0,

=1, ..., m. Writing S(H) = El X ... X M, as a direct product of

minimal normal subgroups ﬁj of H , we know that {ﬁl, ceny ﬁk} is the
set of all minimal normal subgroups of S(H) . Since ﬁj * 7 EAS ~ A5 s
(3) and (4) show that

Cﬁmj)fi = H for precisely one i = 2(jF) € {1, ..., m} .
Observe that % # i(j) (< € {1, ..., m}, 5 € {1, ..., k}) if, and only
if, I, =ﬁj x cf'[ﬁj) . Let Q! = {dg e, ..., kY | 2 = i)}

7
(=1, ..., m) ,so {1, ..., k} is a disjoint union of the sets Q{
Now put
Zt = CZ' X M) = N CE W)
i jéar J jfar i J

Then from M’ =M, and L. = C— [ﬁ} x M,
J J 7 L.Yg" J
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Consequently, as K‘zl nS(H) = x Mj s
JeQ!
7
H=K % ...xK .
1 m
Furthermore,
—Ki is a subdirect subgroup of X 71 ,
leq;
) _ —nZ ‘HZ 7 T
K./K. = A X, = M i {,” =
and K,/K. 5 > for X; =L, J'tQ 2 vields that K X,

. . M
and then ]__,L, ,] =1 (T #141') forces K , to be contained in

2(%,)

Finally we note that the inverse image Ki of 21: in X* may be
\

chosen such that Z[ x XZJ = Ki = X XZ , whereas Li always contains

ZEQT: ZGQi
Z(X*)
With this choice we have
(5) H = Kl X ... X Km , where Ki is a subdirect subgroup of X XZ

ZGQ,I:

satisfying K / = A

R

Now recall that H/K = S Y S , so there are precisely two normal
subgroups A and B of H containing K such that H/A = A_=H/B .

From (5) we deduce that (without loss of generality)

o [m ) m
A=leli22KiJ and B=Kl><1€x iZ3Ki

Moreover, A 0 B/K=C and KD X IJ) < K is impossible, for then we

23 1 %2
should have H/K = 02 X AS X A5 $ Sy S . Consequently, minimality of =
together with (5) permits us to assume that 93 U ... U Qm =@ , that is,
1
= X = X X x = LI
H =K *K, { ka [ Xk] X Now K, = A and K, < B , but
kEQl k€92

https://doi.org/10.1017/50004972700002240 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002240

Local definitions of homomorphs 29

again KIZ) $ K (for H/K % Ag x5 }. This gives
S=A/K =K K, n K €QIK,}

and the proof is reduced to the problem of showing that & f Q{KQ} .
However, K2 is a subdirect subgroup of some X X ... x X , and so the
methods applied in the proof of Example 4.1, in order to show that

S ¥ QRO{G/D} , can be used again (with only trivial modifications being
necessary) to yield S § Q{K2} , too. O

The method employed in the proof of Lemma 4.2 apparently has a wider
range of applications. We hope to use it in a further study of the

formation generated by an insoluble finite group (of a certain type), a

problem that was left open in [2].
As a consequence of the proof of Example 4.1 we record:

COROLLARY 4.3. There exists a group G with two distinet minimal
normal subgroups M, , M, such that G =) QRO{G/Ml} v QRO{G/MZ} for a

suittable semiformation H .
In fact, Corollary 4.3 is weaker than what we have obtained: classes '

of type h(b [fo(p)] n F) are certainly not the most general semi-

formations.
The above example can be modified to show that h(bq(F)) , F an

X-local formation and q € X' n P , does not always contain a unique

largest formation.
Put F = EPRN » P >5 (which, by Example 4.1, is a formation), let

X be empty (clearly any formation is an @-local formation) , put q = 2,
and take G, A, D from the proof of Example 4.1. Then

QR {6/4} v QR {6/D} < h(b(F)) ,

but
¢ € R {c/A, ¢/DW\R(b,(F)) .

First of all, from the proof of Example L.l we know S = SL(2, 5) is
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a quotient of G , and is in b2(F) ; moreover, G € RO{G/A, G/D} . Now
let

B, =b, (Epmv) nNRN , B, =b, (EpRN] WRN ;

Thus b,(F) =B u B, . Then h(by(F)) = h(Bl u 82) = h(Bl] n h[Be) and
we are left to verify

QR {G/a} v @R {G/D} h(Be] ;

indeed, the corresponding inclusion with h(Bl) instead of h(82) is what
we have obtained in the proof of Example L.1, as Bl c b(EpRN} n NRN  shows
that h(B) 2 (b [EpRN] n NRN)

From nilpotency of N for M, N =L such that N/M € N and
M=No L) , together with bg(EpRN) C M, it is clear that all groups in
32 =bn (32)) are primitive groups with minimal normal 2-subgroup; in
particular, h(32] is a Schunck class. Combining these statements we see
that h(Be] is an E&;—closed semi formation and hence (by Proposition 1.1)

contains a unique maximal formation. The latter can be described as

follows:
flr (82)] ={G eE | (H/K) * G € h(Bz) for every chief factor H/K of G} .
Therefore it suffices to show that both G/A and G/D belong to this
class. In view of the above characterization of f[h [82)] » however, this
is a routine matter, which we leave to the reader. We have shown:
EpRN s P >5, is an @-local formation without wunique maximal
@-local definition.

The next example will show that a local formation may have a unique
maximal local definition even if its full and integrated local definition

does not consist of E(’I‘)—closed formations. Hence the corresponding

hypothesis in Remark 3.2 is not necessary to ensure existence of a unique
maximal local definition. We have to work harder, however, than in the

universe of finite soluble groups (see the example in §3).
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F= NF0 , and assume that

EXAMPLE 4.4. Let FO = QROFO R

(1) F-= EpFO for some prime p , and

(2) RFy =F, (that is, b(F) s wide; cf. Ezample 1.6 (b)).

0
Then ?’(p) =E, }‘(q) = FO for each prime q # p 1is the wnique mazimal
local definition of F ; in fact f = f.

Choosing FO to be the class of all groups all of whose Frattini
chief factors have odd order yields an example F = NFO such that (1) and
(2) hold (with p =2 ) and, in addition, the full and integrated q-local

definition of F , namely EqFo = F

, g
0+ 8 not Eg closed.

Proof. As we have mentioned in Example 1.6 (b), fo(r) = ErFO for

every prime r . In particular, (1) ensures that fo(p) = F , whence

b[f°(p)] n F=9 ana Fip) = (P

EFo = (@)

£ . Another consequence of (1) is

Fofa)=€F nEF =F . atp.

Furthermore, bl:f‘o(q)] nF= b(FO) n NFO = b(FO] and, in view of [5], 1.1,

Fq) = n@[P(@)] o F)

of (2). Since f(r) is a formation for each prime r , we see that

h(b (FO)) =F, , b(FO) c NFO being a consequence

f=7F is the unique maximal local definition of F .

1r F, = fceE | naG=2] |9G/W)|} , then clearly
Ez,FO = FO = RFO , which proves (1) plus (2). Finally,

*

sL(2, 5) € Eq,FO\F0 . O

The next (and trivial) observation provides us with a description of
?(p) s, which might be useful in studying further examples.

REMARK 4.5, h(b(H) n F] = {¢ ek | G/Cr'F € H}  for homomorphs H and

formations F .

To conclude we comment on X-dense groups, and on X-local formations

with X-wide boundaries. First we mention that the notion of an X-dense

https://doi.org/10.1017/50004972700002240 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002240

32 P. Forster and E. Salomon

group may be defined without insisting on the use of full and integrated

local definitions.
REMARK 4.6. Let F be an X-local formation. Then GEbX(F) is

X-dense if and only if G € N{p(f(p)] | p € 7(s(¢))} for some X-local
definition f of F satisfying flp) ©F for a1l p € n(s(@)) . (By
taking x=x0, F=N,g(p)={l},G=SS,
an X-dense group G € bX(F) need not be in ﬂ{b [g(p)) | p e ﬂ(S(G))} for

however, it is seen that

every integrated X-local definition g of F )

Finally we observe that the condition that b(F) be X-wide can be
reformulated to avoid the use of boundaries. To state such a condition we
define an X-formation function e by putting ex(p) = EX , p €x(X) ,

p
and ex(E') = {1} , E € X' , and give ey *f, f any X-formation
function, the obvious meaning, using formation products.

REMARK 4.7, If F = LFX(f) , then b(F) is X-wide if and only if

A variation on this theme is the following

PROPOSITION 4.8. Let F = LFX(f) . Then b(F) is X-wide <if, and

only if, the following condition holds:

EX[ n fo(p)] = N fo(p) for every non-abelian X € X .
p€m(X) pen(X)

Proof. G € by(F) n (ﬂ{b[fo(p)] | p € m(s(6)}}) 1is equivalent to the

condition that ¢ € n{p[°(»)] | p ¢ 7(5(6)}} 1is monolithic with non-
abelian socle, the characteristic X of which belongs to X . These

groups, however, are precisely the elements of

EX{ n fo(p)] nb[ n fo(p)] , X €XWP . o
pEm(X) pem(X)

From the last result we see that every Xo—local formation F such

that X (F) does not contain the set of primes dividing the order of a non-

abelian simple group (for example, X(F) the set of all odd primes, or
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|m(F)| =2 ) has an X-wide boundary. Utilizing this fact, it is easy to

find Xo-local formations F = LF, (f) such that f is an Xo—formation
0]

function, but does not coincide with ? . For example, taking

Fetmy (9) =N gy vith $(2) = B, = P@ . 3 == ~m,
flp) =9 = fo(p) for all primes p f {2, 3} , yields

Fa) =[] n F) = relE] n N 3) =R(c,)

where {q, r} = {2, 3} , and this is a Schunck class, but not a formation;
since the boundary of this class consists of a monolithic group, it is a
semiformation, whence ?(q) is the unique maximal formation contained in

f(q) (see Proposition 1.1).
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