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LOCAL DEFINITIONS OF LOCAL HOMOMORPHS AND
FORMATIONS OF FINITE GROUPS

P. FORSTER AND E. SALOMON

I t is well known that every local formation of finite soluble

groups possesses three distinguished local definitions consisting

of finite soluble groups: the minimal one, the full and

integrated one, and the maximal one. As far as the first and the

second of these are concerned, this statement remains true in the

context of arbitrary finite groups. Doerk, Semetkov, and Schmid

have posed the problem of whether every local formation of finite

groups has a distinguished (that i s , unique) maximal local

definition. In this paper a description of local formations with

a unique maximal local definition is given, from which counter-

examples emerge. Furthermore, a criterion for a formation

function to be a local definition of a given local formation is

obtained.

Consider a local formation of finite soluble groups, F say. Carter,

Hawkes [3] and Doerk [4] have shown that there is a unique full and

integrated local definition y of F , whereas existence of a unique

minimal local definition fQ of F is evident from the mere definitions.

Doerk has used the first of these to prove that the formula

= {G € S|F - normalisers of G belong to f(p)} (p € P)
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6 P. Fors te r and E. Salomon

defines the unique maximal local definition of F (in the universe of al l

finite soluble groups).

Now let F denote a local formation of finite (not necessarily

soluble) groups. The definitions of / . and j (see Propositions 2.1

and 1.2 below) make perfectly good sense for insoluble groups, too, and

yield the corresponding results in the universe of all finite groups.

Unfortunately, F-normalisers of arbitrary finite groups are not available,

so Doerk's approach to the question of uniqueness of maximal local

definitions cannot be generalised. (More precisely, one may indeed define

F-normalisers, but these would not meet the requirements needed in the

present context.) Somewhat surprisingly, in this note a more naive

approach shall be shown to work (thus yielding a new proof of Doerk's

result - of course, as our paper is essentially self-contained, this proof

is more elaborate than the original one) .

For the purpose of greater generality, and as i t can be done without

much additional effort, we shall employ the notion of an X-local formation

as introduced in [S]. Our main result on formations suggests that greater

clarity can be gained by starting with an investigation into X-local

homomorphs, and this is confirmed in Section 1.

The reader is referred to [2], [3], [5], [7, S] for definitions and

basic results in the theory of homomorphs and formations. As in [7, £], X

denotes the class of all finite simple groups, P c X is the class of all

groups of prime order (and is sometimes identified with the set of all

prime numbers). Throughout this paper, X denotes a fixed subclass of X

subject to the following:

HYPOTHESIS.

X(X) c X (where x(x) = {C I P € ^U) f o r so^e x * X} ) .

As usual, C is the cyclic group of order p . All groups shall be

assumed to have finite order. Notation is (hopefully) standard.

1. Semi formations and X-local homomorphs

A serm.forrrati.on i s a homomorph H such that H = R*H , where R* i s
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the closure operation on the class of a l l homomorphs defined by

R*K = [G € RQK | Q{G} n M c K} for each K c E ;

reca l l tha t M and E denote the classes of a l l monolithic groups and of

a l l f i n i t e groups, respect ively. Equivalently, H c E i s a semi formation,

i f and only i f H = 0i and

b(H) (= {G € E\H | G/N € H whenever 1 f N < G} )

i s contained in M ; cf. [ 7 ] , 2.1c (footnote l ) . Of course, /?'-closed

Schunck classes ( in the sense of [ 7 ] , §6) as well as formations are semi-

formations. In addi t ion, Schunck classes are closed with respect to the

closure operation Ei , which i s defined by

E*K = {G € E | G/N € K for some N £ <k(G) such t h a t [G/C (H/K))[H/K) € K.

whenever H/K i s a c h i e f f a c t o r of G below N} for each KcE.

The fol lowing p rope r ty of 2?i-closed semiformations s h a l l be needed i n an

a p p l i c a t i o n of our main r e s u l t .

PROPOSITION 1.1. Let H = QH = R*H = E*H , and put

/[H] = {G € E | {H/K) * G € H for every chief factor H/K of G) ,

where

[G/CG{H/K)){H/K) 3 if H/K is dbelian,

(.H/K) * G = •
G/CG(H/K) , otherwise.

Then f[H] = QRQf[H] cH,and F = QRQf c H implies F c f[H] ;

moreover, f[H] = £"|f[H] .

Proof. Obviously, f\H] i s a formation. Assume tha t f[H] £ H and

choose G i f[H]\H of l e a s t order. Then G € b(H) <£M. I f S(G) $ $(G) ,

we infer tha t G ^ S(G) * G € H , a contradict ion. I f S(.G) 5 <5>(G) , then

S(G) * G i. H forces G to be in ffW = H , another contradict ion. Hence

f[H] c H , and F c f[H] for every formation F contained in H follows

from a well-known resu l t of Barnes and KegeI ( [ J ] , l . l ) together with the

def ini t ion of f[H] . F inal ly , £*-closure of f[H] i s immediate from
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f[H] <=_H. 0

We now go on to introduce the notion of an X-local definition of a

homomcrph in a manner which is dictated by the aims of this paper. (The

most general notion of an X-local homomorph would require to state the

definition in a way not serving our purposes, and yet would yield a class

of X-local homomorphs only slightly larger than ours, and containing the

same semiformations.)

In §2 of [8] we have indicated various ways of defining an X-Frattini

subgroup *v(G) °^ a ^ n ^ ' f c e group G such that

(*(0x(C)) S «X(G) ^

and a Gaschiitz-Lubeseder-Baer theorem holds with respect to X-local and

X-saturated formations ( [8] , 3-8), X-saturation being defined via $., .

For the purpose of the present paper, we fix an arbitrary one of the

possible definitions of $., (subject only to the requirements pointed out

in [«]) .

An X-homomorph function k associates to each X € x(X) u %' a

homomorph k(X) such that k{X) = R*k{X) for al l X € X' ; here

X' = X.\X . Given an X-homomorph function k , we le t LH (̂fc) , the

X-local homomorph defined by k , be the class of al l G € E such that the

monolithic quotients G/K of G satisfy the following conditions:

(1) G/CG[S{G/K)) € &(p) for each p € -n[S(G/K)) , whenever

S(G/K) ^ QJ.G/K) is an X-group (that i s , a group al l of

whose composition factors belong to X ) , and

(2) G/K (. k(E) , whenever S(G/K) is an X'-group of

characteristic E .

Clearly, LHy(fe) is a semiformation (but is not necessarily X-saturated

in the sense of [S], §3). H = OH is said to be an X-Local homomorph

provided that H = LH.ik) for a suitable X-homomorph function k , which

then is called an X-local definition of H . An X-homomorph function k

is called integrated, if k{X) c. IX.Jk) for each X € x(X) u X' , and
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full, i f E k(p) = k(p) and LHv(k) c Er,,fc(£) whenever p € x(X) and
p A hi

E € X' , respectively (E L p̂/J denotes the class of all p-groups [groups

without composition factor isomorphic to E ]). The class of al l X-

homomorph functions is partially ordered by means of the following

definition of k < k' : for each X € x(x) u * ' , HX) £ k'{X) .

With this terminology at hand we can formulate the obvious general-

isation of the Carter-Hawkes result on certain canonical local definitions

of formations of finite soluble groups, the proof of which is straight-

forward from the definitions together with the previous discussion and [7],

2.1.

PROPOSITION 1.2. Let H = LHx(fe) . Then the unique minimal X-local

definition k. of H is given by

Q{G/CG{S(G)) I G € H, S(G) £ *X(C) X -chief factor of G} ,

if X = p € X(X) ,

{Q, R*}{G € H n M | S(G) € Eg} , if X = E € X'

kQ(X) =

(X = {X € X | p € TT(AT)} , £„ equals the class of all groups all of whose

composition factors are isomorphic to E ) , the unique minimal full [and

integrated] X-local definition k of H by

EpkQ(p) , if X = p e X(X) ,

\{Q, S*}{G/OE,IG) \ G <LH} , if X = E € X'

{where 0 ,{G) is the largest normal subgroup of G without composition

factors isomorphic to E } , and the unique masdmal [full and] integrated

X-local definition k of H is given by

k°(X) =
'{G € H | GV € H for any irreducible GF(p) [G]-module V]

if X = p € X(X) ,

H , if X € X' .

The following observation of Doerk [5] will be applied in the proof of

the main result of this section.

LEMMA 1.3. Let H and K be homomorphs, and put F = h[b(K) n H) .
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{Reaall that h(B) is the class of all groups without quotients in 8 .)

Then F is the unique largest homomorph such that f n H c K ; moreover,

if KcH , F n H = K .

To faci l i ta te our discussion of X-local homomorphs H with a unique

maximal X-local definition, we give a criterion for an X-homomorph

function to be an X-local definition of H . The following definitions

shall turn out to be crucial.

Let H = LH (k) with maximal integrated X-local definition k (see
A

Proposition 1.2). A group G 6 b^H) (= {G (. b(H) \ S{G) (. E^}) is called

X-dense (with respect to H ) , i f G € b [k (p)) for each p € ir(s(G)) .

Further, b(H) is said to be X-wide, i f there does not exist an X-dense

group G € by{H) . Note that a group G € bAH) with abelian socle S(G)

cannot possibly be X-dense, as otherwise G € E k (p) c H , where

{p} = Ti(s(G)) ; see Proposition 1.2. Thus in the defining condition of

X-width of b(H) we may write "G t by(H) with non-abelian socle" instead

of "G 6 bK(H)" .

THEOREM 1.4. Let H = LHJk) , and consider an X-homomorph function

g . Then H = LHJg) if and only if the following two conditions hold:

(1) if G € by{H) is X-dense, then G fc g(p) for some

p € ir(5(G)) ; and

(2) kn 5 g 5 k , where the X-homomorph function k is defined

by

h{b[k°{p)\ nH) , if X = p € x(X) ,

h\bElkU{E)^ , if X = E € X' .

Proof. First suppose that g is an X-local definition of H . Then

every X-dense group G (. b^H) satisfying G € fl{g(p) | p € TT(S(G))}

belongs to b{H) n lRx(g) = fc(H) n H = 0 , and so (l) holds. As for (2),

k < g i s immediate from Proposition 1.2. To get that g(p) 5 k(p) ,
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P € x(X) , we apply Lemma 1.3: i t suffices to show that

g(p) n H « k (p) , which again follows from Proposition 1.2 when

W = lMv[gu] is taken into account, where gu(X) - g(%) n W for each

X € x(*) u X' . Finally, i f #(£•) ££"(£) for some £ € X' , then there

exists G € #(£) n bE[k [E)} ; G can be found as a group of least order

in g(E)V<(E) . Now k°{E) = H , whence C E t J H ) c M , and from

H = lE^ig) we readily get that G € H , the desired contradiction.

Consequently, (2) is satisfied.

Conversely, suppose that g satisfies (l) and (2). Then i t remains

to show that LE^ig) E H , since then H = LĤ .(k ) c W^ig) £ H ; here

Proposition 1.2 and (2) have been applied. Consider a group G € LH (̂gr)\H

of least order. Then G € b{H) , while G € £>_(H) for some E € X' is

impossible: otherwise, as g 5 k and b (H) c M , we should have that G

is in g{E) <=k{E) = h fcg[k°(£)] = fr(bg(H)) . Thus G is necessarily in

by{H) . i f S(G) is abelian, of characteristic p (€ x(^) )^ say> then we

deduce that

G/CG(S{G)) € g(p) n H c fc(p) n ff c k°(p) (by Lemma 1.3),

which together with G i b(H) yields G € LHx(fe ) = H , a contradiction.

Hence S(G) is non-abelian and we have

G^G/CG[S(G)) €g(p)cfc(p) for each p € TI(S(G)) .

As G € fc(H) , an argument as above shows tha t G/S(G) € k (p) and from

k (p) c H we may now infer tha t G € fcx(H) n b[k (p)) for each

p € ir(S(G)) . That i s to say, G € b^H) i s X-dense, and i s in each

g(p) > p € TT(S(G)) , which contradicts ( l ) . •

COROLLARY 1.5. Let H = !My(k) . Then H has a unique maximal

X-local definition if and only if b(H) is K-wide; in this case k {as
defined in Theorem l . U is the maximal X-local definition.
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Proof. In case tha t b(H) i s X-wide, we apply Theorem l.U to see

t h a t k i s the unique maximal X-local def ini t ion of 0 - observe tha t

Conversely, suppose that H possesses a unique maximal X-local

definition g . Then Theorem l.U yields that k < g 5 k and G £ g(p)

for some p € ir(s(G)) whenever G ibJ.H) is X-dense. We shall show

that b(H) is X-wide by proving that every X-dense group G € b^AH)

belongs to g(p) for each p (. ir(s(ff)) , and therefore cannot exist. We

have to find an X-local definition h? of H such that G € h^,(p) .

Such an X-local definition is provided by the formula

fc°(p) u {G) , i f X = p ,

fc°U) , i f p * X € X(X) u X' ;

in f a c t , to verify tha t H = ni^h?) , Theorem l.U may be applied. D

From the examples below i t shall become clear that an X-local

homomorph may or may not have a unique X-local definition. (Though our

examples include local formations, this does not yet s e t t l e the Doerk^

Semetkov-Schmi d problem - to do so , we have to add a few remarks; of. §2.)

EXAMPLES 1.6. (a) Suppose that X contains a non-abelian group E .

Then E i s X-dense with respect to any X-local homomorph H satisfying

E t H 3 \C I p € ITU)} ; for example, take H = N, N , „, , or S
P "\t,l

(nilpotent groups, nilpotent TT( E) -groups , soluble groups).

(b) Let F = NFQ , where FQ = $>#,-,FQ . Further, le t R̂  denote the

class of a l l X-groups without abelian chief factors; clearly R« = JC is

a Fi t t ing formation. Then F is an X-local homomorph with maximal

integrated X-local definition f° given by f°{p) = E F [p € x(x))

T(E) = F (£ € X') , and b{ F) is X-wide i f and only if RyF. = Fn .
A U U
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2. X-local formations

An X-formation function is an X-homomorph function / such that

f{X) - RJW for each X € x(X) u X' . Given an X-formation function

/ , the X-looal formation LF..(/) defined by f is the class comprising

all groups G such that

(I1) G/CG(H/K) € /(p) whenever H/K is an X -chief factor,

and

(2') G/K £ f(E) whenever S(G/K) is an X'-chief factor of G

of characteristic E .

Observe that LK,(/) c LH.,(/) for every X-formation function / .

PROPOSITION 2.1. Let f[k] denote an X-formation [-homomorph]

function.

(a) LH ( / ) is a formation, and LH ( / ) = LF (f) .

(b) If LH (k) is a formation, then LH Ik) = LF (g) for a suitable
A A A

X-formation function g . The unique minimal X-formation function f

such that LH (k) = LF [f) is the one generated by kQ [that is,

fQ(x) = QRQkQ(x) for each X € x(X) u X' ) , the unique maximal [full and]

integrated X-formation function f with the same property is the one

defined in Proposition 1.2 [that is, j = k }.

Proof. (a) As mentioned above LF (/) c LH (/) . Moreover, both of
A A

these classes are clearly semiformations; in fact, by [g], 3.1, the former

class is a formation, and is E* -closed by [£], 3-8. A group of least
X

order in LH (/)\LF (/) is therefore necessarily in
A A

fcfLFJif)) n kH)//) S M ' a n d thus cannot possibly exist.

(b) In order to verify IHJk) = LF (g) for a suitable X-formation

function g , i t suffices to show that k (as defined in Proposition 1.2)

is a formation function. Since k {E) = LH (k) for any E g X' , i t
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remains to deal with k (p) , p € xW • This, however, can be done by

using a standard argument (from the proof of the Gaschutz-Lubeseder

Theorem) together with the description of k (p) given in Proposition 1.2.

The additional assertions in (b) are clear; cf. [S], 3.8. 0

Consider an X-formation function / . The most natural candidate to

serve as a unique maximal X-location definition of F = UV(/) is the

X-homomorph function / - provided only that / is an X-formation

function - , where

\G 6 E | QRQ[f°(p) u {G}) E / ( P ) } , i f X = p € X(X) ,

h[bE(?)) , i f X = E € X'\P ,

€ E | QRQ(f°(q) u {G}) cj(q)\ , i f X = q <L X' n P ;

n o t e t h a t fr(i>p(F)) i s a ( s a t u r a t e d ) f o r m a t i o n [cf. LSI, 6 . 3 ) ; h e r e /

i s d e f i n e d a s i n T h e o r e m l . U .

THEOREM 2.2. Let F = LFx(f) for some X-formation function f ,

and let g be any X-formation function. Then F = LF^(^) if and only if

the following two conditions hold:

(1) if G € i»w(F) is X-dense, then G £ g(p) for some

p € TT(S(G)) ;

(2) fo^</.

Proof. Immediate from Theorem l.U, Proposition 2.1 and the next

r e s u l t . D

LEMMA 2 .3 . Using the above notation we have

f{X) = U{G = QRQG | G c / U ) } for each X € x(X) u X' .

Jn particular, if f(.X) contains a unique maximal formation, then the

latter coincides with f{X) .

Proof. By our remark above f{X) = QR f(X) for non-abelian X , and

in this case the assertions hold trivially. Therefore in what follows, we

may assume that X € P . I t is clearly sufficient to verify the following

statement:
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(*) QRQ{G) E ? U ) - RQ[f°(X) u «i?0 {G}] SHX) .

By way of contradiction, let H € R\f°(X) u QR' {G}\\f(X) be of least

f°(x) QRo{G}

order. Let A « flJ v and B < H be minimal normal subgroups of

ff ; note that nei ther H € / (AT) nor ff € £i? {G} i s poss ib le . From our

choice of H we have that H/A, H/B € / ( # ) . Furthermore, there ex is t s

X <ff such that fl/K € & [ A p ) ] n F or ff/X € fc (F) , according to
whether X = p € xW or X = q € X' n P ; of. [7], 2.1b. For any choice

of A and S , subject only to the conditions stated above, we have

A * ) QRo{G}

KnA=KnB=l, and so K n HJ K ' = K n B = 1 : indeed,

n F = / (Jf) has been pointed out earlier.

First assume that X = p € x(*) • Then #/# € F together with
€ yP( p ) c F y i e l d s t h a t ff i s i n RQF = F . Consequent ly , by

the hypo thes i s of ( * ) ,

QRAG} _
BIB ° € F n QRQ{G} c F n /(p) = / ( p ) ,

and then HJ KP> n ff = 1 forces #7 ^ P ; to be t r iv ia l ; that i s ,

H € fip) E /(P) > a contradiction.

Now suppose t h a t X = q t X' n P . In t h i s c a s e , H/K € b (F) , and

ff < i = S(# mod X) . In a d d i t i o n , we know t h a t H = £ P ^ i s minimal

normal i n H . I f B i s as above then

L = K*H=K*-B, ff n B = 1 , and tf =* £/X € E ,

C 0 ( }
whence #/ff € §i?0{G} c / ( q ) = h(b (F)) has a f a c t o r group be long ing

t o b (F) , which i s absu rd . D

LEMMA 2.4 . l e t G tea formation, and let G € M witfz non-abelian

socle be such that G/S(G) € G . Then
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QRQ(G u {G})

G C
= \x € E | X 5 S{X) , Y 5 X minimal normal in X =* Y * X ̂  G} .

Proof. I t is easy to see that the right hand side of the above

equation defines a formation containing both G and {G} . Conversely,

the Jordan-Holder Theorem may be applied to show that every group in

i?n(G u {G}) has the desired structure. D

Applying Lemma 2.U enables one to deduce from Theorem 2.2 the

following result in much the same way as Corollary 1.5 was obtained as a

consequence of Theorem 1.1*.

COROLLARY 2.5. Let F = LF^f) . Then F has a unique maximal

X-loaal definition (as a formation) if and only if b(F) is X-wide and

f(X) is a formation for each X € P ; in this case f is the maximal

K-loaal definition.

PROPOSITION 2 . 6 . Let y c X c X Q be such that both X and V

satisfy the hypothesis stated in the introduction.

(a) If F = LFX(/) , then F = LFy(?) , where g{p) = f(p)

(p € x(/)) and g{E) = F ( £ € / ' ) .

(b) If F = LF^(/) has a unique maximal X-local definition, then F

has a unique maximal V-local definition. If, in addition, xW = x(^) >

then the reverse implication is valid if, and only if, b{V) is X-wide.

Proof. (a) is easy from the definitions.

(b) Applying Corollary 2.5, we are left to show that g(q) is a

formation whenever q € x(^) n V' '•> here g is as defined in the state-

ment of (a). We claim that

g(q) = h[bq(F)) {q € X(*) n V)

contains a unique maximal formation, which will give the desired result

(see Lemma 2.3).

Aiming at an application of Proposition 1.1, we shall prove that

G = Hj(q) i s an S*-closed semi formation. Trivially,
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b(G) =b{h{bq(f))) c y F ) c M ,

as F i s a formation. Hence G i s a semiformation. To get tha t

G = E*G , we

and G = QG ,

G = E*G , we consider a group G € E*G\G of l ea s t order. Since QE^ 5

G € 2?(G) c fo (F) c M ,

and therefore the def ini t ion of E% y ie lds

S(G) 5 $(G) , (G/CG(5(G)))S(G) = S(G) * G € G .

In fac t , from G € b (F) we have G/S{G) € F , which when combined with

S(G) * G € G forces S(G) * G to be in F : otherwise

5(G) * G i b (F) n G = 0 . This, in t u r n , together with G/S(G) € F leads

to G € F , because F i s an X-local formation, and S(G) i s a q-group

with q € x W • We have obtained a contradict ion. D

For applicat ion in the next section we s t a t e a r e s u l t which emerges

from our proof of Proposition 2.6 (b).

COROLLARY 2.7. I f F = \Q, R*}F satisfies B*F n E F = F for some

prime q , then h[b (F)) is an E*-closed semiformation, and so contains

a unique maximal formation.

In a similar fashion we get the following

COROLLARY 2.8. Let F = \q, R*}F , H = QRQH , and assume that

E*F n H c F . Then h(b{f) n H) is an Ei-closed semiformation, and so

contains a unique maximal formation.

3. Some special cases

In contrast to the condition tha t i>(F) be X-wide (F = LF ( / )) ,

the other condition from our main re su l t Corollary 2.5 - namely, that

be a formation for any X € P - i s not always easy to check when a

specif ic formation F i s given. Imposing the closure property introduced

in §1 on f ix) for each X € P , however, removes t h i s problem, thus

providing us with a simple method to exhibi t examples (which wi l l be given
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18 p. Fo rs te r and E. Salomon

in §U).

LEMMA 3.1. Let f be an X-formation function, and put

F = L F j / ) . If / (p) is E*-closed for each p € xW and

EtF n £ F = F for each q € P n X' , then f(X) is an Enclosed semi-

formation for each X € P ; in particular, f(X) contains a unique

largest formation, namely f[X) .

Proof. First we show that F is £*-closed. Assume that G € EiF\F

of least order, so G (. b (F) for some r € P . Since F is an X-local

formation, i t is clear that r cannot be in x(*) J b u t then

G 6 E*F n E F = F , as r € P n X ' . This contradiction yields that

F = E*F . Now the assertions follow from Corollaries 2.7 and 2.8 together

with the next observation. •

REMARK 3.2. i f / is an X-formation function such that both

F = LFX(/) and f(p) for some p i x(X) are £"*-closed, then f°(p) is

also ^-c losed.

Proof. If F and f(p) are £*-closed, then so is f(p) n F as

well as Ep{f(P) n F) = f°(p) . 0

As a consequence of Corollary 2.5 and Lemma 3-1 we record

COROLLARY 3.3 . Let F = LFX(/) = ff*F be such that f°(p) is En-

closed for each p € x(^) • Then F has a unique maximal local definition

if and only if b(F) is X-wide.

Before discussing examples we reprove Doerk's result on formations of

finite soluble groups without using the theory of F-normalisers.

THEOREM 3.4 ( [ 4 ] , Satz). In the universe 5 of all finite soluble

groups, every local {that is X -local, P-local) formation possesses

a unique maximal local definition.

Proof. I t i s clear that a l l of our previous results remain true in

S , the obvious modifications of definitions, and so on, being understood.

I t is therefore sufficient to show that for every prime p , f(p)

https://doi.org/10.1017/S0004972700002240 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002240


Loca l d e f i n i t i o n s o f homomorphs 19

contains a unique maximal formation: recall that X-dense groups have non-

abelian socles.

In [6] , §2, we have introduced a closure operation S , which is

w

generated by the operation of taking supplements of the Fitting subgroup,

and we have applied a result of Bryant, Bryce and Hartley [2] to show that

formations are [Q, S }-closed. Moreover, i t is clear that any class K
of finite groups contains a unique maximal \Q, S }-closed class (which we

shall denote by K ) . In order to prove that fip) contains a

unique maximal formation, i t therefore suffices to verify the same state-

_ \Q,S } _
ment with H = [fip)) W in place of f(p) . Indeed, i t suffices to
show that R H c f(p) , since then QRQH £ fip) implies tha t

W = H , and th i s w i l l complete the proof.

Suppose tha t RQH £ f(p) and l e t G € RQH\fip) be of l ea s t order.

Then a standard argument y ie lds M, , . - . , M , N < G such tha t

G/Mi € H ,

n 0
n M. = 1 , G/N € bff(p)) c b [ f ( p ) ) n F .

i = l %

Now B i $(G) : otherwise we should have that G € E F = F ,

G/Mi € H n F <=J(p) n F = f°(p) , G € RQf°(p) = f°(p) ,

which contradicts G/N € b[f (p)) . Consequently, there is a chief factor

T/S of G such that S = N n $((3) and T < N . Solubility of G forces

T/S to be abelian, and then a well-known result of Gaschutz shows that

T 5 F(G) . Since 2"/S £ $(G/S) , we may choose a complement y of T/S

in G , that is, a subgroup £/ 5 G satisfying G = UT and U n T = S .

In particular,

G/M. = (UM./M.){TM./M.) = (UM./M.)[F(G)M./M.)
'Z' 1* 1s 1r "Z- 1s Is' IS 1/

./M.)F(G/M.1
Is "If It'

whence
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U/U n M. S JW./M. € 5 JG/«.} c 5 H = tf (i = 1, . . . , n) .

By choice of G , we see that U € i? H n /(p) , while G = UT = UN yields

that U/U n N 2* MV/ff = G/ff € *(7(p)l , a contradiction. a

In contrast to Doerk's original result , the above does not give a

(more or less explicit) description of f(p) , but such a description can

be extracted from our proof, (incidentally, a similar remark applies to

our results in §2.) Nevertheless, this description does not coincide with

the one obtained by Doerk, though the classes are necessarily the same.

Finally we would point out that i t is easy to construct examples of

local formations in S , locally defined by a formation function f , say,

where / does not coincide with / (and is not ffj-closed, too - note

that E*f(p) = f(p) i f and only if £*/%) = / % ) , p € x(*) ) : choose

F = WA = {G € W | G/F{G) has elementary abelian Sylow subgroups} , so

/°(P) = E
p
A° , whence C^ € ff|/(3)\7(3) and Ĉ  y GL(2, 3) (direct

product with Frattini subgroups amalgamated) is in /(3)\/(3) •

4. Examples and concluding remarks

For the sake of simplicity, when dealing with particular examples, in

this section we shall choose X to be XQ ; and in this case we shall

omit X from our notations. (Observe that "X.-local" actually means

"local" in the sense of, for example, [3], [4].)

The most simple example of a local formation with a unique maximal

local definition is given by the class E of al l ir-groups, TT a set of

primes. Indeed, none of our preceding results is necessary to show that

(E , i f p € TT ,

0 , i f p fc IT ,

defines the unique maximal local definition f of E

As an example of how to apply Corollary 3-3, we derive from Example

1.6 (b) that
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NR = {G € E | G/F{G) does not have an abelian composition factor}

has a unique maximal local definition: by Example 1.6 (b) , i>(NR) is

wide, while £*(E R) = E R is obvious.
$l p ' p

On the other hand, Example 1.6 (a) provides us with many examples of

local formations without unique maximal local definition: for example,

take N c F c S _ and note that F = LF(/) may be chosen such that a l l of

i t s full and integrated p-local definitions are saturated, and therefore

are Si-closed.

Now consider F = E and F = NR . We have just seen that F. has
1 P tL "

a unique maximal local definition /. (i = 1, 2) . However, despite the

fact that F is contained in F , the corresponding inclusion between

f and / does not hold: indeed, f.(p) = E but every group of prime

order q t p belongs to i(E R) n NR = b /^(P) n ^ ' a n d i s t h e r e f o r e

not in /2(p) .

The latter example shows (when combined with Lemma 3.1) that in

Corollary 2.5 we cannot dispense with the requirement that b(F) be X-

wide. (Of course, it is already apparent from the results of SI that this

condition must not be omitted.) Far less trivial is the corresponding

statement concerning the requirement that f{%) be a formation for each

X £ P . We shall give a rather complete account on an example of this

type, because it involves a construction of a group, together with some

formations, to yield a configuration, which is likely to serve as a sort of

standard counterexample with respect to various questions in formation

theory.

EXAMPLE 4.1. Let F = WRN (retaining from Example 1.6 (b) the

meaning of N and V. ). By Example 1.6 (b)^ for each prime p ,

j{p) = E RN is the full and integrated p-local definition of F . Then

£>(F) is wide, yet /(p) , p > 5 , is not B -closed.

Proof. By Example 1.6 (b), b(F) is wide. Therefore it remains to

find a group G € RQf(p)\f(p) > p > 5 . To this purpose we construct a
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group G € RQf(p) such that S = SL(2, 5) € <3(G} ; since f{p) =

and as 5 € &[/ (p)] <"» F - i t is well known that $(S) = Z(S) is of order

2 and S/Z(S) ^ A - th is will complete the proof.

Clearly, S has an irreducible module V over GF(p) such that

CS(V) = Z(S) . Let

X = SV

be the semi-direct product, and let

y = s ~z{x) x

be the wreath product of S and X with respect to the permutation

representation of X on the set of cosets of Z{X) = Z{S) xn X . As

usual, for any U 5 S ,

U* = U x ... x j/flx/zU)! copies of U)

shall denote the canonical subgroup of S* , the base group of Y ,

isomorphic to a direct sum of \X/Z{X) | copies of U . Then

Z{S)* = Z(S*) 3^ GF(2)[//Z(AT)] ,

and so there exists Z < Y such that

Z 5 Z(S)* , C2 S Z(S)*/Z = Z(J/Z) n

Now we are in a position to define the above-mentioned group G by putting

G =

Then S € ${*} c §{<;} is t r iv i a l .

In what follows, we use the bar convention for subgroups U of

Y : U = UZ/Z whenever U - Y . Employing this notation we see that

A = Z(X) , B = Z{S)* 5 Z(G) = A x B

a re both of order 2 and i n t e r s e c t t r i v i a l l y . Hence the re ex i s t s

D 5 Z(G) such t h a t DnA = DnB=l and \D\ = 2 . In p a r t i c u l a r ,

C € RQ{G/A, G/D}, and so i t remains to show tha t {G/A, G/£>} c / (p ) ,

which (by Lemma 2.3) i s equivalent to

(*) QRQ{G/A} , QRQ{G/D}
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To within isomorphism, G/A is a semi-direct product XT satisfying

o V ~ °2 ' V / Z ( T ) ~A5 ~ *o ( a r e s u l a r

product). In order to show that QR{G/A} c /(p) we observe that

is the set of a l l isomorphism types of chief factors of XT (together

with the automorphism groups induced by XT in these chief factors); of

course, the same remark applies to G/D . We set

that i s , K i s the set of a l l (H/K) * ( i j 1 ) , where H/K ranges over the

set of chief factors of XT ; and we put

I. = | L € A°PA°P I H/K chief factor of L =» (H/K) * L d Kj,

where A is the class of a l l elementary abelian (^-groups {q any

prime), and V = 0 {4 } . Clearly, L i s a formation containing both

L± = QRQ{G/A} and i-2 = QRQ{G/D) .

We claim that every element of L has an WO -projector belonging to

the formation Wr s \ ^ ? . where V = {l, A } ; see [7] for a theory of

Schunck classes and their projectors in finite (not necessarily soluble)

groups, and note that NP = Q [HV') satisfies b[NV\ c P and so is a

Schunck class. Aiming at an application of C9], Corollary, we show that

XQT 3! G/A has an Mt^-projector which is in M̂  5 } 0 E
2 • (Actually,

application of t^D, Corollary, requires a somewhat stronger statement,

the verification of which will be left to the reader.)

Consider X T/Z[XQT) S A ~ XQ . We shall show that this group has an

WP -projector contained in N, ,P , H /Z[x T) say, and i t shall become

clear that Z[XQT] , a group of order 2 , is complemented in H. . We

define H by constructing i t s inverse image in A- ~ X . Let Q be a
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Sylow 5-subgroup of C/\*(V) • Then V < X yields that XQ is a group

isomorphic to C ~ X , where ~« indicates that the wreath product is

to be taken with respect to the permutation representation of X on the

set of cosets in X of V . Since X Q covers A ~ *QM2 (with

A* = S(i4 ~ ^ )) being minimal normal , and as VQ is N-maximal in VA* ,

i t is easy to see that X Q € Proj^p [A ~ ^ ) , as desired.

We have shown that L is a formation contained in

Now L = QR \X T] C f{p) wil l be a consequence of

(+) i f B € L n fc(E RN) n WRW , then B ^ S y S y ••• Y s la-

d i rec t product of copies of 5 = SL(2, 5) with centres

amalgamated).

From B € i. n WRN we infer that S € A°A°P : otherwise there should

be a chief factor B±/Bo of S such that [BjBQ} * B *Z A ~ X $ WRW .

I t i s now c lear t h a t

02(B) = ZJB) € A° , f(fl) = o2(B) x 0 (B) * 1 ,

and

BIF{B) ^A5 x . . . x d5 ;

note that P c /. n E RW . Since S € b (E RN] is monolithic, 0 (B) = 1 ,
P P P

and so

C2 S Z(B) = K B ) :

observe that a perfect group acting hypercentrally on some group must act

t r iv ia l ly . Now either Z{B) ^ $(B) , in which case B € M coincides with

CpCLnERW - a contradiction; or B is a central product of some

copies of S - here we rely on the well-known fact that every group S-
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such tha t SQ/Z[S) ^A and Z[SQ) = $ ( 5
0 ) = C i s isomorphic to S .

This proves ( + ) , and we deduce tha t L c / (p ) by assuming that

L \f(p) t 0 and choosing B € L \ / (p ) of l e a s t order . Then

B 6 L n b(f(p)) c L n b(E RN) n URN . Hence from (+) , B ^ S y . . . y S ,

but then we see that every NP -projector of B i s isomorphic to

S fc N, 5 } ^ E
2 • This contradicts B € 1^ c F , and so G/4 3? XQr

generates a formation contained in f(p) •

To get the same conclusion with G/D in place of G/A , we argue

s imi la r ly , applying (+) to a group 5 € '-oV^P') o f l e a s t order. Then,

without loss of genera l i ty , B € {5, S y S} ; indeed, both 5 and S y s

are not in / (p ) , and i f B s S y . . . y 5 with n > 2 , then £ff {B}

contains one of S and S y S {cf. [ 2 ] , §3).

5 £ QR'{G/D} i s a consequence of L c F2 ^ S , where

F2 = \G2 € E | P r o j g p (c 2 } n 6i?Q{S Y 5} ^ 0} ;

note t h a t (as V i s a formation) E.O i s a Schunck c l a s s , and 5 jf F^

follows from S € S$P\Qi?0(5 Y 5} (see [ 2 ] , §3), while G/D € Fg i s seen

from the construction of G .

To complete the proof, 5 y 5 £ Qi?0{G/£>} has to be ver i f ied . By the

way of contradict ion, l e t H be a subdirect subgroup of

{G/D) x . . . x (G/D) such that H/K'^S y S for some K^_E . Since each

p'-subgroup G/D i s contained in a Hall p'-subgroup of G/D , H has a

Hall p'-subgroup H , , which i s subdirect in {G/D) , x . . . x (G/D) , ,
P P n P

where (G/D) , denotes a Hall p'-subgroup of G/D . Clearly,

H ,/H , n K s S y 5 . Hence from the construction of G/D a contradiction

against the conclusion of Lemma U.2 below i s eas i ly obtained, and we are

done. D

LEMMA 4.2 . Let S = SL(2, 5) > and let X be the unique quotient of

S ~aio\ s [the wreath product with respect to the permutation
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representation of S on the cosets of Z{S) ) which is a non-split

extension of the direct product of \S/Z{S)\ copies of S with centres

arrnlgannted by S/Z(S) . Then S y S \ QR{X} .

Proof. Suppose that there exists a subdirect subgroup H of some

X x . . . x x with a normal subgroup K such that E/K = S y S , and choose

n to be minimal with respect to the property that X x . . . x x has such a
n

subdirect subgroup E .

Recall that X has a unique chief series

1 < Z <Y <aX ,

where • Z ^ C. , Y/Z 3* Ac x . . . x 4 , X/Y S A,. . For subgroups U of
2 5 60 5 5

X , f/* = U x . . . x u S X* = X± x . . . x Xn sha l l be given a s imi lar

i n t e r p r e t a t i o n as previously , and we put U. = U* n X. (so

U* = U x . . . x u ) . To begin with we have

(1) H n X. = Z. and K n X. = 1 {i = 1 , . . . , n) , and so Z* 2 ff .
Is Is Is

n
Indeed, H n X. <a ff | | X. = X* (as E i s subdirect in x x. ) and

ff n X. # 1 (by minimality of n ). Similarly, X n X. < X* , and thus
if %

H n X./K n X. s (ff n X.)K/K is isomorphic to a normal section of both X

and S y S . From the structure of X and 5 y S we see that

fl n *./# n X. is either 1 or C . Since H n X. < K is excluded by

choice of n , ve get that H n X./K n X. = S[X.}/1 = Z./l , as desired.

In what follows we shall consider X*/Z* = X* , using a bar convention

for subgroups of X* (containing Z* ) . Since H is subdirect in X* ,

i t is readily seen that

(2) S(#) = H n SU*) = // n SU) * is subdirect in S (x^ x . . . x

Fur ther , as ~H/S{H) S ~HS{~X*)/S(X*) , which i s subdirect in

= >4 x . . . x A , we have
n
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(3) B/S(S) = L^SCH) x . . . x LJS(B) ,

where I^/S(ff) S i , and {L^Stf) \ i = 1, . . . , m} is the set of a l l

minimal normal subgroups of H/S(H) .

In view of ( 2 ) , every minimal normal subgroup of H i s isomorphic to

S[A ~ A) (as a group with opera to rs ) . Hence combination of (2) and (3)

yie lds

(It) S(H) =HV (where V= D ^ } ) .

Let U. (i = 1 , . . . , m) be the se t of a l l j € { l , . . . , n} such

_n.
t h a t L. = X. , w h e r e TJ . : X X . . . X X •* X. d e n o t e s t h e p r o j e c t i o n

map. Then f rom ~X\ = I . a n d \Z., I . , ] < S(/7) 5 S(1*) (i + i') we
3 0 it

deduce tha t ( l , . . . , « } i s a d i s jo in t union of the se ts fi. # 0 ,

i = 1 , . . . , m . Writing 5(ff) = A/ * . . . x «, as a d i rec t product of

minimal normal subgroups M. of H , we know t h a t {Af , . . . , A/,} i s the
c7 1 /C

se t of a l l minimal normal subgroups of S(H) . Since M. * H = A- ~ A,- ,

(3) and (k) show tha t

C— {M.)L. = H for prec ise ly one £ = £( j ) 6 { l , . . . , m) .

ti Q t

Observe that £ + i(j) (i € {l, ..., m), j € {l, ..., k}) if, and only

if, I. =M. x Cy {M.) . Let Q'. = {j € {l, ..., k) \ i = £(j)]

(£ = 1, ..., m) , so (l, ..., k} is a disjoint union of the sets fi! .
i

Now p u t

X. = C- ( x A7.) = n C - (M.) •

Then from M'. = M. and L. = C-r [M.) x u. {j $ fi'.) one deduces the
0 0 2- "£ 0' 0 0'

following decomposition of L. :

£ . = K. x ( x A?.] .
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Consequently, as K- n S{H) = x M. ,

Furthermore,

H = K x . . . x R
1 m

%•£ i s a subdirect subgroup of

and
- - 0 IT*/ yields that £. =

•JI— —I
and then |X. , K^,] = l (€?{.') forces ^ , to be contained i

Finally we note that the inverse image K. of K. in X* may be
r i

chosen such that Z x Jf7 s X. S x X7 , whereas L. always contains
^l(Sl. ' I (SI.

i i

Z(X*) .

With this choice we have

(5) H = K x ... x K , where K. is a subdirect subgroup of x X.
A. m "V 7 _ t-

sa t i s fy ing K./K. '^ A .

Now r e c a l l tha t H/K = 5 y S , so there are precisely two normal

subgroups A and B of H containing K such that H/A = A = ff/B

From (5) we deduce tha t (without loss of general i ty)

-I K.
i=2

and S = K x

Moreover, A n S/X = C ; and X x ^Q < K i s impossible, for then we

should have H/K = C * A * A $L S y S . Consequently, minimality of n

together with (5) permits us to assume tha t fi u . . . u fl = 0 ; t ha t i s ,

H = Kx x K2 S I x * J x I x Xv\ = X* . Now Ko ± A and X1 < 5 , but
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again K^ $ K (for R/K % A^ * S ). This gives

5 s A/K s X2/X2 n X

and the proof i s reduced to the problem of showing that 5 f §{#2} •

However, K^ i s a subdirect subgroup of some X x . . . x x , and so the

methods applied in the proof of Example U.I , in order to show that

5 {: QR{G/D} , can be used again (with only t r i v i a l modifications being

necessary) to y ie ld 5 £ Q{K } , t oo . •

The method employed in the proof of Lemma U.2 apparently has a wider

range of appl ica t ions . We hope to use i t in a further study of the

formation generated by an insoluble f i n i t e group (of a cer ta in type ) , a

problem tha t was l e f t open in [ 2 ] .

As a consequence of the proof of Example U.I we record:

COROLLARY 4 .3 . There exists a growp G with two distinct minimal

normal subgroups M , U^ such that G \ H r> QRQ{G/M } u QRQ{G/M2} for a

suitable semi formation H .

In f ac t , Corollary U.3 i s weaker than what we have obtained: classes

of type h[b\j (p)] n F) are cer ta in ly not the most general semi-

formations .

The above example can be modified to show tha t h[b (F)) , F an

X-local formation and q € X' n P , does not always contain a unique

la rges t formation.

Put F = E R W j p > 5 (which, by Example U.I , i s a formation), let

X be empty (c lear ly any formation i s an 0- local formation) , put q = 2 ,

and take G, A, D from the proof of Example U.I. Then

QRQ{G/A} u QRQ{G/D} <£h[b2(F)) ,

but

G € RQ{G/A, G/D}\h(b2{F)) .

First of all, from the proof of Example U.I we know S = SL(2, 5) is
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a quotient of G , and is in fcg(F) ; moreover, G € B-{G/A , G/D} . Now

l e t

Thus &2(F) = 81 u B2 . Then h(&2(F)) = h [B± U B2) = h (Bj n 7z (B2) and

we are l e f t to verify

QRQ{G/A} u <2i?Q{G/0} cl,(B2] ;

indeed, the corresponding inclusion with ?i (B_ J instead of h (8p) is what

we have obtained in the proof of Example U.I, as B. c b (E RA/) n WRN shows

that ^(B1) 3 h{b[E W] n NRW) .

From nilpotency of tf for M, N 5 L such that tf/M € N and

M S N n $(L) , together with fc (E RN) C M , i t is clear that a l l groups in

B = b[h\B Jj are primitive groups with minimal normal 2-subgroup; in

par t icu lar , h (B ) i s a Schunck class. Combining these statements we see

that h (8p) is an E*-closed semi formation and hence (by Proposition l . l )

contains a unique maximal formation. The la t te r can be described as

follows:

/D»(B2)] = {G € E | (H/K) * G € h[B2) for every chief factor E/K of G} .

Therefore i t suffices to show that both G/A and G/D belong to this

class . In view of the above characterization of f[h (8p)J , however, this

is a routine matter, which we leave to the reader. We have shown:

ERW, p > 5 i is an 0-local formation without unique maximal

0-looal definition.

The next example will show that a local formation may have a unique

maximal local definition even if i t s full and integrated local definition

does not consist of ffl-closed formations. Hence the corresponding

hypothesis in Remark 3.2 is not necessary to ensure existence of a unique

maximal local definition. We have to work harder, however, than in the

universe of finite soluble groups (see the example in §3).
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EXAMPLE 4 . 4 . Let FQ = QRQFQ , F = WFQ , and assume that

(1) F = E F. for some prime p , and

(2) RFQ = F [that is, b(F) is wide; of. Example 1.6 (b)).

Then f(p) = E , /(<?) = F for each prime q t- p is the unique maximal

local definition of F ; in foot f = f .

Choosing F. to be the class of all groups all of whose Frattini

chief factors have odd order yields an example F = NF such that ( l) and

(2) hold {with p = 2 ) and, in addition, the full and integrated q-local

definition of F , namely E F = F , is not E*-closed.

P r o o f . As we have m e n t i o n e d i n Example 1 .6 ( b ) , j (r) = E F f o r

e v e r y p r i m e r . I n p a r t i c u l a r , ( l ) e n s u r e s t h a t j(p) = F , whence

b[f ( p ) J n F = 0 and f(p) = fc(0) = E . A n o t h e r consequence o f ( l ) i s

EqFQ = f°(q) = F n f°(q) = EpFQ n E ^ = FQ , , # p

Furthermore, fcC/^Cq)] n F = £ ( F ) n NF = b(F) and, in view of [ 5 ] , 1 .1 ,

f(q) = fc(fc£f%)] n F) = h{b{FQ)) = FQ , & (FQ) c WFQ being a consequence

of (2). Since f(r) i s a formation for each prime r , we see that

f = f i s the unique maximal local definition of F .

If F0 = { < ? € E | i y < G = > 2 J |*(G/i!0|} , then clearly

E2fFQ = FQ = RFQ , which proves (l) plus (2). Finally,

SL(2, 5) € £|F0\F0 . D

The next (and t r iv ia l ) observation provides us with a description of

f(p) , which might be useful in studying further examples.

REMARK 4.5. h[b(H) n F) = {G € E | G/G* € H} for homomorphs W and

formations F .

To conclude we comment on X-dense groups, and on X-local formations

with X-wide boundaries. First we mention that the notion of an X-dense
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group may be defined without insisting on the use of full and integrated

local definitions.

REMARK 4.6. Let F be an X-local formation. Then G € bJF) is

X-dense if and only if G € (){b[f{p)] \ p 6 ir(s(G))} for some X-local

definition f of F satisfying f(p) c F for all p € ir(s(.G)) . (By

taking X = X , ? = N , g(p) = {l} , G = 5_ , however, i t is seen that

an X-dense group G € bJ¥) need not be in ()\b (g{p)) \ p € •n[s(G))} for

every integrated X-local definition g of F .)

Finally we observe that the condition that £>(F) he X-wide can be

reformulated to avoid the use of boundaries. To state such a condition we

define an X-formation function e by putting e^(p) = E „ , pi x(X) ,
P

and eJi.E) = {l} , E € X' , and give e» * f , f any X-formation

function, the obvious meaning, using formation products.

REMARK 4.7. If F = LFx(f) , then b{?) is X-wide if and only if

F = LFx(ex * f) .

A variation on this theme is the following

PROPOSITION 4.8. Let F = LFX(/) . Then 2>(F) is X-wide if, and

only if, the following condition holds:

Ey n f (p) = n f°(p) for every non-abelian X € X .
K^pW(X) > ptTr(X)

Proof. G 6 &X(F) n [f\{b [f°{p)] \ p € TT(S(G))}) is equivalent to the

condition that G € n{b[/ (p)] | p € TT(S(G0)} is monolithic with non-

abelian socle, the characteristic X of which belongs to X . These

groups, however, are precisely the elements of

f°(P)} nfcf n f°(P)} , x € x\p . D
J lp^(^) J

From the last result we see that every X-local formation F such

that X(F) does not contain the set of primes dividing the order of a non-

abelian simple group (for example, x(F) the set of all odd primes, or
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|x(F)| - 2 ) has an X-wide •boundary. Utilizing this fact, i t is easy to

find X -local formations F = LFy (/) such that / is an X -formation
0 XQ 0

function, but does not coincide with / . For example, taking

F = LFX (f) = M{2>3} with /(2) = E2 = / ( 2 ) , /(3) = E3 = f°(3) ,

f(p) = 0 = f(p) for all primes p £ {2, 3} , yields

ftq) = h[b [f(q)-] n F) = h{b{Eq] n N {q ^}) = h {cj ,

where {q, r} = {2, 3} , and this is a Schunck class, but not a formation;

since the boundary of this class consists of a monolithic group, i t is a

semiformation, whence f(q) is the unique maximal formation contained in

f(q) (see Proposition 1.1).
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