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ON THE SYMMETRIC HYPERCENTER OF A RING
A. GIAMBRUNO

The hypercenter theorem [6] asserts that in a ring with no non-zero nil
ideals an element commuting with a suitable power of each element of the
ring must be central. In this paper we shall be concerned with a similar
problem in the setting of rings with involution. Let R be a ring with
involution *, let Z denote the center of R and let S = {x € R|x = x*} be
the set of symmetric elements in R. We define the symmetric hypercenter
of R to be

H = {a € Rlas" = s"a,n = n(a,s) = 1,alls € S}.

What can one hope to say about H? That H need not equal Z is clear. For
instance, in the ring R = F, of 2 X 2 matrices over a field, if * is the
symplectic involution, all symmetric elements are central, hence H = R
but Z # R. Furthermore if R is a noncommutative ring in which every
symmetric element is nilpotent then even in this case H = R and Z # R
follows.

Suppose that R is a prime ring with characteristic not 2 or 3. Here we
will show that if R has no non-zero nil right idealsand S ¢ Z, then H = Z
follows.

The symmetric hypercenter was first studied in [4]; there the authors
proved that if R is a division ring then H N S = Z N S provided xx* & Z
for some x € R. Another result about H is Theorem 1 in [10] which reads
as follows: if the exponent n(a, s) = n is independent of s and if R is a 2,
3-torsion free semiprime ring, then H N S = Z N §S.

It is natural to ask if our result remains valid if one replaces the
assumption “with no nil right ideals” by its two-sided version “with no nil
ideals”. If this were the case, then one would have a positive answer to the
following question due to McCrimmon [7, p. 83]: let R be a ring with
involution such that all symmetric elements are nilpotent; is R itself
necessarily nil? (see [1]).

Finally we remark that if char R = 3, then the conclusion of our result
is no more true: in fact, let R = (GF(3) ), with the involution
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In this ring S ¢ Z and H coincides with the set of diagonal matrices;
hence H # Z.

Throughout the paper R will denote a ring with involution * which is 2
and 3 torsion free, S will be the set of symmetric elements of R, K the set
of skew elements of R, and Z = Z(R) the center of R. H = H(R) will
denote the symmetric hypercenter of R and H* = H N S.

We recall that if x is a quasi-regular element of R with quasi-inverse x*
(e, x + x* + xx* = 0) then x is called quasi-unitary. If R has a unity,
then clearly x is quasi-unitary if and only if 1 + x is unitary.

For a quasi-unitary element x the map

Y.y —y+ xy + px* + xpx*

is an automorphism of R which preserves S and K and leaves the elements
in Z invariant. Moreover, it is easy to establish the following remark:

Remark 1. For all quasi-unitary elements x € R, ¥, (H) C H.
As a special case of Remark 1 that will be used later we have the

Remark 2. For all quasi-regular skew elements k, 2k(1 — k) ' is
quasi-unitary and

(1 — k) Wak — ka1 + k) ' € H
foralla € H.

The invariant property of H can be exploited for R a simple artinian
ring viewed as n X n matrices over a division ring. We have

Remark 3. Let R be a simple artinian ring. If S ¢ Z then H = Z.

Proof. Let R = D,,, where D is a division ring. If * is symplectic then, as
in [3, Section 6], we get the desired conclusion. Suppose that * is of
transpose type. Let ¢; (i, = 1,...,n) be the usual matrix units. Since
H centralizes all symmetric idempotents, H centralizes e;;, for all /; hence
H consists of diagonal matrices. If D has more than 5 elements then, by [3,
Theorem 2 and Theorem 6], H = Z and we are done in this case. If D =
GF(5), then R = (GF(5)), is a finite ring, H = H" and by [10] H =
Z.

Knowing the result for simple artinian rings, we follow the usual pattern
of structure theory by proving the result for semisimple rings. We first
need a lemma.

LEMMA 1. If R is a primitive ring and H ¢ Z then R has a minimal right
ideal.

Proof. R is a dense ring of linear transformations on a vector space V
over a division ring D. If dimpV < co then R has a minimal right ideal.
Therefore we may assume that dimpl = oo.
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Leta € H,a & Z. By the proof of Lemma 2 in [6], there exists v € V
such that v and va are linearly independent over D.
Suppose first that for all w & Dv

(1) w(S N (0:v)) ¢ Dv + Dw,

where (0:v) = {x € Rlyx = 0}.
Since va & Dv, from (1) we get

vas &€ Dv + Dva, foralls € S N (0:v).

Now, since vas & Dv, again from (1) we get vas* & Dv + Dvas. A repeated
application of this argument leads to

vas" & Dv + Dvas" ™!, foralln = 1.

But if m is such that as™ = s"a, then
vas™ = vs"a = 0,

a contradiction. Therefore there exists w & Dv such that
w(S N (0:v)) € Dv + Dw.

If Dv + Dw = V, then V is finite dimensional and we are done. Hence
there exists x € R, x # 0, such that x € (0:v) N (0:w). Moreover, by the
density theorem there exists y € (0:v) such that wy # 0. If r € R, the
element ¢ = xry* + yr*x* lies in (0:v) N S; hence

we = wyr¥x* € Dv + Dw, forall r € R.

Since wyR = V, then Vx* C Dv + Dw so that x* induces a linear
transformation of finite rank. By [9, Theorem p. 75] R has a minimal right
ideal.

THEOREM 1. Let R be a prime semisimple ring. If S ¢ Z then H = Z.

Proof. Suppose first that R is primitive and S ¢ Z. If H ¢ Z, by
Lemma 1 R has a minimal right ideal. This says that R is a ring of linear
transformations on a vector space V over a division ring D, which space is
equipped with a Hermitian or alternate form such that the elements of R
are continuous with respect to this form (e.g., have adjoints); furthermore
R contains all linear transformations of finite rank and the * of R is the
adjoint relative to this form.

Since H ¢ Z there existsa € H,a & Z. As in the proof of Lemma 2 in
[6] there exists v € V such that v and va are linearly independent over
D.

Suppose that the form (,) is Hermitian and let W be a finite dimensional
non-degenerate subspace of V containing both v, va; then we may find an
orthogonal basis {w, ..., w,} for W; thatis (w;, w;) = 8;d; where 0 # d;
=dreDj=1....nlf W+ is the orthogonal complement of W,
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then V = W @ W. Now, every matrix 4 = (e;) € D, induces a linear
transformation T, on V as follows: T4 (w;) = 2 ayw; (i=1,...,n)and
T (w) = 0forw € W". Since T, is a linear transformation of finite rank,
T, € R and so, R contains the subring

RMW — (Tyl4 € D,} = D,
Moreover the adjoint is an involution on D, of transpose type.
Let
wa = Zaywj +w (G=1...,n)

where ¢;; € D and w} € W+, andleta = (a;)). Then T; € R") and, since
a € H, it is easy to prove that T; € H(R"™) where H(R") is the
symmetric hypercenter of R"”. By Remark 3, since * is of transpose type,
T; is central in R™: thus

A 0

0 ‘A
for a suitable A in the center of D. Now, since v, va € W we get va = Av,
and this is a contradiction. The alternate case is proved similarly.

We have proved that if R is primitive and S ¢ Z then H = Z.

Let now R be a prime semisimple ring and suppose that S ¢ Z. It is
well known that a semisimple ring is a subdirect product of primitive rings
R,; moreover, since R is 2 and 3 torsion free, we may assume that the
homomorphic images R, are still of characteristic different from 2 and 3.
For every a, let P, be a primitive ideal of R such that R, ~ R/P,. Let

F = {PP¥ C P,and S(R/P,) C Z(R/P,) }
where S(R/P,) are the symmetric elements of R/P,, and set

A= nNn P, and B= N P,

P.eF P &€F

Since R is prime and AB € A N B = 0, we must have either A = 0 or B
=0.1f4 = 0, then S = S(R) C Z(R), a contradiction. Thus B = 0, and
so R is a subdirect product of primitive rings R/P, where either

P¥ ¢ P, or S(R/PY) & Z(R/P,).

If Pt ¢ P,, then I = P, + P%X/P,is a non-zero ideal of R/P, and for
all x + P, € I,

x + Py =x + x* + P,
as a consequence, if a € H, then

(@ + P)(x + P)" = (x + Py)"(a + Py),
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for a suitable m = 1. By [6, Lemma 2] or its proof, it follows that a + P,
centralizes I. Therefore a + P, € Z(R/P,), the center of R/P,,.

If P C P,, then R/P, is a primitive ring with induced involution *.
Moreover H = H(R) maps into the symmetric hypercenter H(R/P,) of
R/P,. By the first part of the proof, since S & Z(R/P,),

H(R/P,) = Z(R/P,).

Therefore we have proved that H(R/P,) € Z(R/P,), for all «, and this
forces the desired conclusion H C Z.

We continue the study of H with the following
TueorEM 2. If R is a domain then HY C Z.

Proof.Leta € H" and s € S.1f R’ is the subring generated by « and s
then R’ is still a domain with involution *.

Let Cr(s) = {x € R’|xs = sx} be the centralizer of sin R’. Cg(s)isa
domain stable under *; moreover, since a € H, for every t = t* € Cg(s)
there exists m = m(a, s) = 1 such that

M € Cr(s) N Crla) C Z(Cr(s)).

By [1, Theorem 4] Cp(s) satisfies S, the standard identity in four
variables. Now, since for a suitable integer n, s" € Z(R’), by [11, Theorem
2], R’ satisfies a polynomial identity. Hence R’ is an order in a division
ring D =~ R’ @y F where F is the field of fractions of Z(R’) (see
Theorem 1.4.3 in [7]). Moreover under the induced involution the
symmetric elements of D are of the form bz~ ! where b € S N R’ and z €
Z(R’) N S. The outcome of this is that H(R")™ < H(D)™"; hence, if S ¢
Z(D), by [4, Lemma 6], H(R')"™ < Z(D). In any case as = sa and by [7,
Theorem 2.1.5.], a € Z(R) follows.

We now prove a technical result which holds in arbitrary rings,

namely
THEOREM 3. Let A be a ring with no non-zero nil right ideals. Suppose that
for every positive integer n and for every choice of ay, ay, . . ., a, € A there
exist positive integers m; = my(ay), ..., m, = my(a,), t = t(ay,...,a,)
such that
my My Myt my my MmNt
(aj'ay’...a,") = (a,"...ay"a)').

Then A is commutative.

Proof. First we remark that if ay,...,a, € A, for every non empty
subset {i},..., i} of {1,...,n} we may take
mj =...=m, = m wherem = m(,...,q,).

If A4 is a division ring, let a, b € A4 and m = m(a, b), t = t(a, b) such
that
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(anlblna_ﬁl)l — (afnlbnlaln)l.
It follows that

al?lbl)lfa_nl — a'lﬂbﬂl[aﬂl
and so,

2 2
a-l?lbﬂll — bmta_m'

By [8, Theorem], 4 is commutative.

The commutativity condition imposed on 4 goes through when passing
to subrings or to homomorphic images; therefore, in order to prove the
theorem for a semisimple ring, using standard structure theory, it is
enough to do so for n X n matrices over a division ring. Suppose n > 1.
For e;; the usual matrix units, let a = ey}, b = ej; + ejp. Then, forallm =
1, @"b™ = b and b"a™ = a; hence, if ¢ is any positive integer,

(ambm)t — b #* g = (b”’a"')"

Thus n = 1 and by the division ring case the theorem is proved in case 4 is
semisimple.

In the general case, let 4 € A be such that a> = 0. If x € 4, let n =
n(a, x), t = t(a, x) be such that

(((1 + a)ax(1 — a))'(ax)")" = ((ax)"((1 + a)ax(1 — a))")"
Recalling that 1 — a = (1 + a) !, we get

((1 + a)ax)"(1 = a)ax)")" = ((ax)"(1 + a)(ax)"(1 = a))'
and, since a* = 0,

(ax)™ = ((ax)*" — (ax)™a).

From this last equality it follows that (ax)*”a = 0. Therefore, aA is a nil
right ideal of 4. By the hypothesis placed on A4, it follows that a = 0. We
have shown that 4 has no non-zero nilpotent elements. Since any such ring
is a subdirect product of domains (see [7, Theorem 1.1.1] ), we may assume
A to be a domain.

Let now a, b € 4 non-zero and n = n(a), m = m(b), t = t(a, b) such
that

(a"b’”)' — (bma")'.

We call 4 the subring generated by &" and 4™ and we remark that in order
to complete the proof of the theorem, it is enough to prove that A4 is
commutative. In fact, if this is the case, by [8, Theorem] 4 will be
commutative.

Now, Z(Ay) # 0, in fact, from
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a'(@'v"y = d'(b"a") = (d"b")'d" and
pM(@'b™)y = (b"d") " = (b)Y

it follows that (a"b")" commutes with 4" and b™; hence
0 # (d"b™) € Z(Ay).

Let 4, be the localization of Ay at Z(4y) — {0}. A4, is still a domain
whose center is a field; moreover A; satisfies all the hypotheses placed on
A. Let J be the Jacobson radical of A; and supposeJ # 0. Let 0 # ¢ € J
and d € A,. If r = r(c), s = s(d), u = u(c, d) are such that

(A + e)Vd (1 + o)) =((1 + o)7"d*(1 + ¢))",
we get

1+ cyd™1 +c)y "=00+ ) "d"(1 + ¢)
and so,

(1 + ¢o)yad™ = d(1 + ¢)*.

By the hypercenter theorem, (1 + ¢)* € Z(4,). Since Z(A4,) is a field, it
follows that ¢ is invertible in 4|, and this contradicts ¢ € J. Thus 4, is
semisimple and by the first part of the proof 4; and so Aj is
commutative.

In the rest of the paper R will be a prime ring with no non-zero nil right
ideals. In this general setting, we start to study H ' by investigating its
zero divisors. The first result in this direction is given by the following:

LEMMA 2. H" has no non-zero nilpotent elements.

Proof. Let a € H' be such that > = 0. If x € R, ax* + xa is a
symmetric element; let m = m(a, x) be such that

a(ax* + xa)™ = (ax* + xa)"a.

Since a® = 0, we get a(xa)” = (ax*)"a; thus a(xa)” € S.

For every positive integer n, let xj,...,x, be elements of R and
my, ..., m, the corresponding integers such that
a(xya)™, ..., a(xa)™ € S.
For a suitable integer m = m(xy, .. ., X,),
a( (@)™ ... (xa)™" € 8S.
We have
a((xj@)™ ... (x,a)™)" = (@)™ ... (x,a)")*"a
= ((@x)"™ ... (@x)")"a = ((@x,)"™ ... (ax))")"a

= a((x,a)™ ... (xja)™)".
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Let now R; = Ra/rg(a) N Ra where rg(a) = {x € Rlax = 0}. Since R
has no non-zero nil right ideals, then R has no non-zero nil right ideals;
moreover the above equality says that R; satisfies the hypotheses of
Theorem 3. Hence R, is commutative. This says that axaya — ayaxa is a
generalized polynomial identity for R. By [2, Proposition 6] R contains a
*_closed prime subring R( containing a, which is an order in 2 X 2
matrices over a field F. Since

H(Ry)™ > HR)" N Ry

then a € H(Ry)"; moreover if F, is endowed with the involution induced
by the one in Ry, then a € H(F,)". By Remark 3, a € F and since @ =0
we deduce a = 0.

The invariance of H and the conclusion of Lemma 2 together imply that
H™ centralizes all square-zero skew elements. In fact we have the

LEMMA 3. Leta € H'. If k € K is such that k* = 0 then ak = ka.
Proof. Since k is a quasi-unitary element with quasi-inverse —k, then
(1 + k)a(l — k) e H" and (1 — k)a(l + k) € H*.
Since R is 2-torsion free we deduce that
kak € H" and ka — ak € H™.
Since (kak)* = 0, by Lemma 2 we must have kak = 0 giving
(ka — ak)* = 0.
Again, by Lemma 2, ka — ak = 0.

Let us denote by C the extended centroid of R and let Q = RC stand for
the central closure of R.

The next lemma gives us some information about the right annihilator
of elements of H™".

LEMMA 4. Let a = a* € Q be such that, for alls € S N R, as™ = s"a
where m = m(a, s) = 1 is an integer. If t is a symmetric or skew element of
Q such that 1* = 0 and at = 0, then either a® = 0 or t = 0.

Proof. Suppose t € S and let U = U* be an ideal of R such that aUt C
Rand a’Ut € R.If x € U, the element k = axt — tx*a (if t € K, k = axt
+ tx*a) is a skew element of R; moreover k> = 0 and (ak — ka)3 = 0.
Since k is a quasi-unitary element of R, the element

b=+ k) Yak — ka)(1 — k)™

still commutes with suitable powers of elements of S N R. Moreover, since
be R be H'. But
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B2 =1 + k) Yak — ka)(1 + K*)ak — ka)(1 — k)™
= + k) Yak — ka)*(1 — k)!
and
b=+ k) Yak — ka)® 0 — k)~' = 0.
By Lemma 2 we must have b = 0. Now
0 = ab = &xi,
i.e., Ut = 0 and the primeness of R proves the lemma.

At this stage we would like to prove that H' centralizes all square-zero
symmetric elements. Unfortunately this seems still out of hand. One step
in this direction is the following:

LEMMA 5. If s € S is such that s> = 0 then sHs = 0.
Proof. Let a € H*. If k is a skew element of R, then
sks €K and (sks)*> = 0.

By Lemma 3 asks = sksa giving sasks = 0. Let sas = t. Forx € R, x —
x* € K and so,

t(x — x*)s = 0;
this implies txs = tx*s. Now, if x,y € R
txtys = t(xty)*s = ty*tx*s = tytxs.
We have shown that for all x, y € R
(2)  txtys = tytxs.
Moreover, taking * we also get
(3) sxtyt = syixt.

By [11, Lemma 3], if txt # 0, there exists A = A(x) in the extended
centroid C of R such that txs = As. Substituting in (3) (recall that ¢ = sas)
we obtain

(sxt — As)yt = 0, forally € R.

Since R is prime and ¢ # 0 this forces sxt = As = txs. Therefore, for all x
€ R, either sxt = txs or txt = 0. Since (2) holds and R is prime, txt = 0
forces txs = 0 and so, sx*t = sxt = 0. We have proved that sxt = txs, for
all x € R.

Now, if + # 0, by [11, Lemma 3], there exists p € C such that r = ps
and, recalling that tKs = 0, we get sKs = 0. By [2, Proposition 6] there
exists a *-closed prime subring R of R containing s, and Ry is an order in
fOf ~ C,, for some symmetric idempotent fin Q.
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First we claim that af = fa. In fact, since R satisfies a polynomial
identity, by a theorem of Posner fQf >~ R( ® g, F where F is the field of
fractions of Z(R,). Moreover, under the induced involution, the symmetric
elements of fOf are of the form bz~ ! withh € Ry N Sand z € Z(Ry) N
S. Thus, since ¢ € H(R)" and f = f? = f* € fOf. we have that of =

fa.
Notice that af = fa € H(fOf)". In fact, let b = b* € Ry, and m such
that ab™ = b"a. Since b € fQf, b = fb = bf; hence

afbm — abﬂl — blﬂa — b’n a4 = bﬂlaf:
Since Ry is an order in fQf, by the remark made above, we get
af € H(fON)".

Being fQf ~ C, by Remark 3 af and so, a centralizes all elements in fQf;
hence as = sa and so, sas = 0.

Let p = char R. We now define 2 subset H, "of H* which will play an
important role in what follows H is defmed to be equal to H™ in case
char R = p = 0 and H {ap|a € H™} otherwise.

The next lemma tells us that H centralizes all square-zero symmetric
elements.

LEMMA 6. Let a € H:. If s € S is such that s> = O then as = sa.

Proof. Let b € H™. Since, by Lemma 5, sH s = 0, bs — sb is a
square-zero skew element of R. Hence, by Lemma 3, b commutes with bs
—-sb. Now, if char R = p # 0, then b”s = sb” and we are done. In case
char R = 0 let m be such that

b(b + s)" = (b + 5)"b.
Since sH's = 0 we get

b + b s 4+ o+ sy = "+ B s+ L+ s Db,
Hence b™s = sb™. Recalling that b commutes with bs — sb, we obtain

0 = b™s — sb™ = mb™ Y (bs — sb).

Since char R = 0 and b is not nilpotent, it follows by Lemma 4 that bs =
sb.

A slight generalization of Lemma 6 is the following

+ .
LEMMA 7. Leta € H), . If x € R is such that x*> = xx* = x*x = 0 then
ax = xa.

Proof. The conditions imposed on x imply

(x + x*)Z = (x — x*)z
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By Lemma 3 and Lemma 6 we get

a(x + x*) = (x + x¥)a and a(x — x*) = (x — x*)
resulting in

x*a — ax* = ax — xa = — x*a + ax*.
Thus ax — xa = 0.

We are now in a position to prove that the elements of H " are algebraic
over the extended centroid provided the ring R has non-zero symmetric
nilpotent elements.

LEMMA 8. If R has non-zero symmetric nilpotent elements, then for all a
S H;, there exists \ = \* € C such that (a — \)} = 0.

Proof. Let s # 0 be a symmetric element of R such that s> = 0. If x € R
then y = sxs satisfies y> = yy* = y*y = 0 and so, by Lemma 7 asxs =
sxsa. By [11, Lemma 3] there exists A\ € C such that as = As and, since as
= sa, A = A* is symmetric. Therefore (¢ — A)s = 0 and by Lemma 4
(a — }\)3 = 0, as wished.

Before proving our main result we need a lemma on invariant subrings
whose proof is due to Herstein. If B is a ring, let J(B) denote the Jacobson
radical of B.

LEMMA 9. Let B be a prime ring which is not a domain in which J(B) # 0.
Suppose that A is a subring of B such that (1 + x)A(1 + x)" ' C A for all x
€ J(B). If A ¢ Z(B) and A does not contain a non-zero ideal of B, then
A N J(B) has non-zero nilpotent elements.

Proof. We note first that 4] = A N J(B) # 0. In fact, if not, fora € 4
and x € J = J(B),

(ax — xa)(1 + x)"' = (1 + x)a(l + x) ' —a € A4, implies
(ax — xa)(1 + x)"' =0

and so, ax = xa. Thus A centralizes the non-zero ideal J and by the
primeness of B, A C Z.

Suppose first that no element of 4 is a zero-divisor in J. Let a € 4,
and let x € J, x # 0, be a left zero-divisor in J. Then, from

(ax — xa)(1 + x)"' € A, and (aax — axa)(1 + ax)” ' € 4,
we get

a(ax — xa)((1 + x)”' = (1 + ax)™") € 4;;
hence

a(ax — xa)1 + x)7'1 — a)x(1 + ax)”' € 4,.
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Conjugating this last element by 1 + ax we get
¢ = (1 + ax) la(ax — xa)1 + x)" /(1 — a)x € A4,.
Now, c is a left zero-divisor in J since x is; thus
a(ax — xa)1 + x) (1 — a)x = 0.
From (I — a)x # 0 and a(ax — xa)(1 + x)~' € A, we then get
a(ax — xa)(1 + x)”' = 0.

This implies a(ax — xa) = 0 and so, ax — xa = 0. We have shown that a
centralizes all left zero divisors in J. Notice that if x € J is a left
zero-divisor, so is every element in the left ideal Jx. Therefore a centralizes
Jx forcing a € Z. We have proved that 4, C Z. This easily leads to the
contradiction 4 C Z.

Therefore there exists 0 # a € A, which is a zero-divisor in J. Let 0 #
x € J, with ax = 0. For all r € B,

xra = (axr — xra)(1 + xr)~' € 4, and (xra)’ = 0.
Since B is prime, xra # 0 for some r € B. This establishes the lemma.
Putting all the pieces together we can now prove that H* c Z.
Lemma 10. HT Cc Z

Proof. By Theorem 1 we may assume that the Jacobson radical J(R) of
R is non-zero. Suppose first that the involution is positive definite in R,
re., xx* = 0 implies x = 0.

If R is a domain, by Theorem 2 we are done; hence, we may assume that
R has non-zero nilpotent elements. Let x € R be such that x> = 0. If a €
H™ let m be such that

a(xx*)" = (xx*)"a;

then x> = 0 implies xa(xx*)” = 0. Since * is positive definite, we get
either

xa(xx*)™?* = 0 or xa(xx*)""2x =0

according as m is even or odd. A repeated application of this argument
leads to xax = 0.
Now let x, y € R be such that xy = 0. For all » € R, (yrx)*> = 0 so

yrxayrx = 0;

this says that xayR is a nil right ideal of R of bounded exponent. Since R is
prime we get, by a result of Levitzki, that xay = 0. We have proved
that
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H™ ¢ T = {a € Rlxy = 0 implies xay = 0}.
We remark that 7 is a subring of R such that
(1 4+ x)T(1 +x)"' T forall x € J(R).

Now, if T € Z, H" C Z and we are done. On the other hand, since R is
prime T cannot contain a non-zero ideal of R. Therefore by Lemma 9 we
may assume that T N J(R) has non-zero nilpotent elements. Moreover, by
the first part of the proof of Lemma 9 in [5] we know that all right
annihilators in J = J(R) of elements of T are linearly ordered, that is, if q,
b € T then either r;(a) C ry(b) or ry(b) C ryj(a). Letx # 0in T N J be
such that x2 = 0. Since T* = T, then xx*, x*x € T N J. Thus either

rp(xx*) C ry(x*x) or rj(x*x) C ry(xx*).

In either case xx*xx* = 0. Since * is positive definite we get x = 0, a
contradiction.

Suppose now that * is not positive definite. By [7, Theorem 2.2.1] either
S C Z or S has non-zero nilpotent elements. If the first possibility occurs,
we are done; therefore we may assume that there exists s € S such that s
# 0 and s> = 0.

Leta € Hp+. By Lemma 8 there exists \ = A* € C such that (@ — \)?
= 0 and we may clearly assume that A # 0. Let U = U* be an ideal of R
such that 0 # XU C R, fori = 1,...,4 (see [7, Lemma 2.4.1] ). Now,
since R is prime

V =1Un JQR) # 0.

If VN K =0thenforallx € V,x = x* forcing IV C S. Take now x, y
€ V; we have:

xy = (xy)* = y*x* = yx.

Thus V and so R is commutative. In this case there is nothing to prove.
Therefore we may assume that V' N K # 0. Let k € V' N K and set

b= (a — N

The element ¢ = (1 + k)~ '(ak — ka)(1 — k)™ 'liesin H™. Since also bch
€ H™" and (beb)*> = 0, by Lemma 2, beb = 0. Similarly be’h = 0 and so,
the element bc + ¢b € H™ is square zero. Lemma 2 then says that bc + c¢b
= 0,i.e,bc = —cb € K. Since (bc)’> = 0, by Lemma 3, bc> = cbc; on the
other hand be = —cb implies che = —bc?. Therefore che = 0. Now, since
H™ has no nilpotent elements, a repeated application of Lemma 4 forces
either b = 0 or ¢ = 0.

If c =0, then ak = ka, forallk € VN K. Letx € V; x — x* €
V N K, hence

a(x — x*) = (x — xMa;
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this says that ax — xa is a skew element of V, so,
a(ax — xa) = (ax — xa)a.

At this point it is not difficult to prove that a centralizes V' and so, a is
central in R.

If b = 0, then (¢ — A\)> = 0 and by applying the argument above to the
element ¢ — A, we obtain ¢ — A = 0 and so, a is central in R.

Now, if char R = 0, HY = HO+ = Z and we are done. We may
therefore assume that char R = p # 0. In this case we have just seen that
Z =Z7ZR)#0.

By localizing at Z — {0}, we obtain a prime ring R’ with induced
involution for which H(R’) = H(R)z- (o). Foreverya € HR)" ., a" € Z;
hence H(R') consists of invertible elements. Moreover if J(R') = 0, by
Theorem 1, HT C Z.

By working with R’ instead of R thus we may assume that H ' consists
of invertible elements.

Leta € H" and k € K N J(R). The element (1 + k) '(ak — ka)
(1 — k)~ "lies in H*, hence, if non-zero, it is invertible. But (1 + k) !
(ak — ka)(1 — k)~ "lies in J(R) and no element of J(R) can be invertible.
We must conclude ak — ka = 0, that is, a centralizes all skew elements in
J(R). As before we deduce a central in R.

LEmMA 11. If I = I* is an ideal of R such that H® 0 I = 0 then H N I
= 0.

Proof. Let H- = H N K. Since I = I* it is enough to show that
H NI=01Lletae H N I Forallk € K with k¥ = 0,

(1 + kya(l — k)€ H NI and
(A —kya(l +kye H n L

Thus 2(ak — ka) € H™ N I. Since 4(ak — ka)* and a® liein H™ N I, we
obtain

dakaka = 4a(ak — ka)* = 0.

Therefore, since R is 2-torsion free, ak is a nilpotent element of R.
Let now » € R and let m = 1 be an even integer such that

a(ra — ar*)" = (ra — ar*)"a.

Since a* = 0, a(ra)™ = (ar*)"a € K and, as in proof of Lemma 2, we
deduce that axaya — ayaxa is a generalized polynomial identity for R. As
in [2, Proposition 6] there exists a *-closed prime subring R, containing a,
which is an order in 2 X 2 matrices over a field F. Clearly

a € HR,) € H(F)).
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Moreover, since ak is nilpotent for every square-zero skew in R, this
property still holds in R,, and so in F5.

Now, if * is of transpose type, by Remark 3, H(F,) = F forcing a = 0.
On the other hand, if * is symplectic, by the proof of Proposition 9 in [2],
a = 0 follows. With this the lemma is proved.

We are now in a position to prove our main theorem.

THEOREM 4. Let R be a prime ring with involution with characteristic not 2
or 3. If R has no non-zero nil right ideals and S ¢ Z then H = Z.

Proof. Suppose S ¢ Z.1f Z N S = 0, then Lemma 10 implies H™ = 0
and, by Lemma 11, H = 0 follows. Suppose now that Z N S # 0. By
localizing at Z — {0}, we may clearly assume that R is a prime ring whose
center is a field. Moreover, if J is the Jacobson radical of R, by Theorem 1,
we may also assume that J # 0.

Since H™ N J consists of invertible elements, we must have H N J =
0 and, by Lemma 11, H N J = 0. Now, K N J = 0 implies that J, and so
R, is commutative. Thus we may assume that K N J # 0. Letk € K N J
and x € H; then

(1 + k) 'xk —kx)1 —k)y 'eHNnJ =0
forcing xk = kx; thus H centralizes all skew elements in J. As in the proof

of Lemma 10, this implies that H centralizes J forcing H C Z.
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