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ON THE SYMMETRIC HYPERCENTER OF A RING 

A. GIAMBRUNO 

The hypercenter theorem [6] asserts that in a ring with no non-zero nil 
ideals an element commuting with a suitable power of each element of the 
ring must be central. In this paper we shall be concerned with a similar 
problem in the setting of rings with involution. Let R be a ring with 
involution *, let Z denote the center of R and let S = {x <E R\X = x*} be 
the set of symmetric elements in R. We define the symmetric hypercenter 
of R to be 

H = {a Œ R\asn = s"a, n = n(a, s) ^ 1, all s e S}. 

What can one hope to say about HI That H need not equal Z is clear. For 
instance, in the ring R = F2 of 2 X 2 matrices over a field, if * is the 
symplectic involution, all symmetric elements are central, hence H = R 
but Z ¥= R. Furthermore if R is a noncommutative ring in which every 
symmetric element is nilpotent then even in this case H = R and Z ¥= R 
follows. 

Suppose that R is a prime ring with characteristic not 2 or 3. Here we 
will show that if R has no non-zero nil right ideals and S <£. Z, then H = Z 
follows. 

The symmetric hypercenter was first studied in [4]; there the authors 
proved that if R is a division ring then H n S = Z D S provided xx* £ Z 
for some x e R. Another result about H is Theorem 1 in [10] which reads 
as follows: if the exponent n(a, s) = n is independent of s and if R is a 2, 
3-torsion free semiprime ring, then H n S = Z D S. 

It is natural to ask if our result remains valid if one replaces the 
assumption "with no nil right ideals" by its two-sided version "with no nil 
ideals". If this were the case, then one would have a positive answer to the 
following question due to McCrimmon [7, p. 83]: let R be a ring with 
involution such that all symmetric elements are nilpotent; is R itself 
necessarily nil? (see [1] ). 

Finally we remark that if char R = 3, then the conclusion of our result 
is no more true: in fact, let R = (GF(3) )2 with the involution 

(ab\* __ (alc\ 
\cd) ~ \2bd)' 
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422 A. GIAMBRUNO 

In this ring S <£ Z and H coincides with the set of diagonal matrices; 
hence H ^ Z. 

Throughout the paper R will denote a ring with involution * which is 2 
and 3 torsion free, S will be the set of symmetric elements of R, K the set 
of skew elements of R, and Z = Z(R) the center of R. H = H(R) will 
denote the symmetric hypercenter of R and H^ = H C\ S. 

We recall that if x is a quasi-regular element of R with quasi-inverse x* 
(i.e., x 4- x* + xx* = 0) then x is called quasi-unitary. If /? has a unity, 
then clearly x is quasi-unitary if and only if 1 + x is unitary. 

For a quasi-unitary element x the map 

^x\y —> y + xy + yx* + xyx* 

is an automorphism of R which preserves S and K and leaves the elements 
in Z invariant. Moreover, it is easy to establish the following remark: 

Remark 1. For all quasi-unitary elements x <E R, %(H) C H. 

As a special case of Remark 1 that will be used later we have the 

Remark 2. For all quasi-regular skew elements k, 2k(\ — k)~l is 
quasi-unitary and 

(1 - ky\ak - ka)(\ + k)~x e H 

for all a <E H. 

The invariant property of H can be exploited for R a simple artinian 
ring viewed as n X n matrices over a division ring. We have 

Remark 3. Let R be a simple artinian ring. If S <£ Z then H = Z. 

Proof. Let Z? = Z>w, where Z) is a division ring. If * is symplectic then, as 
in [3, Section 6], we get the desired conclusion. Suppose that * is of 
transpose type. Let etj (/, j = 1, . . . , « ) be the usual matrix units. Since 
H centralizes all symmetric idempotents, H centralizes ein for all /; hence 
H consists of diagonal matrices. If D has more than 5 elements then, by [3, 
Theorem 2 and Theorem 6], H = Z and we are done in this case. If D = 
GF(5), then R = (GF(5) )„ is a finite ring, H = H+ and by [10] H = 
Z. 

Knowing the result for simple artinian rings, we follow the usual pattern 
of structure theory by proving the result for semisimple rings. We first 
need a lemma. 

LEMMA 1. If R is a primitive ring and H <£ Z then R has a minimal right 
ideal. 

Proof R is a dense ring of linear transformations on a vector space V 
over a division ring D. If dim^K < oo then R has a minimal right ideal. 
Therefore we may assume that dim^K = oo. 

https://doi.org/10.4153/CJM-1984-026-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-026-2


SYMMETRIC HYPERCENTER 423 

Let a e H, a £ Z. By the proof of Lemma 2 in [6], there exists v e V 
such that v and va are linearly independent over D. 

Suppose first that for all w £ Dv 

(1) w(S n (0:v)) £ Dv + Z)w, 

where (0:v) = {x e 7 |̂vx = 0}. 
Since va £ Dv, from (1) we get 

vas £ Dv + DVÛ, for all s e S n (0:v). 

Now, since vas £ Dv, again from (1) we get vas2 £ Dv + Z>v&s. A repeated 
application of this argument leads to 

vas11 £ Dv + D W 1 " 1 , for all n ^ 1. 

But if m is such that <zsm = sma, then 

v<ww = vsma = 0, 

a contradiction. Therefore there exists w £ Dv such that 

w(S n (0:v)) c Dv + Dw. 

If Z)v + Z)w = V, then F is finite dimensional and we are done. Hence 
there exists x e R, x ^ 0, such that x e (0:v) Pi (0:w). Moreover, by the 
density theorem there exists y G (0:V) such that wy ¥= 0. If r & R, the 
element c = xry* 4- yr*x* lies in (0:v) Pi S; hence 

wc — wyr*x* G Dv + Zhv, for all r G 7?. 

Since wyi? = F, then Kx* c Dv + Z)w so that x* induces a linear 
transformation of finite rank. By [9, Theorem p. 75] R has a minimal right 
ideal. 

THEOREM 1. Let R be a prime semisimple ring. If S <t Z then H = Z. 

Proof. Suppose first that R is primitive and S <£ Z. If H <£. Z, by 
Lemma 1 R has a minimal right ideal. This says that R is a ring of linear 
transformations on a vector space V over a division ring D, which space is 
equipped with a Hermitian or alternate form such that the elements of R 
are continuous with respect to this form (e.g., have adjoints); furthermore 
R contains all linear transformations of finite rank and the * of R is the 
adjoint relative to this form. 

Since H <f- Z there exists a e H, a <£ Z. As in the proof of Lemma 2 in 
[6] there exists v e V such that v and va are linearly independent over 
D. 

Suppose that the form (,) is Hermitian and let Wbe a finite dimensional 
non-degenerate subspace of F containing both v, va; then we may find an 
orthogonal basis {w\, . . . , wn} for W; that is (wh wj) = S^dj where 0 ^ dj 
= df G D, j = 1, . . . , « . If W1- is the orthogonal complement of W% 
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then V = W ® W . Now, every matrix A = (ay) G Dn induces a linear 
transformation TA on Fas follows: TA(WJ) = 2 ocyWj (i = 1, • • • , n) and 
TA(w) = 0 for w <E W1-. Since TA is a linear transformation of finite rank, 
TA G R and so, R contains the subring 

RW = {TA\A ^ Dn}^Dn. 

Moreover the adjoint is an involution on Dn of transpose type. 
Let 

wta = 2 OLjjWj + w\ (i = 1, . . . , n) 

where ay G D and w\ G W1-, and let â = (ay). Then 7^ G iï(w) and, since 
a G 7/, it is easy to prove that 7^ G H(R{fl)) where H(R{n)) is the 
symmetric hypercenter of i?('7). By Remark 3, since * is of transpose type, 
TJJ is central in R^; thus 

-Cs) 
for a suitable X in the center of D. Now, since v, va G J^ we get va = Àv, 
and this is a contradiction. The alternate case is proved similarly. 

We have proved that if R is primitive and S <£ Z then H = Z. 
Let now R be a prime semisimple ring and suppose that S <t- Z. It is 

well known that a semisimple ring is a subdirect product of primitive rings 
Ra\ moreover, since R is 2 and 3 torsion free, we may assume that the 
homomorphic images Ra are still of characteristic different from 2 and 3. 
For every a, let Pa be a primitive ideal of R such that Ra ~ i^/TV Let 

&= {Pa\P% c i>a and S(R/Pa) c Z(R/Pa) } 
where S(R/Pa) are the symmetric elements of R/Pa> and set 

^ = O P a and 5 = n P a . 

Since 7? is prime and AB a A D 5 = 0, we must have either A = 0 or B 
= 0. If ,4 = 0 , then S = S(R) c Z(7?), a contradiction. Thus B = 0, and 
so 7? is a subdirect product of primitive rings R/Pa where either 

P* £ Pa or S(R/Pa) £ Z(R/Pa). 

If P* <t Pa> then I = Pa + Pi/Pa is a non-zero ideal of R/Pa and for 
all x + P« G 7, 

as a consequence, if a e / / , then 

(a + i>«)(x + i>«)m = (x + P a r ( a + P„), 
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for a suitable m ^ 1. By [6, Lemma 2] or its proof, it follows that a + Pa 

centralizes /. Therefore a + Pa ^ Z(R/Pa), the center of R/Pa. 
If P* c Pa9 then R/Pa is a primitive ring with induced involution *. 

Moreover H = 7/(7?) maps into the symmetric hypercenter H(R/Pa) of 
R/Pa. By the first part of the proof, since S <£ Z(R/Pa), 

H(R/Pa) = Z(R/Pa). 

Therefore we have proved that H(R/Pa) c Z(R/Pa), for all a, and this 
forces the desired conclusion H c Z. 

We continue the study of H with the following 

THEOREM 2. If R is a domain then H+ c Z. 

Proof. Let « G / / + and s G S\ If 7?' is the subring generated by a and s 
then R' is still a domain with involution *. 

Let CR'(s) = {x G JR'|xs = sx} be the centralizer of s in 7?'. CV(s) is a 
domain stable under *; moreover, since a G //, for every t = t* & CR{s) 
there exists m = m(a, s) = 1 such that 

r e cR{s) n c***) c Z(Q<J) ) . 

By [1, Theorem 4] CR>(s) satisfies S 4, the standard identity in four 
variables. Now, since for a suitable integer n, sn G Z(R'), by [11, Theorem 
2], Rf satisfies a polynomial identity. Hence R' is an order in a division 
ring D ~ R' ®z(R')F where F is the field of fractions of Z(R') (see 
Theorem 1.4.3 in [7]). Moreover under the induced involution the 
symmetric elements of D are of the form bz~] where b G S Pi R' and z G 
Z(JR') n S. The outcome of this is that H(R')+ c H(D) + \ hence, if S £ 
Z(Z>), by [4, Lemma 6], H(R')+ c Z(D). In any case as = sa and by [7, 
Theorem 2.1.5.], a G Z(7?) follows. 

We now prove a technical result which holds in arbitrary rings, 
namely 

THEOREM 3. Let A be a ring with no non-zero nil right ideals. Suppose that 
for every positive integer n and for every choice of'a\, a2, • • . , an G A there 
exist positive integers m\ = nt\(a\), . . . , mn = mn(an), t = t(a\, . . . , an) 
such that 

{a{ a2 . . . an ) — yan . . . a2 ax ) . 

Then A is commutative. 

Proof First we remark that if ah . . . , an G A, for every non empty 
subset {/*!, . . . , ik) of {1, . . . , n) we may take 

mix = . . . = mik = m where m = m(aiv . . . , ain). 

If A is a division ring, let a, b G A and m = m(a, b), t = t(a, b) such 
that 
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(ambma~my = (a~mbmamy. 

It follows that 

amhmta-m = ^mynt^n 

and so, 

a2mhmt = hmta2m^ 

By [8, Theorem], A is commutative. 
The commutativity condition imposed on A goes through when passing 

to subrings or to homomorphic images; therefore, in order to prove the 
theorem for a semisimple ring, using standard structure theory, it is 
enough to do so for n X n matrices over a division ring. Suppose n > 1. 
For el} the usual matrix units, let a = e\\, b = eu + e12. Then, for all m i^ 
1, a bm = b and bmam = a; hence, if / is any positive integer, 

(ambmy = b ^ a = (bmamy. 

Thus n = 1 and by the division ring case the theorem is proved in case A is 
semisimple. 

In the general case, let a G i be such that a = 0. If x G A, let n = 
n(a, x), t = t(a, x) be such that 

( ( ( 1 + a)ax(\ - a)f(ax)ny = ((axf((\ + a)ax(\ - a))")'. 

Recalling that 1 — a = (1 + a ) - 1 , we get 

((1 4- a)(axf{\ ~ a)(ax)ny = {(ax)n{\ + a){axf{\ - a))1 

and, since a2 = 0, 

(axfnt = ((ax)2n - (ax)2nay. 

From this last equality it follows that (ax)2nta = 0. Therefore, aA is a nil 
right ideal of A. By the hypothesis placed on A, it follows that a = 0. We 
have shown that A has no non-zero nilpotent elements. Since any such ring 
is a subdirect product of domains (see [7, Theorem 1.1.1] ), we may assume 
A to be a domain. 

Let now a, b G A non-zero and n = n(a), m = m(b), t = t(a, b) such 
that 

(anbmy = {bmany. 

We call A0 the subring generated by an and bm and we remark that in order 
to complete the proof of the theorem, it is enough to prove that A0 is 
commutative. In fact, if this is the case, by [8, Theorem] A will be 
commutative. 

Now, Z(A0) ¥= 0, in fact, from 
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an{anbm)1 = an{bman)1 = {anbm)lan and 

bm(a"bmy = (bman)lbm = (anbm)lbm 

it follows that (anbm)1 commutes with an and bm\ hence 

0 # (anbmy e Z(A0). 

Let Ai be the localization of A0 at Z(A0) — {0}. A\ is still a domain 
whose center is a field; moreover A\ satisfies all the hypotheses placed on 
A. Let J be the Jacobson radical of A\ and suppose J ¥= 0. Let O ^ c E / 
and d e A\. If r = r(c), s = s(d), w = u(c, d) are such that 

((1 + c)rds(\ + c ) ~ T = ( 0 + c)" rd5( l + c))w, 

we get 

(1 + c)rdsu(\ + c)~r = (1 + c)"rrfJM(l + c)r 

and so, 

(1 + c)2r</™ = dsu{\ + c)2r. 

By the hypercenter theorem, (1 + c)2r e Z(A\). Since Zf/lj) is a field, it 
follows that c is invertible in A\, and this contradicts c ^ J. Thus ylj is 
semisimple and by the first part of the proof A\ and so AQ is 
commutative. 

In the rest of the paper R will be a prime ring with no non-zero nil right 
ideals. In this general setting, we start to study H+ by investigating its 
zero divisors. The first result in this direction is given by the following: 

LEMMA 2. H+ has no non-zero nilpotent elements. 

Proof. Let a e 7 /+ be such that a2 = 0. If x e R9 ax* + xa is a 
symmetric element; let m = m(a, x) be such that 

a(ax* + xa)m = (ÛX* + xa)ma. 

Since a2 = 0, we get a(xa)m = (ajc*)m^; thus ^JCÛ)"1 G S. 
For every positive integer n, let x\, . . . , xn be elements of i? and 

m\, . . . ,mn the corresponding integers such that 

a(xia)m\...,a(xna)m" e 5. 

For a suitable integer m = m(xh . . . , xn\ 

a( (xxa)m* . . . (xna)m")m e S. 

We have 

a( (xxa)m* . . . (xna)m»)m = ( ( x ^ ) m i . . . (x^)m-)*m« 

= ( (ax*)m». . . (ax*)m')ma = ( (axw)m«. . . (axx)
m*)ma 

= a( (xna)m« . . . (xxa)mT-
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Let now R\ = Ra/rR(a) n Ra where rR(a) = {x e #|tfx = 0}. Since i? 
has no non-zero nil right ideals, then R] has no non-zero nil right ideals; 
moreover the above equality says that R\ satisfies the hypotheses of 
Theorem 3. Hence R\ is commutative. This says that axaya — ay axa is a 
generalized polynomial identity for R. By [2, Proposition 6] R contains a 
*-closed prime subring R$ containing a, which is an order in 2 X 2 
matrices over a field F. Since 

H(R0) + D H(R) + n R0 

then a e H(RQ)+; moreover if F2 is endowed with the involution induced 
by the one in R0, then a e H(F2)

+ . By Remark 3 , a G f and since a2 = 0 
we deduce # — 0. 

The invariance of / / and the conclusion of Lemma 2 together imply that 
7 / + centralizes all square-zero skew elements. In fact we have the 

LEMMA 3. Let a e H+. If k e K is such that k2 = 0 then ak = /CA. 

Proof. Since /c is a quasi-unitary element with quasi-inverse — k, then 

(1 + A:)U(1 - k) e # + and (1 - A:)A(1 + À:) e / / + . 

Since /? is 2-torsion free we deduce that 

kak G / / + and ka - ak ^ H^. 

Since (kak)2 = 0, by Lemma 2 we must have A:a/c = 0 giving 

(to - ak)2 = 0. 

Again, by Lemma 2, ka — ak = 0. 

Let us denote by C the extended centroid of R and let Q = JRC stand for 
the central closure of i?. 

The next lemma gives us some information about the right annihilator 
of elements of H+. 

LEMMA 4. Let a = a* <E Q be such that, for all s <E S C) R, asm = sma 
where m = m (a, s) = 1 is an integer. If t is a symmetric or skew element of 
Q such that t2 = 0 and at = 0, then either a3 = 0 or t = 0. 

Proof. Suppose t <= S and let U = U* be an ideal of 7? such that aUt c 
# and <22£// c # . If je G £/, the element k = axt - tx*a (if t e K, k = axt 
+ tx*a) is a skew element of 7?; moreover A:3 = 0 and (ak — /ca)3 = 0. 
Since k is a quasi-unitary element of R, the element 

ft = ( l + k)~\ak - ka)(\ - k)~x 

still commutes with suitable powers of elements of S n i?. Moreover, since 
b ^ R,b ^ H+. But 
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b1 = (1 + k)~\ak - ka){\ 4- k2)(ak - ka)(\ - kyl 

= (1 + ik)_1(flit - ifcû)2(l - ky] 

and 

fc3 = (1 + k)~\ak - ka)\\ - k)~x = 0. 

By Lemma 2 we must have b = 0. Now 

0 = ab = a xt, 

i.e., a3Ut = 0 and the primeness of i? proves the lemma. 

At this stage we would like to prove that H+ centralizes all square-zero 
symmetric elements. Unfortunately this seems still out of hand. One step 
in this direction is the following: 

LEMMA 5. If s e S is such that s2 = 0 then sH+s = 0. 

Proof. Let a e H+. If k is a skew element of R, then 

sks <^K and 0&s)2 = 0. 

By Lemma 3 asks = sksa giving sasks = 0. Let sas = t. For x e. R, x — 
x* ^ K and so, 

t(x - x*)s = 0; 

this implies txs = /JC*S. Now, if x, y e R 

txtys = t(xty)*s = ty*tx*s = tytxs. 

We have shown that for all x, y G. R 

(2) txtys = tytxs. 

Moreover, taking * we also get 

(3) sxtyt = sytxt. 

By [11, Lemma 3], if txt ¥= 0, there exists X = X(x) in the extended 
centroid C of R such that txs = Xs. Substituting in (3) (recall that t = sas) 
we obtain 

(sxt - Xs)yt = 0, for all y G R. 

Since R is prime and t ¥= 0 this forces sxt = Xs = txs. Therefore, for all x 
G R, either sxt = txs or txt = 0. Since (2) holds and R is prime, txt = 0 
forces txs = 0 and so, sx*t = sxt = 0. We have proved that sxt = txs, for 
all x G R. 

Now, if / ¥= 0, by [11, Lemma 3], there exists ju G C such that / = {is 
and, recalling that /ift = 0, we get sKs = 0. By [2, Proposition 6] there 
exists a *-closed prime subring RQ of 7? containing s, and 7 0̂ i

s a n order in 
/g/* ^ C2, for some symmetric idempotent / in Q. 
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First we claim that af = fa. In fact, since R$ satisfies a polynomial 
identity, by a theorem of Posner /g / ~ ^o ®Z(/?0)^w n e r e Fis the field of 
fractions of Z(RQ). Moreover, under the induced involution, the symmetric 
elements offQf are of the form bz~l with b G R0 n S and z G Z(RQ) n 
5. Thus, since a G / / ( i ^ ) + a n d / = / 2 = /* G / g / ; we have that a/ = 
fa. 

Notice that af = fa G H(fQf) + . In fact, let ft = 6* G % and m such 
that fl6w = bma. Since b <= fQf, b = fb = bf; hence 

fl/fr"1 = tf/>m = ô^û = bmfa = bmaf 

Since RQ is an order in fQf, by the remark made above, we get 

afaH(fQf) + . 

Being /Qf ~ C2 by Remark 3 af and so, a centralizes all elements in fQf; 
hence as = sa and so, sas = 0. 

Let /? = char R. We now define a subset i / p of H^ which will play an 
important role in what follows. H is defined to be equal to H+ in case 
char R = p = 0 and //^ = {Û^IÛ G i / + } otherwise. 

The next lemma tells us that Hp centralizes all square-zero symmetric 
elements. 

LEMMA 6. Let a^Hp.Ifs^Sis such that s2 = 0 then as = sa. 

Proof. Let b G 7 / + . Since, by Lemma 5, sH^s = 0, bs — sb is a 
square-zero skew element of /?. Hence, by Lemma 3, b commutes with bs 
— sb. Now, if char R = p ^ 0, then bps = sbp and we are done. In case 
char R = 0 let m be such that 

b(b + s)m = (fc + s)mZ>. 

Since s / /+s = Owe get 

b(bm + i"1"1* + . . . + sbm~v) = (Z?m + ft"1-^ + . . . + sbm~x)b. 

Hence bms = sbm. Recalling that b commutes with bs — sb, we obtain 

0 = bms - sbm = mbm~\bs - sb). 

Since char R = 0 and b is not nilpotent, it follows by Lemma 4 that bs = 
sb. 

A slight generalization of Lemma 6 is the following 

LEMMA 7. Let a G H . If x G .R is such that x = xx* = x*x = 0 then 
ax = x<x 

Proof. The conditions imposed on x imply 

(x + x*)2 = (JC - JC*)2 = 0. 
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By Lemma 3 and Lemma 6 we get 

a(x + x*) = (x + x*)a and a(x — x*) = (x — x*)a 

resulting in 

x*a — ax* = ax — xa = — x*a + ax*. 

Thus ax — xa = 0. 

We are now in a position to prove that the elements of / / + are algebraic 
over the extended centroid provided the ring R has non-zero symmetric 
nilpotent elements. 

LEMMA 8. If R has non-zero symmetric nilpotent elements, then for all a 
e H , there exists X = À* e C such that (a — X) = 0. 

Proof Let s ¥= 0 be a symmetric element of R such that s = 0. If x e JR 
then y = sxs satisfies j 2 = .yj* = J7*^ = 0 and so, by Lemma 7 asxs = 
sxsa. By [11, Lemma 3] there exists À G C such that as = Xs and, since as 
= sa, X = X* is symmetric. Therefore (a — X)s = 0 and by Lemma 4 
(a ~ X)3 = 0, as wished. 

Before proving our main result we need a lemma on invariant subrings 
whose proof is due to Herstein. If B is a ring, let J(B) denote the Jacobson 
radical of B. 

LEMMA 9. Let B be a prime ring which is not a domain in which J(B) ¥= 0. 
Suppose that A is a subring of B such that (1 -f x)A(\ + . x ) 1 c: A for all x 
G J(B). If A (f. Z(B) and A does not contain a non-zero ideal of B, then 

A n J(B) has non-zero nilpotent elements. 

Proof We note first that Ax = A n J(B) ¥= 0. In fact, if not, for a e A 
and x e / = J(B), 

(ax — xa)(\ + x)~l = (1 + x)a(\ + x ) " 1 — a e ylj implies 

(ax - xa)(\ + x ) " 1 = 0 

and so, ax = xa. Thus v4 centralizes the non-zero ideal J and by the 
primeness of B, A c Z. 

Suppose first that no element of A\ is a zero-divisor in / . Let a G ^ i 
and let x e / , x ¥= 0, be a left zero-divisor in / . Then, from 

(ax — xa)(\ + .x) - 1 G ^ i and (aax — axa)(\ + a x ) - 1 G ^ 

we get 

«(ax — xa)( (1 + x) 

hence 

a(ax — xa)(\ + x ) _ 1 ( l — a)x(\ + a x ) - 1 e y^. 

- (1 + a x ) - 1 ) G Ax\ 

https://doi.org/10.4153/CJM-1984-026-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-026-2


432 A. GIAMBRUNO 

Conjugating this last element by 1 + ax we get 

c = (1 + ax)~xa(ax — xa){\ + x ) _ 1 ( l — a)x e A\. 

Now, c is a left zero-divisor in J since x is; thus 

a(ax — xa)(\ + x)~\\ — a)x = 0. 

From (1 — a)x •=£ 0 and a(ax — xa)(\ + x ) _ 1 e A\ we then get 

a (ax — xa){\ + x)~ = 0. 

This implies a (ax — xa) = 0 and so, AX — xa = 0. We have shown that a 
centralizes all left zero divisors in J. Notice that if x G / is a left 
zero-divisor, so is every element in the left ideal Jx. Therefore a centralizes 
Jx forcing a e Z. We have proved that A\ c Z. This easily leads to the 
contradiction A c Z. 

Therefore there exists 0 ¥= a G A \ which is a zero-divisor in / . Let 0 ¥= 
x G / , with ax = 0. For all r Œ B, 

xra = (axr — xra)(\ + xr)~x G A\ and (xraf = 0. 

Since 5 is prime, xra ¥= 0 for some r ^ B. This establishes the lemma. 

Putting all the pieces together we can now prove that H+ c Z. 

LEMMA 10. # + c Z. 

Proof. By Theorem 1 we may assume that the Jacobson radical J(R) of 
R is non-zero. Suppose first that the involution is positive definite in R, 
i.e., xx* = 0 implies x = 0. 

If i? is a domain, by Theorem 2 we are done; hence, we may assume that 
R has non-zero nilpotent elements. Let x ^ Rbe such that x2 = 0. If a G 
/ / + let m be such that 

a(xx*)m = (xx*)ma; 

then x2 = 0 implies x«(xx*)m = 0. Since * is positive definite, we get 
either 

xa(xx*)m/2 = 0 or xa(xx*)m~l/2x - 0 

according as m is even or odd. A repeated application of this argument 
leads to xax = 0. 

Now let x, y G R be such that xy = 0. For all r e R, (yrx)2 = 0 so 

jrx<2yrx = 0; 

this says that xayR is a nil right ideal of R of bounded exponent. Since R is 
prime we get, by a result of Levitzki, that xay = 0. We have proved 
that 
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H+ c T = {a e R\xy = 0 implies xay = 0}. 

We remark that T is a subring of i? such that 

(1 + JC)7X1 -f x ) _ 1 c T for all x e / ( * ) . 

Now, if T c Z, / / + c Z and we are done. On the other hand, since R is 
prime T cannot contain a non-zero ideal of R. Therefore by Lemma 9 we 
may assume that T n J(R) has non-zero nilpotent elements. Moreover, by 
the first part of the proof of Lemma 9 in [5] we know that all right 
annihilators in / = J(R) of elements of T are linearly ordered, that is, if a, 
b G T then either rj(a) c rj(b) or ry(6) c rj(a). Let x ^ 0 in T Pi J be 
such that x2 = 0. Since T* = T, then xx*, x*x <s T n J. Thus either 

r/(xx*) c r/(x*x) or r/(x*x) c r/(xx*). 

In either case xx*xx* = 0. Since * is positive definite we get x = 0, a 
contradiction. 

Suppose now that * is not positive definite. By [7, Theorem 2.2.1] either 
S c Z or S has non-zero nilpotent elements. If the first possibility occurs, 
we are done; therefore we may assume that there exists s e S such that s 
* 0 and s2 = 0. 

Let a <= Hp . By Lemma 8 there exists X = X* e C such that (a — À)3 

= 0 and we may clearly assume that X ^ 0. Let U = £/* be an ideal of i? 
such that 0 ¥= XlU c £, for / = 1, . . . , 4 (see [7, Lemma 2.4.1] ). Now, 
since R is prime 

v = u n /(#) ^ 0. 

If F Pi K = 0 then for all x G V, x = x* forcing V <z S. Take now x, y 
G V; we have: 

xy = (xy)* = 7*x* = yx. 

Thus F and so 7? is commutative. In this case there is nothing to prove. 
Therefore we may assume that V n K ¥= 0. Let k e V C\ K and set 

b = (a - X)2. 

The element c = (1 + k)~\ak — ka){\ — /c)_ 1 lies in i / + . Since also ècè 
G i/-+ and (beb)2 = 0, by Lemma 2, 6cZ> = 0. Similarly bc2b = 0 and so, 
the element be + cb ^ H+ is square zero. Lemma 2 then says that be + cZ? 
= 0, i.e., Z?c = —cb^K. Since (frc)2 = 0, by Lemma 3, Z?c2 = cbc\ on the 
other hand be = — c& implies c/>c = — Z?c2. Therefore c&c = 0. Now, since 
/ / + has no nilpotent elements, a repeated application of Lemma 4 forces 
either b = 0 or c = 0. 

If c = 0, then dfc = to, for all A: e F n l L e t x G V; x - x* <E 
F n f , hence 

a(x — x*) = (x — x*)a; 
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this says that ax — xa is a skew element of K, so, 

a (ax — xa) = (ax — xa)a. 

At this point it is not difficult to prove that a centralizes V and so, a is 
central in R. 

If b = 0, then (a — X)2 = 0 and by applying the argument above to the 
element a — À, we obtain a — X = 0 and so, a is central in R. 

Now, if char R = 0, / / + = / / 0 = Z and we are done. We may 
therefore assume that char R = p ¥= 0. In this case we have just seen that 
Z = Z(R) * 0. 

By localizing at Z — {0}, we obtain a prime ring R' with induced 
involution for which H(Rr) = H(R)Z-{0y For every a e H(R) + ,ap e Z; 
hence //(/?') consists of invertible elements. Moreover if /(/?') = 0, by 
Theorem 1, i / + c Z. 

By working with R' instead of R thus we may assume that 7/+ consists 
of invertible elements. 

Let a G H+ and A: G Â" O / ( £ ) . The element (1 4- k)~\ak - ka) 
(1 — /c)"1 lies in H+, hence, if non-zero, it is invertible. But (1 + k)~l 

(ak — ka)(\ — k)~l lies i n / ( ^ ) and no element ofJ(R) can be invertible. 
We must conclude ak — ka = 0, that is, a centralizes all skew elements in 
J(R). As before we deduce a central in R. 

LEMMA 11. If I = I* is an ideal of R such that H+ n I = 0 then H n / 
= 0. 

Proof. Let H~ = H C\ K. Since / = /* it is enough to show that 
H~ n / = 0. Let a e H~ n / . For all k G K with ^2 = 0, 

(1 + k)a(\ - k) G H~ n / and 

(1 - it)fl(l H- k) G / / " n /. 

Thus 2(tf/c - ka) <= H~ n I. Since 4(ûfc - A:a)2 and a2 lie in 7 / + n /, we 
obtain 

Aakaka = 4a (ak — ka)2 = 0. 

Therefore, since R is 2-torsion free, ak is a nilpotent element of R. 
Let now r ^ R and let m i^ 1 be an even integer such that 

a(ra — ar*)m = (ra — ar*)ma. 

Since a2 = 0, a(ra)m = (ar*)ma G K and, as in proof of Lemma 2, we 
deduce that axaya — ayaxa is a generalized polynomial identity for R. As 
in [2, Proposition 6] there exists a *-closed prime subring i?0 containing a, 
which is an order in 2 X 2 matrices over a field F. Clearly 

a G H(R0) c H(F2). 
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Moreover, since ak is nilpotent for every square-zero skew in R, this 
property still holds in R0, and so in F2. 

Now, if * is of transpose type, by Remark 3, H(F2) = F forcing a = 0. 
On the other hand, if * is symplectic, by the proof of Proposition 9 in [2], 
a = 0 follows. With this the lemma is proved. 

We are now in a position to prove our main theorem. 

THEOREM 4. Let R be a prime ring with involution with characteristic not 2 
or 3. If R has no non-zero nil right ideals and S <£. Z then H = Z. 

Proof Suppose S <£ Z. If Z n S = 0, then Lemma 10 implies H+ = 0 
and, by Lemma 11, H = 0 follows. Suppose now that Z Pi S ^ 0. By 
localizing at Z — {0}, we may clearly assume that R is a prime ring whose 
center is a field. Moreover, if / is the Jacobson radical of R, by Theorem 1, 
we may also assume that J ¥= 0. 

Since H+ n J consists of invertible elements, we must have i / + C\ J = 
0 and, by Lemma 11, H Pi J = 0. Now, K n J = 0 implies that / , and so 
R, is commutative. Thus we may assume that K n / ¥= 0. Let k G K PI / 
and x G H; then 

(1 4- k)~\xk - kx){\ - k)~] G H P / = 0 

forcing xk = kx; thus H centralizes all skew elements in / . As in the proof 
of Lemma 10, this implies that H centralizes / forcing H c Z. 
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