# ON THE SYMMETRIC HYPERCENTER OF A RING 

A. GIAMBRUNO

The hypercenter theorem [6] asserts that in a ring with no non-zero nil ideals an element commuting with a suitable power of each element of the ring must be central. In this paper we shall be concerned with a similar problem in the setting of rings with involution. Let $R$ be a ring with involution *, let $Z$ denote the center of $R$ and let $S=\left\{x \in R \mid x=x^{*}\right\}$ be the set of symmetric elements in $R$. We define the symmetric hypercenter of $R$ to be

$$
H=\left\{a \in R \mid a s^{n}=s^{n} a, n=n(a, s) \geqq 1, \text { all } s \in S\right\} .
$$

What can one hope to say about $H$ ? That $H$ need not equal $Z$ is clear. For instance, in the ring $R=F_{2}$ of $2 \times 2$ matrices over a field, if $*$ is the symplectic involution, all symmetric elements are central, hence $H=R$ but $Z \neq R$. Furthermore if $R$ is a noncommutative ring in which every symmetric element is nilpotent then even in this case $H=R$ and $Z \neq R$ follows.

Suppose that $R$ is a prime ring with characteristic not 2 or 3 . Here we will show that if $R$ has no non-zero nil right ideals and $S \not \subset Z$, then $H=Z$ follows.

The symmetric hypercenter was first studied in [4]; there the authors proved that if $R$ is a division ring then $H \cap S=Z \cap S$ provided $x x^{*} \notin Z$ for some $x \in R$. Another result about $H$ is Theorem 1 in [10] which reads as follows: if the exponent $n(a, s)=n$ is independent of $s$ and if $R$ is a 2, 3-torsion free semiprime ring, then $H \cap S=Z \cap S$.

It is natural to ask if our result remains valid if one replaces the assumption "with no nil right ideals" by its two-sided version "with no nil ideals". If this were the case, then one would have a positive answer to the following question due to McCrimmon [7, p. 83]: let $R$ be a ring with involution such that all symmetric elements are nilpotent; is $R$ itself necessarily nil? (see [1] ).
Finally we remark that if char $R=3$, then the conclusion of our result is no more true: in fact, let $R=(G F(3))_{2}$ with the involution

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{*}=\left(\begin{array}{ll}
a & 2 c \\
2 b & d
\end{array}\right) .
$$

[^0]In this ring $S \not \subset Z$ and $H$ coincides with the set of diagonal matrices; hence $H \neq Z$.

Throughout the paper $R$ will denote a ring with involution * which is 2 and 3 torsion free, $S$ will be the set of symmetric elements of $R, K$ the set of skew elements of $R$, and $Z=Z(R)$ the center of $R . H=H(R)$ will denote the symmetric hypercenter of $R$ and $H^{+}=H \cap S$.

We recall that if $x$ is a quasi-regular element of $R$ with quasi-inverse $x^{*}$ (i.e., $x+x^{*}+x x^{*}=0$ ) then $x$ is called quasi-unitary. If $R$ has a unity, then clearly $x$ is quasi-unitary if and only if $1+x$ is unitary.

For a quasi-unitary element $x$ the map

$$
\Psi_{x}: y \rightarrow y+x y+y x^{*}+x y x^{*}
$$

is an automorphism of $R$ which preserves $S$ and $K$ and leaves the elements in $Z$ invariant. Moreover, it is easy to establish the following remark:

Remark 1. For all quasi-unitary elements $x \in R, \Psi_{x}(H) \subset H$.
As a special case of Remark 1 that will be used later we have the
Remark 2. For all quasi-regular skew elements $k, 2 k(1-k)^{-1}$ is quasi-unitary and

$$
(1-k)^{-1}(a k-k a)(1+k)^{-1} \in H
$$

for all $a \in H$.
The invariant property of $H$ can be exploited for $R$ a simple artinian ring viewed as $n \times n$ matrices over a division ring. We have

Remark 3. Let $R$ be a simple artinian ring. If $S \not \subset Z$ then $H=Z$.
Proof. Let $R=D_{n}$, where $D$ is a division ring. If * is symplectic then, as in [3, Section 6], we get the desired conclusion. Suppose that ${ }^{*}$ is of transpose type. Let $e_{i j} \quad(i, j=1, \ldots, n)$ be the usual matrix units. Since $H$ centralizes all symmetric idempotents, $H$ centralizes $e_{i i}$, for all $i$; hence $H$ consists of diagonal matrices. If $D$ has more than 5 elements then, by [3, Theorem 2 and Theorem 6], $H=Z$ and we are done in this case. If $D=$ $G F(5)$, then $R=(G F(5))_{n}$ is a finite ring, $H=H^{+}$and by [10] $H=$ $Z$.

Knowing the result for simple artinian rings, we follow the usual pattern of structure theory by proving the result for semisimple rings. We first need a lemma.

Lemma 1. If $R$ is a primitive ring and $H \not \subset Z$ then $R$ has a minimal right ideal.

Proof. $R$ is a dense ring of linear transformations on a vector space $V$ over a division ring $D$. If $\operatorname{dim}_{D} V<\infty$ then $R$ has a minimal right ideal. Therefore we may assume that $\operatorname{dim}_{D} V=\infty$.

Let $a \in H, a \notin Z$. By the proof of Lemma 2 in [6], there exists $v \in V$ such that $v$ and $v a$ are linearly independent over $D$.

Suppose first that for all $w \notin D v$

$$
\begin{equation*}
w(S \cap(0: v)) \not \subset D v+D w, \tag{1}
\end{equation*}
$$

where $(0: v)=\{x \in R \mid v x=0\}$.
Since $v a \notin D v$, from (1) we get

$$
\text { vas } \notin D v+D v a, \quad \text { for all } s \in S \cap(0: v) .
$$

Now, since vas $\notin D v$, again from (1) we get vas $^{2} \notin D v+D v a s$. A repeated application of this argument leads to

$$
\text { vas }^{n} \notin D v+D \text { vas }^{n-1}, \text { for all } n \geqq 1
$$

But if $m$ is such that $a s^{m}=s^{m} a$, then

$$
v a s^{m}=v s^{m} a=0
$$

a contradiction. Therefore there exists $w \notin D v$ such that

$$
w(S \cap(0: v)) \subset D v+D w .
$$

If $D v+D w=V$, then $V$ is finite dimensional and we are done. Hence there exists $x \in R, x \neq 0$, such that $x \in(0: v) \cap(0: w)$. Moreover, by the density theorem there exists $y \in(0: v)$ such that $w y \neq 0$. If $r \in R$, the element $c=x r y^{*}+y r^{*} x^{*}$ lies in $(0: v) \cap S$; hence

$$
w c=w y r^{*} x^{*} \in D v+D w, \quad \text { for all } r \in R .
$$

Since $w y R=V$, then $V x^{*} \subset D v+D w$ so that $x^{*}$ induces a linear transformation of finite rank. By [9, Theorem p. 75] $R$ has a minimal right ideal.

Theorem 1. Let $R$ be a prime semisimple ring. If $S \not \subset Z$ then $H=Z$.
Proof. Suppose first that $R$ is primitive and $S \not \subset Z$. If $H \not \subset Z$, by Lemma $1 R$ has a minimal right ideal. This says that $R$ is a ring of linear transformations on a vector space $V$ over a division ring $D$, which space is equipped with a Hermitian or alternate form such that the elements of $R$ are continuous with respect to this form (e.g., have adjoints); furthermore $R$ contains all linear transformations of finite rank and the ${ }^{*}$ of $R$ is the adjoint relative to this form.

Since $H \not \subset Z$ there exists $a \in H, a \notin Z$. As in the proof of Lemma 2 in [6] there exists $v \in V$ such that $v$ and $v a$ are linearly independent over D.

Suppose that the form (,) is Hermitian and let $W$ be a finite dimensional non-degenerate subspace of $V$ containing both $v, v a$; then we may find an orthogonal basis $\left\{w_{1}, \ldots, w_{n}\right\}$ for $W$; that is $\left(w_{i}, w_{j}\right)=\delta_{i j} d_{j}$ where $0 \neq d_{j}$ $=d_{j}^{*} \in D, j=1, \ldots, n$. If $W^{\perp}$ is the orthogonal complement of $W$,
then $V=W \oplus W^{\perp}$. Now, every matrix $A=\left(\alpha_{i j}\right) \in D_{n}$ induces a linear transformation $T_{A}$ on $V$ as follows: $T_{A}\left(w_{i}\right)=\sum \alpha_{i j} w_{j} \quad(i=1, \ldots, n)$ and $T_{A}(w)=0$ for $w \in W^{\perp}$. Since $T_{A}$ is a linear transformation of finite rank, $T_{A} \in R$ and so, $R$ contains the subring

$$
R^{(n)}=\left\{T_{A} \mid A \in D_{n}\right\} \simeq D_{n} .
$$

Moreover the adjoint is an involution on $D_{n}$ of transpose type.
Let

$$
w_{i} a=\sum \alpha_{i j} w_{j}+w_{i}^{\prime} \quad(i=1, \ldots, n)
$$

where $\alpha_{i j} \in D$ and $w_{i}^{\prime} \in W^{\perp}$, and let $\bar{a}=\left(\alpha_{i j}\right)$. Then $T_{\bar{a}} \in R^{(n)}$ and, since $a \in H$, it is easy to prove that $T_{\bar{a}} \in H\left(R^{(n)}\right)$ where $H\left(R^{(n)}\right)$ is the symmetric hypercenter of $R^{(n)}$. By Remark 3, since * is of transpose type, $T_{\bar{a}}$ is central in $R^{(n)}$; thus

$$
\bar{a}=\left(\begin{array}{llll}
\lambda & & & 0 \\
& \lambda & & \\
& \ddots & \ddots
\end{array}\right)
$$

for a suitable $\lambda$ in the center of $D$. Now, since $v, v a \in W$ we get $v a=\lambda v$, and this is a contradiction. The alternate case is proved similarly.

We have proved that if $R$ is primitive and $S \not \subset Z$ then $H=Z$.
Let now $R$ be a prime semisimple ring and suppose that $S \not \subset Z$. It is well known that a semisimple ring is a subdirect product of primitive rings $R_{\alpha}$; moreover, since $R$ is 2 and 3 torsion free, we may assume that the homomorphic images $R_{\alpha}$ are still of characteristic different from 2 and 3. For every $\alpha$, let $P_{\alpha}$ be a primitive ideal of $R$ such that $R_{\alpha} \simeq R / P_{\alpha}$. Let

$$
\mathscr{F}=\left\{P_{\alpha} \mid P_{\alpha}^{*} \subset P_{\alpha} \text { and } S\left(R / P_{\alpha}\right) \subset Z\left(R / P_{\alpha}\right)\right\}
$$

where $S\left(R / P_{\alpha}\right)$ are the symmetric elements of $R / P_{\alpha}$, and set

$$
A=\cap_{P_{\alpha} \in \mathscr{F}}^{\cap} P_{\alpha} \quad \text { and } \quad B=\bigcap_{P_{\alpha} \notin \mathscr{F}}^{\cap} P_{\alpha} .
$$

Since $R$ is prime and $A B \subset A \cap B=0$, we must have either $A=0$ or $B$ $=0$. If $A=0$, then $S=S(R) \subset Z(R)$, a contradiction. Thus $B=0$, and so $R$ is a subdirect product of primitive rings $R / P_{\alpha}$ where either

```
P*
```

If $P_{\alpha}^{*} \not \subset P_{\alpha}$, then $I=P_{\alpha}+P_{\alpha}^{*} / P_{\alpha}$ is a non-zero ideal of $R / P_{\alpha}$ and for all $x+P_{\alpha} \in I$,

$$
x+P_{\alpha}=x+x^{*}+P_{\alpha}
$$

as a consequence, if $a \in H$, then

$$
\left(a+P_{\alpha}\right)\left(x+P_{\alpha}\right)^{m}=\left(x+P_{\alpha}\right)^{m}\left(a+P_{\alpha}\right),
$$

for a suitable $m \geqq 1$. By [6, Lemma 2] or its proof, it follows that $a+P_{\alpha}$ centralizes $I$. Therefore $a+P_{\alpha} \in Z\left(R / P_{\alpha}\right)$, the center of $R / P_{\alpha}$.

If $P_{\alpha}^{*} \subset P_{\alpha}$, then $R / P_{\alpha}$ is a primitive ring with induced involution *. Moreover $H=H(R)$ maps into the symmetric hypercenter $H\left(R / P_{\alpha}\right)$ of $R / P_{\alpha}$. By the first part of the proof, since $S \not \subset Z\left(R / P_{\alpha}\right)$,

$$
H\left(R / P_{\alpha}\right)=Z\left(R / P_{\alpha}\right)
$$

Therefore we have proved that $H\left(R / P_{\alpha}\right) \subset Z\left(R / P_{\alpha}\right)$, for all $\alpha$, and this forces the desired conclusion $H \subset Z$.

We continue the study of $H$ with the following
Theorem 2. If $R$ is a domain then $H^{+} \subset Z$.
Proof. Let $a \in H^{+}$and $s \in S$. If $R^{\prime}$ is the subring generated by $a$ and $s$ then $R^{\prime}$ is still a domain with involution *.
Let $C_{R^{\prime}}(s)=\left\{x \in R^{\prime} \mid x s=s x\right\}$ be the centralizer of $s$ in $R^{\prime} . \quad C_{R^{\prime}}(s)$ is a domain stable under *; moreover, since $a \in H$, for every $t=t^{*} \in C_{R^{\prime}}(s)$ there exists $m=m(a, s) \geqq 1$ such that

$$
t^{m} \in C_{R^{\prime}}(s) \cap C_{R^{\prime}}(a) \subset Z\left(C_{R^{\prime}}(s)\right)
$$

By [1, Theorem 4] $C_{R^{\prime}}(s)$ satisfies $S_{4}$, the standard identity in four variables. Now, since for a suitable integer $n, s^{n} \in Z\left(R^{\prime}\right)$, by [11, Theorem 2], $R^{\prime}$ satisfies a polynomial identity. Hence $R^{\prime}$ is an order in a division ring $D \simeq R^{\prime} \otimes_{Z\left(R^{\prime}\right)} F$ where $F$ is the field of fractions of $Z\left(R^{\prime}\right)$ (see Theorem 1.4.3 in [7]). Moreover under the induced involution the symmetric elements of $D$ are of the form $b z^{-1}$ where $b \in S \cap R^{\prime}$ and $z \in$ $Z\left(R^{\prime}\right) \cap S$. The outcome of this is that $H\left(R^{\prime}\right)^{+} \subset H(D)^{+}$; hence, if $S \not \subset$ $Z(D)$, by [4, Lemma 6], $H\left(R^{\prime}\right)^{+} \subset Z(D)$. In any case $a s=s a$ and by [7, Theorem 2.1.5.], $a \in Z(R)$ follows.

We now prove a technical result which holds in arbitrary rings, namely

Theorem 3. Let A be a ring with no non-zero nil right ideals. Suppose that for every positive integer $n$ and for every choice of $a_{1}, a_{2}, \ldots, a_{n} \in A$ there exist positive integers $m_{1}=m_{1}\left(a_{1}\right), \ldots, m_{n}=m_{n}\left(a_{n}\right), t=t\left(a_{1}, \ldots, a_{n}\right)$ such that

$$
\left(a_{1}^{m_{1}} a_{2}^{m_{2}} \ldots a_{n}^{m_{n}}\right)^{t}=\left(a_{n}^{m_{n}} \ldots a_{2}^{m_{2}} a_{1}^{m_{1}}\right)^{t} .
$$

Then $A$ is commutative.
Proof. First we remark that if $a_{1}, \ldots, a_{n} \in A$, for every non empty subset $\left\{i_{1}, \ldots, i_{k}\right\}$ of $\{1, \ldots, n\}$ we may take

$$
m_{i_{1}}=\ldots=m_{i_{k}}=m \quad \text { where } m=m\left(a_{i_{1}}, \ldots, a_{i_{n}}\right) .
$$

If $A$ is a division ring, let $a, b \in A$ and $m=m(a, b), t=t(a, b)$ such that

$$
\left(a^{m} b^{m} a^{-m}\right)^{t}=\left(a^{-m} b^{m} a^{m}\right)^{t} .
$$

It follows that

$$
a^{m} b^{m t} a^{-m}=a^{-m} b^{m t} a^{m}
$$

and so,

$$
a^{2 m} b^{m t}=b^{m t} a^{2 m}
$$

By [ $\mathbf{8}$, Theorem], $A$ is commutative.
The commutativity condition imposed on $A$ goes through when passing to subrings or to homomorphic images; therefore, in order to prove the theorem for a semisimple ring, using standard structure theory, it is enough to do so for $n \times n$ matrices over a division ring. Suppose $n>1$. For $e_{i j}$ the usual matrix units, let $a=e_{11}, b=e_{11}+e_{12}$. Then, for all $m \geqq$ $1, a^{m} b^{m}=b$ and $b^{m} a^{m}=a$; hence, if $t$ is any positive integer,

$$
\left(a^{m} b^{m}\right)^{t}=b \neq a=\left(b^{m} a^{m}\right)^{t} .
$$

Thus $n=1$ and by the division ring case the theorem is proved in case $A$ is semisimple.

In the general case, let $a \in A$ be such that $a^{2}=0$. If $x \in A$, let $n=$ $n(a, x), t=t(a, x)$ be such that

$$
\left(((1+a) a x(1-a))^{n}(a x)^{n}\right)^{t}=\left((a x)^{n}((1+a) a x(1-a))^{n}\right)^{t} .
$$

Recalling that $1-a=(1+a)^{-1}$, we get

$$
\left((1+a)(a x)^{n}(1-a)(a x)^{n}\right)^{t}=\left((a x)^{n}(1+a)(a x)^{n}(1-a)\right)^{t}
$$

and, since $a^{2}=0$,

$$
(a x)^{2 n t}=\left((a x)^{2 n}-(a x)^{2 n} a\right)^{t}
$$

From this last equality it follows that $(a x)^{2 n t} a=0$. Therefore, $a A$ is a nil right ideal of $A$. By the hypothesis placed on $A$, it follows that $a=0$. We have shown that $A$ has no non-zero nilpotent elements. Since any such ring is a subdirect product of domains (see [7, Theorem 1.1.1]), we may assume $A$ to be a domain.

Let now $a, b \in A$ non-zero and $n=n(a), m=m(b), t=t(a, b)$ such that

$$
\left(a^{n} b^{m}\right)^{t}=\left(b^{m} a^{n}\right)^{t}
$$

We call $A_{0}$ the subring generated by $a^{n}$ and $b^{m}$ and we remark that in order to complete the proof of the theorem, it is enough to prove that $A_{0}$ is commutative. In fact, if this is the case, by [8, Theorem] $A$ will be commutative.

Now, $Z\left(A_{0}\right) \neq 0$, in fact, from

$$
\begin{aligned}
& a^{n}\left(a^{n} b^{m}\right)^{t}=a^{n}\left(b^{m} a^{n}\right)^{t}=\left(a^{n} b^{m}\right)^{t} a^{n} \text { and } \\
& b^{m}\left(a^{n} b^{m}\right)^{t}=\left(b^{m} a^{n}\right)^{t} b^{m}=\left(a^{n} b^{m}\right)^{t} b^{m}
\end{aligned}
$$

it follows that $\left(a^{n} b^{m}\right)^{t}$ commutes with $a^{n}$ and $b^{m}$; hence

$$
0 \neq\left(a^{n} b^{m}\right)^{t} \in Z\left(A_{0}\right)
$$

Let $A_{1}$ be the localization of $A_{0}$ at $Z\left(A_{0}\right)-\{0\} . A_{1}$ is still a domain whose center is a field; moreover $A_{1}$ satisfies all the hypotheses placed on $A$. Let $J$ be the Jacobson radical of $A_{1}$ and suppose $J \neq 0$. Let $0 \neq c \in J$ and $d \in A_{1}$. If $r=r(c), s=s(d), u=u(c, d)$ are such that

$$
\left((1+c)^{r} d^{s}(1+c)^{-r}\right)^{u}=\left((1+c)^{-r} d^{s}(1+c)\right)^{u}
$$

we get

$$
(1+c)^{r} d^{s u}(1+c)^{-r}=(1+c)^{-r} d^{s u}(1+c)^{r}
$$

and so,

$$
(1+c)^{2 r} d^{s u}=d^{s u}(1+c)^{2 r}
$$

By the hypercenter theorem, $(1+c)^{2 r} \in Z\left(A_{1}\right)$. Since $Z\left(A_{1}\right)$ is a field, it follows that $c$ is invertible in $A_{1}$, and this contradicts $c \in J$. Thus $A_{1}$ is semisimple and by the first part of the proof $A_{1}$ and so $A_{0}$ is commutative.

In the rest of the paper $R$ will be a prime ring with no non-zero nil right ideals. In this general setting, we start to study $\mathrm{H}^{+}$by investigating its zero divisors. The first result in this direction is given by the following:

Lemma 2. $H^{+}$has no non-zero nilpotent elements.
Proof. Let $a \in H^{+}$be such that $a^{2}=0$. If $x \in R$, $a x^{*}+x a$ is a symmetric element; let $m=m(a, x)$ be such that

$$
a\left(a x^{*}+x a\right)^{m}=\left(a x^{*}+x a\right)^{m} a
$$

Since $a^{2}=0$, we get $a(x a)^{m}=\left(a x^{*}\right)^{m} a$; thus $a(x a)^{m} \in S$.
For every positive integer $n$, let $x_{1}, \ldots, x_{n}$ be elements of $R$ and $m_{1}, \ldots, m_{n}$ the corresponding integers such that

$$
a\left(x_{1} a\right)^{m_{1}}, \ldots, a\left(x_{n} a\right)^{m_{n}} \in S .
$$

For a suitable integer $m=m\left(x_{1}, \ldots, x_{n}\right)$,

$$
a\left(\left(x_{1} a\right)^{m_{1}} \ldots\left(x_{n} a\right)^{m_{n}}\right)^{m} \in S .
$$

We have

$$
\begin{aligned}
& a\left(\left(x_{1} a\right)^{m_{1}} \ldots\left(x_{n} a\right)^{m_{n}}\right)^{m}=\left(\left(x_{1} a\right)^{m_{1}} \ldots\left(x_{n} a\right)^{m_{n}}\right)^{* m} a \\
& =\left(\left(a x_{n}^{*}\right)^{m_{n}} \ldots\left(a x_{1}^{*}\right)^{m_{1}}\right)^{m} a=\left(\left(a x_{n}\right)^{m_{n}} \ldots\left(a x_{1}\right)^{m_{1}}\right)^{m_{m}} a \\
& =a\left(\left(x_{n} a\right)^{m_{n}} \ldots\left(x_{1} a\right)^{m_{1}}\right)^{m} .
\end{aligned}
$$

Let now $R_{1}=R a / r_{R}(a) \cap R a$ where $r_{R}(a)=\{x \in R \mid a x=0\}$. Since $R$ has no non-zero nil right ideals, then $R_{1}$ has no non-zero nil right ideals; moreover the above equality says that $R_{1}$ satisfies the hypotheses of Theorem 3. Hence $R_{1}$ is commutative. This says that axaya - ayaxa is a generalized polynomial identity for $R$. By [ $\mathbf{2}$, Proposition 6] $R$ contains a *-closed prime subring $R_{0}$ containing $a$, which is an order in $2 \times 2$ matrices over a field $F$. Since

$$
H\left(R_{0}\right)^{+} \supset H(R)^{+} \cap R_{0}
$$

then $a \in H\left(R_{0}\right)^{+}$; moreover if $F_{2}$ is endowed with the involution induced by the one in $R_{0}$, then $a \in H\left(F_{2}\right)^{+}$. By Remark $3, a \in F$ and since $a^{2}=0$ we deduce $a=0$.

The invariance of $H$ and the conclusion of Lemma 2 together imply that $H^{+}$centralizes all square-zero skew elements. In fact we have the

Lemma 3. Let $a \in H^{+}$. If $k \in K$ is such that $k^{2}=0$ then $a k=k a$.
Proof. Since $k$ is a quasi-unitary element with quasi-inverse $-k$, then

$$
(1+k) a(1-k) \in H^{+} \quad \text { and } \quad(1-k) a(1+k) \in H^{+} .
$$

Since $R$ is 2 -torsion free we deduce that

$$
k a k \in H^{+} \quad \text { and } \quad k a-a k \in H^{+} .
$$

Since $(k a k)^{2}=0$, by Lemma 2 we must have $k a k=0$ giving

$$
(k a-a k)^{2}=0
$$

Again, by Lemma 2, $k a-a k=0$.
Let us denote by $C$ the extended centroid of $R$ and let $Q=R C$ stand for the central closure of $R$.

The next lemma gives us some information about the right annihilator of elements of $H^{+}$.

Lemma 4. Let $a=a^{*} \in Q$ be such that, for all $s \in S \cap R$, as $s^{m}=s^{m} a$ where $m=m(a, s) \geqq 1$ is an integer. If $t$ is a symmetric or skew element of $Q$ such that $t^{2}=0$ and at $=0$, then either $a^{3}=0$ or $t=0$.

Proof. Suppose $t \in S$ and let $U=U^{*}$ be an ideal of $R$ such that aUt $\subset$ $R$ and $a^{2} U t \subset R$. If $x \in U$, the element $k=a x t-t x^{*} a$ (if $t \in K, k=a x t$ $\left.+t x^{*} a\right)$ is a skew element of $R$; moreover $k^{3}=0$ and $(a k-k a)^{3}=0$. Since $k$ is a quasi-unitary element of $R$, the element

$$
b=(1+k)^{-1}(a k-k a)(1-k)^{-1}
$$

still commutes with suitable powers of elements of $S \cap R$. Moreover, since $b \in R, b \in H^{+}$. But

$$
\begin{aligned}
b^{2} & =(1+k)^{-1}(a k-k a)\left(1+k^{2}\right)(a k-k a)(1-k)^{-1} \\
& =(1+k)^{-1}(a k-k a)^{2}(1-k)^{-1}
\end{aligned}
$$

and

$$
b^{3}=(1+k)^{-1}(a k-k a)^{3}(1-k)^{-1}=0 .
$$

By Lemma 2 we must have $b=0$. Now

$$
0=a b=a^{3} x t
$$

i.e., $a^{3} U t=0$ and the primeness of $R$ proves the lemma.

At this stage we would like to prove that $H^{+}$centralizes all square-zero symmetric elements. Unfortunately this seems still out of hand. One step in this direction is the following:

Lemma 5. If $s \in S$ is such that $s^{2}=0$ then $s H^{+} s=0$.
Proof. Let $a \in H^{+}$. If $k$ is a skew element of $R$, then

$$
s k s \in K \quad \text { and } \quad(s k s)^{2}=0
$$

By Lemma 3 asks $=s k s a$ giving sasks $=0$. Let sas $=t$. For $x \in R, x-$ $x^{*} \in K$ and so,

$$
t\left(x-x^{*}\right) s=0
$$

this implies $t x s=t x^{*}$ s. Now, if $x, y \in R$

$$
t x t y s=t(x t y)^{*} s=t y^{*} t x^{*} s=t y t x s
$$

We have shown that for all $x, y \in R$
(2) txtys $=$ tytxs.

Moreover, taking * we also get
(3) $\quad$ sxtyt $=$ sytxt.

By [11, Lemma 3], if $t x t \neq 0$, there exists $\lambda=\lambda(x)$ in the extended centroid $C$ of $R$ such that $t x s=\lambda s$. Substituting in (3) (recall that $t=s a s$ ) we obtain

$$
(s x t-\lambda s) y t=0, \quad \text { for all } y \in R .
$$

Since $R$ is prime and $t \neq 0$ this forces $s x t=\lambda s=t x s$. Therefore, for all $x$ $\in R$, either $s x t=t x s$ or $t x t=0$. Since (2) holds and $R$ is prime, $t x t=0$ forces $t x s=0$ and so, $s x^{*} t=s x t=0$. We have proved that $s x t=t x s$, for all $x \in R$.

Now, if $t \neq 0$, by [11, Lemma 3], there exists $\mu \in C$ such that $t=\mu s$ and, recalling that $t K s=0$, we get $s K s=0$. By [2, Proposition 6] there exists a *-closed prime subring $R_{0}$ of $R$ containing $s$, and $R_{0}$ is an order in $f Q f \simeq C_{2}$, for some symmetric idempotent $f$ in $Q$.

First we claim that $a f=f a$. In fact, since $R_{0}$ satisfies a polynomial identity, by a theorem of Posner $f Q f \simeq R_{0} \otimes_{Z\left(R_{0}\right)} F$ where $F$ is the field of fractions of $Z\left(R_{0}\right)$. Moreover, under the induced involution, the symmetric elements of $f Q f$ are of the form $b z^{-1}$ with $b \in R_{0} \cap S$ and $z \in Z\left(R_{0}\right) \cap$ $S$. Thus, since $a \in H(R)^{+}$and $f=f^{2}=f^{*} \in f Q f$, we have that $a f=$ fa.

Notice that $a f=f a \in H(f Q f)^{+}$. In fact, let $b=b^{*} \in R_{0}$, and $m$ such that $a b^{m}=b^{m} a$. Since $b \in f Q f, b=f b=b f$; hence

$$
a f b^{m}=a b^{m}=b^{m} a=b^{m} f a=b^{m} a f .
$$

Since $R_{0}$ is an order in $f Q f$, by the remark made above, we get

$$
a f \in H(f Q f)^{+} .
$$

Being $f Q f \simeq C_{2}$ by Remark $3 a f$ and so, $a$ centralizes all elements in $f Q f$; hence $a s=s a$ and so, sas $=0$.

Let $p=$ char $R$. We now define a subset $H_{p}^{+}$of $H^{+}$which will play an important role in what follows. $H_{p}^{+}$is defined to be equal to $H^{+}$in case char $R=p=0$ and $H_{p}^{+}=\left\{a^{p} \mid a \in H^{+}\right\}$otherwise.

The next lemma tells us that $H_{p}^{+}$centralizes all square-zero symmetric elements.

Lemma 6. Let $a \in H_{p}^{+}$. If $s \in S$ is such that $s^{2}=0$ then $a s=s a$.
Proof. Let $b \in H^{+}$. Since, by Lemma $5, s H^{+} s=0$, $b s-s b$ is a square-zero skew element of $R$. Hence, by Lemma 3, $b$ commutes with $b s$ $-s b$. Now, if char $R=p \neq 0$, then $b^{p}=s b^{p}$ and we are done. In case char $R=0$ let $m$ be such that

$$
b(b+s)^{m}=(b+s)^{m} b .
$$

Since $s H^{+} s=0$ we get

$$
b\left(b^{m}+b^{m-1} s+\ldots+s b^{m-1}\right)=\left(b^{m}+b^{m-1} s+\ldots+s b^{m-1}\right) b .
$$

Hence $b^{m} s=s b^{m}$. Recalling that $b$ commutes with $b s-s b$, we obtain

$$
0=b^{m} s-s b^{m}=m b^{m-1}(b s-s b)
$$

Since char $R=0$ and $b$ is not nilpotent, it follows by Lemma 4 that $b s=$ $s b$.

A slight generalization of Lemma 6 is the following
Lemma 7. Let $a \in H_{p}^{+}$. If $x \in R$ is such that $x^{2}=x x^{*}=x^{*} x=0$ then $a x=x a$.

Proof. The conditions imposed on $x$ imply

$$
\left(x+x^{*}\right)^{2}=\left(x-x^{*}\right)^{2}=0 .
$$

By Lemma 3 and Lemma 6 we get

$$
a\left(x+x^{*}\right)=\left(x+x^{*}\right) a \quad \text { and } \quad a\left(x-x^{*}\right)=\left(x-x^{*}\right) a
$$

resulting in

$$
x^{*} a-a x^{*}=a x-x a=-x^{*} a+a x^{*} .
$$

Thus $a x-x a=0$.
We are now in a position to prove that the elements of $\mathrm{H}^{+}$are algebraic over the extended centroid provided the ring $R$ has non-zero symmetric nilpotent elements.

Lemma 8. If $R$ has non-zero symmetric nilpotent elements, then for all a $\in H_{p}^{+}$, there exists $\lambda=\lambda^{*} \in C$ such that $(a-\lambda)^{3}=0$.

Proof. Let $s \neq 0$ be a symmetric element of $R$ such that $s^{2}=0$. If $x \in R$ then $y=\operatorname{sxs}$ satisfies $y^{2}=y y^{*}=y^{*} y=0$ and so, by Lemma 7 asxs $=$ sxsa. By [11, Lemma 3] there exists $\lambda \in C$ such that $a s=\lambda s$ and, since $a s$ $=s a, \lambda=\lambda^{*}$ is symmetric. Therefore $(a-\lambda) s=0$ and by Lemma 4 $(a-\lambda)^{3}=0$, as wished.

Before proving our main result we need a lemma on invariant subrings whose proof is due to Herstein. If $B$ is a ring, let $J(B)$ denote the Jacobson radical of $B$.

Lemma 9. Let $B$ be a prime ring which is not a domain in which $J(B) \neq 0$. Suppose that $A$ is a subring of $B$ such that $(1+x) A(1+x)^{-1} \subset A$ for all $x$ $\in J(B)$. If $A \not \subset Z(B)$ and $A$ does not contain a non-zero ideal of $B$, then $A \cap J(B)$ has non-zero nilpotent elements.

Proof. We note first that $A_{1}=A \cap J(B) \neq 0$. In fact, if not, for $a \in A$ and $x \in J=J(B)$,

$$
\begin{array}{r}
(a x-x a)(1+x)^{-1}=(1+x) a(1+x)^{-1}-a \in A_{1} \text { implies } \\
(a x-x a)(1+x)^{-1}=0
\end{array}
$$

and so, $a x=x a$. Thus $A$ centralizes the non-zero ideal $J$ and by the primeness of $B, A \subset Z$.

Suppose first that no element of $A_{1}$ is a zero-divisor in $J$. Let $a \in A_{1}$ and let $x \in J, x \neq 0$, be a left zero-divisor in $J$. Then, from

$$
(a x-x a)(1+x)^{-1} \in A_{1} \quad \text { and } \quad(a a x-a x a)(1+a x)^{-1} \in A_{1}
$$

we get

$$
a(a x-x a)\left((1+x)^{-1}-(1+a x)^{-1}\right) \in A_{1}
$$

hence

$$
a(a x-x a)(1+x)^{-1}(1-a) x(1+a x)^{-1} \in A_{1} .
$$

Conjugating this last element by $1+a x$ we get

$$
c=(1+a x)^{-1} a(a x-x a)(1+x)^{-1}(1-a) x \in A_{1} .
$$

Now, $c$ is a left zero-divisor in $J$ since $x$ is; thus

$$
a(a x-x a)(1+x)^{-1}(1-a) x=0
$$

From $(1-a) x \neq 0$ and $a(a x-x a)(1+x)^{-1} \in A_{1}$ we then get

$$
a(a x-x a)(1+x)^{-1}=0
$$

This implies $a(a x-x a)=0$ and so, $a x-x a=0$. We have shown that $a$ centralizes all left zero divisors in $J$. Notice that if $x \in J$ is a left zero-divisor, so is every element in the left ideal $J x$. Therefore $a$ centralizes $J x$ forcing $a \in Z$. We have proved that $A_{1} \subset Z$. This easily leads to the contradiction $A \subset Z$.

Therefore there exists $0 \neq a \in A_{1}$ which is a zero-divisor in $J$. Let $0 \neq$ $x \in J$, with $a x=0$. For all $r \in B$,

$$
x r a=(a x r-x r a)(1+x r)^{-1} \in A_{1} \quad \text { and } \quad(x r a)^{2}=0 .
$$

Since $B$ is prime, xra $\neq 0$ for some $r \in B$. This establishes the lemma.
Putting all the pieces together we can now prove that $H^{+} \subset Z$.
Lemma 10. $H^{+} \subset Z$.
Proof. By Theorem 1 we may assume that the Jacobson radical $J(R)$ of $R$ is non-zero. Suppose first that the involution is positive definite in $R$, i.e., $x x^{*}=0$ implies $x=0$.

If $R$ is a domain, by Theorem 2 we are done; hence, we may assume that $R$ has non-zero nilpotent elements. Let $x \in R$ be such that $x^{2}=0$. If $a \in$ $H^{+}$let $m$ be such that

$$
a\left(x x^{*}\right)^{m}=\left(x x^{*}\right)^{m} a
$$

then $x^{2}=0$ implies $x a\left(x x^{*}\right)^{m}=0$. Since * is positive definite, we get either

$$
x a\left(x x^{*}\right)^{m / 2}=0 \quad \text { or } \quad x a\left(x x^{*}\right)^{m-1 / 2} x=0
$$

according as $m$ is even or odd. A repeated application of this argument leads to $x a x=0$.

Now let $x, y \in R$ be such that $x y=0$. For all $r \in R,(y r x)^{2}=0$ so

$$
\text { yrxayrx }=0 ;
$$

this says that $x a y R$ is a nil right ideal of $R$ of bounded exponent. Since $R$ is prime we get, by a result of Levitzki, that xay $=0$. We have proved that

$$
H^{+} \subset T=\{a \in R \mid x y=0 \text { implies } x a y=0\} .
$$

We remark that $T$ is a subring of $R$ such that

$$
(1+x) T(1+x)^{-1} \subset T \text { for all } x \in J(R)
$$

Now, if $T \subset Z, H^{+} \subset Z$ and we are done. On the other hand, since $R$ is prime $T$ cannot contain a non-zero ideal of $R$. Therefore by Lemma 9 we may assume that $T \cap J(R)$ has non-zero nilpotent elements. Moreover, by the first part of the proof of Lemma 9 in [5] we know that all right annihilators in $J=J(R)$ of elements of $T$ are linearly ordered, that is, if $a$, $b \in T$ then either $r_{J}(a) \subset r_{J}(b)$ or $r_{J}(b) \subset r_{J}(a)$. Let $x \neq 0$ in $T \cap J$ be such that $x^{2}=0$. Since $T^{*}=T$, then $x x^{*}, x^{*} x \in T \cap J$. Thus either

$$
r_{J}\left(x x^{*}\right) \subset r_{J}\left(x^{*} x\right) \quad \text { or } \quad r_{J}\left(x^{*} x\right) \subset r_{J}\left(x x^{*}\right) .
$$

In either case $x x^{*} x x^{*}=0$. Since ${ }^{*}$ is positive definite we get $x=0$, a contradiction.

Suppose now that * is not positive definite. By [7, Theorem 2.2.1] either $S \subset Z$ or $S$ has non-zero nilpotent elements. If the first possibility occurs, we are done; therefore we may assume that there exists $s \in S$ such that $s$ $\neq 0$ and $s^{2}=0$.

Let $a \in H_{p}^{+}$. By Lemma 8 there exists $\lambda=\lambda^{*} \in C$ such that $(a-\lambda)^{3}$ $=0$ and we may clearly assume that $\lambda \neq 0$. Let $U=U^{*}$ be an ideal of $R$ such that $0 \neq \lambda^{i} U \subset R$, for $i=1, \ldots, 4$ (see [7, Lemma 2.4.1]). Now, since $R$ is prime

$$
V=U \cap J(R) \neq 0
$$

If $V \cap K=0$ then for all $x \in V, x=x^{*}$ forcing $V \subset S$. Take now $x, y$ $\in V$; we have:

$$
x y=(x y)^{*}=y^{*} x^{*}=y x .
$$

Thus $V$ and so $R$ is commutative. In this case there is nothing to prove.
Therefore we may assume that $V \cap K \neq 0$. Let $k \in V \cap K$ and set

$$
b=(a-\lambda)^{2}
$$

The element $c=(1+k)^{-1}(a k-k a)(1-k)^{-1}$ lies in $H^{+}$. Since also $b c b$ $\in H^{+}$and $(b c b)^{2}=0$, by Lemma $2, b c b=0$. Similarly $b c^{2} b=0$ and so, the element $b c+c b \in H^{+}$is square zero. Lemma 2 then says that $b c+c b$ $=0$, i.e., $b c=-c b \in K$. Since $(b c)^{2}=0$, by Lemma 3, $b c^{2}=c b c$; on the other hand $b c=-c b$ implies $c b c=-b c^{2}$. Therefore $c b c=0$. Now, since $H^{+}$has no nilpotent elements, a repeated application of Lemma 4 forces either $b=0$ or $c=0$.

If $c=0$, then $a k=k a$, for all $k \in V \cap K$. Let $x \in V ; x-x^{*} \in$ $V \cap K$, hence

$$
a\left(x-x^{*}\right)=\left(x-x^{*}\right) a ;
$$

this says that $a x-x a$ is a skew element of $V$, so,

$$
a(a x-x a)=(a x-x a) a .
$$

At this point it is not difficult to prove that $a$ centralizes $V$ and so, $a$ is central in $R$.

If $b=0$, then $(a-\lambda)^{2}=0$ and by applying the argument above to the element $a-\lambda$, we obtain $a-\lambda=0$ and so, $a$ is central in $R$.

Now, if char $R=0, H^{+}=H_{0}^{+}=Z$ and we are done. We may therefore assume that char $R=p \neq 0$. In this case we have just seen that $Z=Z(R) \neq 0$.

By localizing at $Z^{-}-\{0\}$, we obtain a prime ring $R^{\prime}$ with induced involution for which $H\left(R^{\prime}\right)=H(R)_{Z-\{0\}}$. For every $a \in H(R)^{+}, a^{p} \in Z$; hence $H\left(R^{\prime}\right)$ consists of invertible elements. Moreover if $J\left(R^{\prime}\right)=0$, by Theorem $1, H^{+} \subset Z$.

By working with $R^{\prime}$ instead of $R$ thus we may assume that $H^{+}$consists of invertible elements.

Let $a \in H^{+}$and $k \in K \cap J(R)$. The element $(1+k)^{-1}(a k-k a)$ $(1-k)^{-1}$ lies in $H^{+}$, hence, if non-zero, it is invertible. But $(1+k)^{-1}$ $(a k-k a)(1-k)^{-1}$ lies in $J(R)$ and no element of $J(R)$ can be invertible. We must conclude $a k-k a=0$, that is, $a$ centralizes all skew elements in $J(R)$. As before we deduce $a$ central in $R$.

Lemma 11. If $I=I^{*}$ is an ideal of $R$ such that $H^{+} \cap I=0$ then $H \cap I$ $=0$.

Proof. Let $H^{-}=H \cap K$. Since $I=I^{*}$ it is enough to show that $H^{-} \cap I=0$. Let $a \in H^{-} \cap I$. For all $k \in K$ with $k^{2}=0$,

$$
(1+k) a(1-k) \in H^{-} \cap I \text { and }
$$

$$
(1-k) a(1+k) \in H^{-} \cap I .
$$

Thus $2(a k-k a) \in H^{-} \cap I$. Since $4(a k-k a)^{2}$ and $a^{2}$ lie in $H^{+} \cap I$, we obtain

$$
4 a k a k a=4 a(a k-k a)^{2}=0
$$

Therefore, since $R$ is 2 -torsion free, $a k$ is a nilpotent element of $R$.
Let now $r \in R$ and let $m \geqq 1$ be an even integer such that

$$
a\left(r a-a r^{*}\right)^{m}=\left(r a-a r^{*}\right)^{m} a .
$$

Since $a^{2}=0, a(r a)^{m}=\left(a r^{*}\right)^{m} a \in K$ and, as in proof of Lemma 2, we deduce that axaya - ayaxa is a generalized polynomial identity for $R$. As in [2, Proposition 6] there exists a ${ }^{*}$-closed prime subring $R_{o}$ containing $a$, which is an order in $2 \times 2$ matrices over a field $F$. Clearly

$$
a \in H\left(R_{o}\right) \subset H\left(F_{2}\right) .
$$

Moreover, since $a k$ is nilpotent for every square-zero skew in $R$, this property still holds in $R_{o}$, and so in $F_{2}$.

Now, if * is of transpose type, by Remark $3, H\left(F_{2}\right)=F$ forcing $a=0$. On the other hand, if * is symplectic, by the proof of Proposition 9 in [2], $a=0$ follows. With this the lemma is proved.

We are now in a position to prove our main theorem.
Theorem 4. Let $R$ be a prime ring with involution with characteristic not 2 or 3. If $R$ has no non-zero nil right ideals and $S \not \subset Z$ then $H=Z$.

Proof. Suppose $S \not \subset Z$. If $Z \cap S=0$, then Lemma 10 implies $H^{+}=0$ and, by Lemma 11, $H=0$ follows. Suppose now that $Z \cap S \neq 0$. By localizing at $Z-\{0\}$, we may clearly assume that $R$ is a prime ring whose center is a field. Moreover, if $J$ is the Jacobson radical of $R$, by Theorem 1, we may also assume that $J \neq 0$.

Since $H^{+} \cap J$ consists of invertible elements, we must have $H^{+} \cap J=$ 0 and, by Lemma 11, $H \cap J=0$. Now, $K \cap J=0$ implies that $J$, and so $R$, is commutative. Thus we may assume that $K \cap J \neq 0$. Let $k \in K \cap J$ and $x \in H$; then

$$
(1+k)^{-1}(x k-k x)(1-k)^{-1} \in H \cap J=0
$$

forcing $x k=k x$; thus $H$ centralizes all skew elements in $J$. As in the proof of Lemma 10, this implies that $H$ centralizes $J$ forcing $H \subset Z$.

## References

1. M. Chacron, A generalization of a theorem of Kaplansky and rings with involution, Mich. Math. J. 20 (1973), 45-53.
2. $A$ commutativity theorem for rings with involution, Can. J. Math. 30 (1978), 1121-1143.
3. -_Unitaries in simple artinian rings, Can. J. Math. 31 (1979), 542-557.
4. M. Chacron and I. N. Herstein, Powers of skew and symmetric elements in division rings, Houston J. Math. 1 (1975), 15-27.
5. B. Felzenszwalb and A. Giambruno, Centralizers and multilinear polynomials in noncommutative rings, J. London Math. Soc. 19 (1979), 417-428.
6. I. N. Herstein, On the hypercenter of a ring, J. Algebra 36 (1975), 151-157.
7.     - Rings with involution (U. of Chicago Press, Chicago, 1976).
8. ——A commutativity theorem, J. Algebra 38 (1976), 112-118.
9. N. Jacobson, Structure of rings, Amer. Math. Soc. Coll. Publ. 37 (1976).
10. P. Misso, Commutativity conditions on rings with involution, Can. J. Math. 34 (1982), 17-22.
11. M. Smith, Rings with an integral element whose centralizer satisfies a polynomial identity, Duke Math. J. 42 (1975), 137-149.

Università di Palermo, Palermo, Italy


[^0]:    Received January 7, 1982 and in revised form January 5, 1983. This research was supported by R.S. $40 \%$ at the University of Palermo.

