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Abstract

We describe the J-invariant of a semisimple algebraic group G over a generic split-
ting field of a Tits algebra of G in terms of the J-invariant over the base field. As a
consequence we prove a 10-year-old conjecture of Quéguiner-Mathieu, Semenov, and
Zainoulline on the J-invariant of groups of type Dn. In the case of type Dn we also
provide explicit formulas for the first component and in some cases for the second
component of the J-invariant.

1. Introduction

Chow motives were introduced by Grothendieck, and since then they have become a fundamental
tool for investigating the structure of algebraic varieties. The study of Chow motives and motivic
decompositions has several outstanding applications to other topics. For example, Voevodsky’s
proof of the Milnor conjecture relied on Rost’s computation of the motivic decomposition of a
Pfister quadric. In [Kar10] Karpenko established the relation between the motivic decomposition
and the canonical dimension of a projective homogeneous variety, which allowed the canonical
dimension to be computed in many cases.

In [PSZ08] Petrov, Semenov, and Zainoulline investigated the structure of the motives of
generically split projective homogeneous varieties and introduced a new invariant of an algebraic
group G, called the J-invariant. In the case of quadratic forms the J-invariant was introduced
previously by Vishik in [Vis05]. For a fixed prime number p the J-invariant of G modulo p is a
discrete invariant consisting of several non-negative integer components (j1, . . . , jr) with degrees
1 ≤ d1 ≤ · · · ≤ dr. The integers r and d1, . . . dr depend only on the type of G and are known for
all types (see the table in [PSZ08, § 4.13]). The J-invariant encodes the motivic decomposition of
the variety X of Borel subgroups in G. More precisely, it turns out that the Chow motive of X
with coefficients in Fp decomposes into a direct sum of Tate twists of an indecomposable motive
Rp(G) and the Poincaré polynomial of Rp(G) over a splitting field of G equals

r∏

i=1

tdip
ji − 1

tdi − 1
∈ Z[t]. (1.1)

The J-invariant proved to be an important tool for solving several long-standing problems.
For example, it plays an important role in the progress on the Kaplansky problem about possible
values of the u-invariant, see [Vis09]. Another example is the proof of a conjecture of Serre about

Received 3 March 2023, accepted in final form 30 January 2024.
2020 Mathematics Subject Classification 20G15, 14C15 (primary).
Keywords: linear algebraic groups, Tits algebras, algebras with involution, twisted flag varieties, Chow motives.

© The Author(s), 2024. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited. Compositio Mathematica is
© Foundation Compositio Mathematica.

https://doi.org/10.1112/S0010437X24007255 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1112/S0010437X24007255


The J -invariant over splitting fields of Tits algebras

groups of type E8 and its finite subgroups, where the J-invariant plays a crucial role (see [GS10,
Sem16]). More recently, Petrov and Semenov generalized the J-invariant for groups of inner type
to arbitrary oriented cohomology theories in the sense of Levine and Morel [LM07] satisfying
some axioms (see [PS21]).

Let (A, σ) be a central simple algebra of even degree 2n, endowed with an involution of
orthogonal type and trivial discriminant. Let G = PGO+(A, σ) be the connected component
of the automorphism group of (A, σ). The group G is adjoint of type Dn. Denote by J(G) =
(j1, . . . , jr) the J-invariant of G modulo p = 2. It is known that the first component j1 is zero if the
algebra A is split. In particular, j1 becomes zero over the function field FA of the Severi–Brauer
variety of A, which is a generic splitting field of A.

In [QSZ12] Quéguiner-Mathieu, Semenov, and Zainoulline stated a conjecture that the
remaining components do not change after generic splitting of A.

Conjecture 1.2 [QSZ12, Remark 7.3]. If J(G) = (j1, . . . , jr), then ji = (ji)FA
for i = 2, . . . , r.

Note that, in the settings of Conjecture 1.2 the central simple algebra A is a Tits algebra of
the algebraic group PGO+(A, σ). In the present paper we prove Conjecture 1.2 and, moreover,
generalize it to the case of an arbitrary semisimple algebraic group G of inner type. Let A be a
Tits algebra of G. The main result of the paper (Theorem 4.1) describes the connection between
the J-invariant of G over a generic splitting field of A and the J-invariant over a base field. In
particular, we prove that all components of the J-invariant of G of degree greater than 1 do
not change after extending to a generic splitting field FA of A. Moreover, the main theorem
provides some control on how the components of degree 1 can change over the field FA. In the
case G = PGO+(A, σ) we improve this control in Proposition 5.1, which together with the main
theorem allows us to prove Conjecture 1.2 (see Corollary 5.3).

The main result of the paper allows us to split a Tits algebra of an algebraic group without
losing much information on the J-invariant of the group (only components of degree one may be
affected). This may be a useful tool to compute the J-invariant, since the algebraic groups with
trivial Tits algebras are considered as ‘less complex objects’ compared with those groups with
non-trivial Tits algebras. For example, in the settings of Conjecture 1.2 the group PGO+(A, σ)
over the field FA becomes isomorphic to PGO+(qσ), where qσ is the respective quadratic form
adjoint to the split algebra with involution (A, σ)FA

. Hence, Conjecture 1.2 allows the compu-
tation of the J-invariant (except the first component) of algebras with orthogonal involution to
be reduced to the case of quadratic forms. Note that recently a similar approach was used to
investigate the motivic equivalence of algebras with involutions, see [DQZ22].

Section 5 of the paper is devoted to the computation of the first two components j1 and j2 of
the J-invariant of the group PGO+(A, σ) of type Dn, where (A, σ) is a central simple algebra with
orthogonal involution. This question was already investigated in [QSZ12]. Namely, in [QSZ12,
Corollary 5.2] the upper bounds for j1 and j2 were provided in terms of 2-adic valuations iA, i+,
and i− of indices of algebras A, C+, and C−, respectively, where C+ and C− are the components
of the Clifford algebra of (A, σ). We improve the upper bound for j1 and then show that it is, in
fact, the exact value of j1 (see Theorem 5.9). More precisely, we obtain the following formula

j1 = min{k1, iA, max{i+, i−}}, (1.3)

where k1 denotes the 2-adic valuation of n.
Note that the formula for j1 and Conjecture 1.2 (Corollary 5.3) allow us to completely reduce

the computation of the J-invariant of the group PGO+(A, σ) to the case of quadratic forms.

2101

https://doi.org/10.1112/S0010437X24007255 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007255


M. Zhykhovich

Moreover, in Proposition 5.14 we also provide an explicit formula for the second component j2

in some cases.
Note that recently Henke in his PhD thesis [Hen22] applied the main result of this paper to

investigate motivic decompositions of projective homogeneous varieties for groups of type E7.
The proofs in this paper rely on the computations of rational cycles, the properties of

generically split varieties, the theory of upper motives and the index reduction formula.

2. Preliminaries and notation

2.1 Chow motives
Let F be a field. In the present paper we work in the category of the Grothendieck–Chow motives
over F with coefficients in Fp for a fixed prime number p (see [EKM08]).

For a smooth projective variety X over F we denote by M(X) the motive of X in this
category. We consider the Chow ring CH(X) of X modulo rational equivalence and we write
Ch(X) for the Chow ring with coefficients in Fp.

For a motive M over F and a field extension E/F we denote by ME the extension of scalars.
A motive M is called split (respectively, geometrically split), if it is isomorphic to a finite direct
sum of Tate motives (respectively, if ME is split over some field extension E/F ).

Let G be a semisimple algebraic group of inner type. Let X be a projective homogeneous
variety under the action of G. Note that the motive of X splits over any field extension, over
which the group G splits (in the sense of algebraic groups). By X we denote the variety XE over
a splitting field E of the group G. The Chow ring CH(X) does not depend on the choice of E
and, therefore, we do not specify the splitting fields in the formulas below. By CH(X) we denote
the image of the restriction homomorphism CH(X) → CH(X). We say that a cycle from CH(X)
is F -rational if it belongs to CH(X).

The Poincaré polynomial P (X, t) of X is defined as
∑

i≥0 dim Chi(X)ti. Similarly, for direct
motivic summand M of X we define the Poincaré polynomial P (M, t) by replacing X by M in
the formula, where M denotes the motive M over a splitting field of G.

Recall that the Krull–Schmidt principle holds for any motivic direct summand M of a pro-
jective homogeneous variety X. Namely, M decomposes in a unique way in a finite direct sum of
indecomposable motives, see [CM06]. The upper motive U(X) of X is defined as an indecompos-
able summand of M(X) with the property that the Chow group Ch0(U(X)) is non-zero. It follows
by the Krull–Schmidt principle that the isomorphism class of U(X) is uniquely determined
by X.

Given two projective homogeneous varieties X1 and X2 (under possibly different algebraic
groups) over F , the upper motives of the varieties X1 and X2 satisfy the following isomorphism
criterion.

Proposition 2.1 [Kar13, Corollary 2.15]. The upper motives U(X1) and U(X2) are isomorphic
if and only of the varieties X1 and X2 possesses 0-cycles of degree 1 modulo p over F (X2) and
F (X1), respectively.

2.2 Tits algebras and the Picard group
Let G0 be a split semisimple algebraic group of inner type of rank n over F . We fix a split
maximum torus T in G0 and a Borel subgroup B of G0 containing T . Let Π = {α1, . . . , αn} be
a set of simple roots with respect to B and let {ω1, . . . , ωn} be the respective set of fundamental
weights. Enumeration of roots and weight follows Bourbaki.
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Denote by Λω the respective weight lattice and by Λ+
ω the cone of dominant weights. There

is a natural one-to-one correspondence between the isomorphism classes of the irreducible finite-
dimensional representations of G0 and the elements of Λ+

ω . This correspondence associates with
an irreducible representation of G0 its highest weight.

Now let G be an arbitrary (not necessarily split) semisimple algebraic group over F of inner
type which is a twisted form of G0. With each element ω ∈ Λ+

ω one can associate a unique
central simple algebra Aω such that there exists a group homomorphism ρ : G → GL1(A) having
the property that the representation ρ ⊗ Fsep of the split group G ⊗ Fsep is the representation
with the highest weight ω. The algebra Aω is called the Tits algebra of G corresponding to ω.
In particular, to any fundamental weight ωi corresponds a Tits algebra Aωi .

Any projective homogeneous G-variety X is the variety of parabolic subgroups in G of some
fixed type, where the type corresponds to a subset Θ of the set of simple roots Π. The Picard
group Pic(X) can be identified with a free Z-module generated by ωi, i ∈ Π\Θ. Consider the
group homomorphism αX : Pic(X) → Br(F ) sending ωi to the Brauer class of the Tits algebra
Aωi corresponding to the fundamental representation with the highest weight ωi.

By [MT95, § 2] the following sequence of groups is exact

0 → Pic(X) res−−→ Pic(X) αX−−→ Br(F ), (2.2)

where res is the scalar extension to a splitting field of G.
This sequence allows us to express the group Pic(X) in terms of the Tits algebras of G.

3. J-invariant

The J-invariant of a semisimple algebraic group was introduced in [PSZ08] by Petrov, Semenov,
and Zainoulline. In this section we briefly recall the definition and the main properties of the
J-invariant following [PSZ08].

Let G0 be a split semisimple algebraic group over a field F and B a Borel subgroup of G0.
An explicit presentation of Ch∗(G0) in terms of generators and relations is known for all groups
and all primes p. Namely, by [Kac85, Theorem 3]

Ch∗(G0) � Fp

[
e1, . . . , er

]
/
(
epk1

1 , . . . , epkr

r

)
(3.1)

for some non-negative integers r, ki and some homogeneous generators e1, . . . , er with degrees
1 ≤ d1 ≤ · · · ≤ dr coprime to p. A complete list of numbers r, ki, and di is provided in [PSZ08,
p. 21] for any split group G0.

We introduce an order on the set of additive generators of Ch∗(G0), i.e. on the monomials
em1
1 . . . emr

r . To simplify the notation, we denote the monomial em1
1 . . . emr

r by eM , where M is an
r-tuple of integers (m1, . . . , mr). The codimension (in the Chow ring) of eM is denoted by |M |.
Note that |M | =

∑r
i=1 dimi.

Given two r-tuples M = (m1, . . . , mr) and N = (n1, . . . , nr) we say eM ≤ eN (or, equivalently,
M ≤ N) if either |M | < |N | or |M | = |N | and mi ≤ ni for the greatest i such that mi �= ni. This
gives a well-ordering on the set of all monomials (r-tuples).

Now let G = ξG0 be an inner twisted form of G0 given by a cocycle ξ ∈ Z1(F, G0) and let
X = ξ(G/B) be the variety of Borel subgroups in G. Since X and G0/B are isomorphic over any
splitting field of G, we identify the Chow groups Ch(X) and Ch(G0/B).

We consider the following composite map:

Ch∗(X) res−−→ Ch∗(G0/B) π−→ Ch∗(G0), (3.2)
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where π is the surjective pullback of the canonical projection G0 → G0/B and res is the scalar
extension to a splitting field of G.

Definition 3.3 [PSZ08, Definition 4.6]. For each i, 1 ≤ i ≤ r, set ji to be the smallest non-
negative integer such that the image of the composite map π ◦ res contains an element a with
the greatest monomial epji

i with respect to the order on Ch∗(G0) as above, i.e., of the form

a = epji

i +
∑

eM<epji
i

cMeM , cM ∈ Fp.

The r-tuple of integers (j1, . . . , jr) is called the J-invariant of G modulo p and is denoted by
Jp(G).

Remark 3.4. Note that the J-invariant of G up to a permutation of some components may
depend on the choice of the cocycle ξ (see [QSZ12, § 3]). By considering the J-invariant of a
group G in the following we also fix a cocycle ξ.

Remark 3.5. According to [GZ12, Proposition 5.1] and [KM06, Theorem 6.4] the sequence (3.2)
of graded rings is exact in the middle term if and only if the cocycle ξ is generic.

In [PSZ08] the following motivic interpretation of the J-invariant was provided.

Proposition 3.6 [PSZ08, Theorem 5.13]. Let X be the variety of Borel subgroups in G. Then
the Chow motive of X with coefficients in Fp decomposes into a direct sum

M(X) �
⊕

i∈I

Rp(G){i} (3.7)

of twisted copies of an indecomposable motive Rp(G) for some finite multiset I of non-negative
integers. Moreover, the Poincaré polynomial of Rp(G) is given by

P (Rp(G), t) =
r∏

i=1

1 − tdip
ji

1 − tdi
. (3.8)

Remark 3.9. Note that the J-invariant allows us to compute not only the Poincaré polynomial
of Rp(G) by formula (3.8) but also all twisting numbers in the motivic decomposition (3.7)
of X. Namely, we have

P (X, t)
P (Rp(G), t)

=
∑

i≥0

ait
i,

where ai is the number of the copies of Rp(G) with the twisting number i in the motivic decom-
position (3.7). Note that the Poincaré polynomial P (X, t) can be explicitly computed by the
Solomon formula (see [Car72, 9.4 A]).

The motivic decomposition from Proposition 3.6 holds for a more general class of varieties.
Namely, a projective homogeneous G-variety X is called generically split if the group G splits
over the generic point of X. In particular, the variety of Borel subgroups in G is generically split.
Other examples include Pfister quadrics and Severi–Brauer varieties. By [PSZ08, Theorem 5.17]
the Chow motive of any generically split G-variety with coefficients in Fp decomposes into a
direct sum of twisted copies of the motive Rp(G).
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Proposition 3.10 [PS10, Theorem 5.5]. Let X be a generically split G-variety and recall that
Ch(X) denotes the subring of F -rational cycles in Ch(X). Then

P (X, t)
P (Rp(G), t)

= P (Ch(X), t).

In particular, the number of copies of the motive Rp(G){i} in the complete motivic decomposition

of X is equal to dimFp Chi(X).

Remark 3.11. The above proposition shows that the subring Ch(X) ⊂ Ch(X) of F -rational cycles
encodes the complete motivic decomposition of a generically split variety X over F . In contrast,
in order to find the complete motivic decomposition of a projective homogeneous G-variety X
in general, one usually needs to describe F -rational projectors in the Chow group of the product
X × X.

Remark 3.12. Let X be a generically split G-variety. Let {b1, . . . , br} and {a1, . . . , an} be homo-
geneous bases for Fp-vector spaces Ch(X) and Ch(X), respectively. For every k = 1, . . . , n let
αk ∈ Ch(X × X) be a preimage of ak under the surjective flat pull-back

Ch(X × X) −� Ch(XF (X)) � Ch(X)

along the morphism induced by the generic point of the first factor X. Note that ᾱk = 1 ×
ak +

∑
i∈I ci × di, where codim ci > 0 for all i ∈ I. Then the set B = {(bi × 1) · ᾱk | i ∈ [1, r],

k ∈ [1, n]} forms a basis of the Fp-vector space Ch(X × X).
Indeed, by [PSZ08, Theorem 3.7], the motive M(X × X) is isomorphic to a direct sum of

twisted copies of the motive M(X). It follows that

dimFp Ch(X × X) = dimFp Ch(X) · dimFp Ch(X) = rn.

It remains to observe that there are exactly rn elements in B and they are linearly independent.

We finish this section with several observations, which will be useful later in this paper.

Lemma 3.13. Let X,Y be two projective homogeneous varieties over a field F . Assume that
Y possesses a zero-cycle of degree 1 over the function field F (X). Then the cycle a ∈ Ch(X) is
F -rational if and only if the cycle a × 1 ∈ Ch(X × Y) is F -rational.

Proof. The direct implication is clear. To show the inverse implication we assume that a × 1 ∈
Ch(X × Y) is F -rational.

Let α ∈ Ch(X × Y) be a cycle, such that α = a × 1. Let x ∈ Ch0(YF (X)) be a zero-cycle of
degree 1. Let β ∈ CH(X × Y) be a preimage of x under the flat pull-back

Ch(X × Y) −� Ch(YF (X))

along the morphism induced by the generic point of X. Since β = 1 × [pt] +
∑

i∈I ai × bi, where
dim bi > 0 for all i ∈ I, we have

(prX)∗(αβ) = (prX)∗(αβ) = (prX)∗(a × [pt] +
∑

i∈I

(aai × bi)) = a,

where prX is the projection X × Y → X on the first factor.
It follows from the above equality that the cycle a is F -rational. �

Definition 3.14. Let G be a semisimple algebraic group of inner type, A a Tits algebra of G,
and X a projective homogeneous variety such that U(X) � Rp(G). Let w ∈ Ch1(X) be a cycle
such that for some lifting w̃ ∈ CH1(X) of w holds αX(w̃) = l[A] ∈ Br(F ), where l is an integer
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coprime to p. We define jG,A to be the smallest integer j ≥ 0 such that the cycle wpj ∈ Ch(X)
is F -rational.

Remark 3.15. Note that the definition of jG,A does not depend on the choice of the variety X
and the cycle w. Indeed, if Y and v is another choice of a variety and a cycle satisfying the above
conditions, then using the exact sequence (2.2) for the variety X× Y we obtain an F -rational
cycle w × 1 − λ(1 × v) ∈ Ch(X× Y ) for some λ ∈ F

∗
p. Then for every j ≥ 0 we have

(w × 1 − λ(1 × v))pj
= wpj × 1 − λ(1 × vpj

) ∈ Ch(X× Y ).

Hence, we get the following equivalences

wpj ∈ Ch(X) ⇐⇒ wpj × 1 ∈ Ch(X × Y ) ⇐⇒ 1 × vpj ∈ Ch(X × Y ) ⇐⇒ vpj ∈ Ch(Y ),

where the first and the last equivalences hold by Lemma 3.13.

4. Main result

Let F be a field and p a prime number. Let G be a semisimple algebraic group over a field F
of inner type. Let J(G) = (j1, . . . , jr) be the J-invariant of G modulo p and let d1 ≤ · · · ≤ dr be
the respective degrees of the components. Denote by J1(G) = (j1, . . . , jl), l ≤ r, the family of all
components of degree 1, that is dl = 1 and dl+1 > 1.

Let A be a Tits algebra of G. Denote by FA the function field of the Severi–Brauer vari-
ety SB(A). The main theorem of this paper describes the J-invariant of GFA

in terms of the
J-invariant of G over a base field F .

Theorem 4.1. Let J(GFA
) = (j′1, . . . , j′r). Then the following hold:

(i) ji = j′i for every component of degree > 1;
(ii) J1(G) ∪ {0} = J1(GFA

) ∪ {jG,A} as multisets;
(iii) in particular, if J(G) �= J(GFA

), then jk �= j′k = 0 for some component jk of degree 1.

Let X be a generically split G-variety and let A be an algebra which splits over a function field
of X (in particular, this is the case for a Tits algebra of G). Before proving the main theorem
we need to investigate the relation between F -rational cycles on the variety X × SB(A) and
FA-rational cycles on the variety X. Note that SB(A) � P

deg(A)−1 and denote by h the hyperplane
class in Ch1(SB(A)).

Lemma 4.2. Let y = ak × hk +
∑

i>k ai × hi be a homogeneous element in Ch(X × SB(A)),
where ai ∈ Ch(X). If y is rational over F , then:

(i) 1 × hk is rational over F ;
(ii) ak is rational over FA.

Proof. We first prove the second statement. We have

(pr1)∗(y · (1 × hi)) = (pr1)∗(ak × [pt]) = ak,

where i = deg(A) − 1 − k, [pt] is the class of a rational point in Ch(SB(A)) and pr1 :
X × SB(A) → X is the projection on the first factor. Since y and 1 × hi are both rational over
FA, it follows that ak is also rational over FA.

We now prove the first statement. Consider the surjective pullback

f : Ch(X × (X × SB(A))) � Ch(XF (X×SB(A))).
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Since X is split over F (X × SB(A)), there exists a cycle a∗k in Ch(XF (X×SB(A))), such that
deg(ak · a∗k) = 1. Let α be the image in Ch(X × (X × SB(A))) of some lifting of a∗k via f . Let
β = (pr1,3)∗(y), where pr1,3 : X × X × SB(A) → X × SB(A) is the projection on the product of
the first and third factors. We have

β = ak × 1 × hk +
∑

i>k

ai × 1 × hi

and
α = a∗k × (1 × 1) +

∑

j∈I

bj × (cj),

where codim cj > 0 and codim bj < codim a∗k for all j ∈ I. Then

α · β = [pt] × 1 × hk +
∑

j∈I

b′j × (c′j),

where b′j ∈ Ch(X) and dim b′j > 0 for all j ∈ I. Hence, (pr2,3)∗(α · β) = 1 × hk, where pr2,3 :
X × (X × SB(A)) → X × SB(A) is the projection on the product of second and third factors.
Since both cycles α and β are F -rational, the cycle 1 × hk is also F -rational. �

Let A = {a1, . . . , as} be a basis of Fp-vector subspace of FA-rational cycles in Ch(X). For
every i = 1, . . . , s we fix an F -rational lifting yi of ai via the surjective pullback:

Ch(X × SB(A)) � Ch(XFA
).

Consider the set

J = {0 ≤ j < deg A | 1 × hj is F -rational in Ch(X × SB(A))}. (4.3)

Recall that we denote by Ch(X × SB(A)) the subring of F -rational cycles in Ch(X × SB(A)).
We can now describe a basis of the Fp-vector space Ch(X × SB(A)) in terms of A and J .

Proposition 4.4. The set B = {yi · (1 × hj) | i ∈ [1, s], j ∈ J} forms a basis of the Fp-vector
space Ch(X× SB(A)).

Proof. Since ai, i ∈ [1, s] are linearly independent, the same holds for the elements from B.
Denote by 〈B〉 the Fp-vector subspace in Ch(X× SB(A)) generated by the elements from B. Our
goal is to show that 〈B〉 = Ch(X× SB(A)).

Clearly 〈B〉 ⊂ Ch(X × SB(A)). Assume that the subspaces are not equal and among the
homogeneous elements in Ch(X × SB(A)) \ 〈B〉 choose an element

y = a × hk +
∑

i>k

ai × hi, bi ∈ CH(X), a �= 0,

with the maximal k ≥ 0. By Lemma 4.2 the cycle a is rational over FA and k ∈ J . Hence, we
can write a = λ1a1 + · · · + λsas for some λi ∈ Fp. Consider the cycle

y′ = y − (λ1y1 + · · · + λsys) · (1 × hk).

By our assumption on y we see that y′ = 0 and we get a contradiction. It follows that
Ch(X× SB(A)) = 〈B〉 and, therefore, B is indeed a basis of Ch(X× SB(A)). �

We are now ready to prove the main theorem.

Proof of Theorem 4.1. Recall that we work with Chow groups and motives modulo p. Without
loss of generality we can pass to a field extension of degree coprime to p and assume that the
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index of A is a power of p. Since in this case the algebra A and its p-primary component have
same splitting fields, we can also assume that the degree n of A is a power of p.

Let X be a generically split G-variety. Then the variety X× SB(A) is also generically split for
the group G′ = G × PGL1(A). Moreover, by Proposition 2.1 and our assumption on algebra A,
we have Rp(G) � Rp(G′). Applying Proposition 3.10 for the generically split varieties X× SB(A)
and XFA

we obtain

P (X× SB(A), t) = P (Rp(G), t) · P (Ch(X× SB(A)), t)

and

P (XFA
, t) = P (Rp(GFA

), t) · P (
Ch(XFA

), t
)
.

Now let us compare the left- and right-hand sides of these polynomial equalities. We have
P (X× SB(A), t) = P (X, t) · P (SB(A), t) = P (X, t) · P (Pn−1, t) = P (X, t)((tn−1)/(t − 1)). Note
also that P (X, t) = P (XFA

, t). The first factor on the right-hand sides of the equalities can
be expressed in terms of the corresponding J-invariant using formula (3.8). Note that the last
factor in the second equality divides the last factor in the first equality by Proposition 4.4 and
the quotient is given by the polynomial

Q(t) =
∑

i∈J

ti,

where the set J is defined in (4.3).
Now dividing the first polynomial equality by the second equality we get

tn − 1
t − 1

=
r∏

i=1

tdip
ji − 1

tdip
j′
i − 1

· Q(t). (4.5)

The first statement of the theorem follows directly from the above polynomial equality.
Indeed, if ji > j′i for some component i ∈ {1, . . . , r} with di > 1, then the primitive dip

ji-root of
unity ζ ∈ C is a complex root of the right-hand-side polynomial from equality (4.5). However, ζ
is not a complex root of the left-hand-side polynomial in (4.5), since n is a power of p, di > 1
and p does not divide di.

Before proving statements (ii) and (iii) of the theorem we will first find the explicit form of
the polynomial Q(t) =

∑
i∈J ti, which is defined by the set J . It follows from polynomial equality

(4.5), that Q(t) = tdeg QQ(1/t). Hence, the set J is symmetric with respect to its midpoint.
Another property

x ∈ J, y ∈ J =⇒ x + y ∈ J

follows from the definition of the set J , since the product of two F -rational cycles is F -rational.
Let m = minJ \ {0} (we set m = n, if J = {0}). Using the two above-mentioned properties

of the set J it is easy to check that

Q(t) = 1 + tm + t2m + · · · + t(k−1)m =
tkm − 1
tm − 1

for some integer k ≥ 1, such that (k − 1)m < n ≤ km.
Finally, it follows from (4.5), that km is a power of p and, thus, is equal to n. Moreover, m

is also a power of p and we write m = pj . Therefore, the polynomial Q(t) has the following form
(tn − 1)/(tp

j − 1).
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Using the description of Q(t) and the statement (i) of the theorem and formula (4.5) we get

(tp
j − 1)

l∏

i=1

(tp
j′i − 1) = (t − 1)

l∏

i=1

(tp
ji − 1).

It follows from the above polynomial equality that J1(GFA
) ∪ {j} = J1(G) ∪ {0} as multisets.

Moreover, by the definition of j we have j = jG,A and we obtain the statement (ii) of the theorem.
In the case J(GFA

) �= J(G), by statement (ii), we have j �= 0. Hence, jk �= j′k = 0 for some
k ∈ {1, . . . , r}, which proves the statement (iii) of the theorem. �

With the same notation as in the above theorem, we get the following corollary.

Corollary 4.6. Assume that there exists a component ji of degree one of J(G), such that all
other components of degree one are zero (in particular, this is the case when there is only one
component of degree one). Assume also that ji becomes zero over FA. Then ji = jG,A.

5. J-invariant of algebras with involutions

Let (A, σ) be a degree 2n central simple algebra over F , endowed with an involution of orthogonal
type and trivial discriminant. We refer to [KMRT98] for definitions and classical facts on algebras
with involution. Recall, that the Clifford algebra of (A, σ) splits as a direct product C(A, σ) =
C+ × C− of two central simple algebras over F .

Let G = PGO+(A, σ) be the connected component of the automorphism group of (A, σ).
Since (A, σ) has trivial discriminant, the group G is an inner twisted form of G0 = PGO+

2n. Both
groups G and G0 are adjoint of type Dn. Let {ω1, . . . , ωn} be the respective set of fundamental
weights. Note that A is a Tits algebra Aω1 of G. We fix fundamental weights ω+ and ω−, which
are a permutation of ωn−1 and ωn, in such a way that the Tits algebras Aω+ and Aω− are the
components C+ and C−, respectively, of the Clifford algebra C(A, σ).

Note that in this section we assume p = 2, which is the only torsion prime of the group G.
Let X be the variety of Borel subgroups in G. Recall, that the Picard group Pic(X) can be

identified with a free Z-module generated by ωi, i = 1, . . . , n. We denote by wi the images of ωi

in Ch1(X) = CH1(X) ⊗ F2.
In [QSZ12] Quéguiner-Mathieu, Semenov, and Zainoulline introduced the notion of the

J-invariant of algebras with orthogonal involutions. The J-invariant of (A, σ) is denoted by
J(A, σ). By definition, J(A, σ) is the J-invariant of the respective group G = PGO+(A, σ), where
in the definition of J(G) we take a cocycle whose class corresponds to (A, σ) and a designation
of the components C+ and C− (note that the choice of the designation does not affect the value
of J(G); see [QSZ12, § 3]).

The J-invariant J(A, σ) is an r-tuple (j1, . . . , jr), where r = m + 1 if n = 2m or n = 2m + 1
(see the table in [PSZ08, § 4.13]). Note that the first two components j1 and j2 are of degree
1 and di = 2i − 3 for i ≥ 2. For every component ji we also have an explicit upper bound ki

(see the table in [PSZ08, § 4.13]). In particular, j1 ≤ k1 = v2(n), where v2(−) denotes the 2-adic
valuation. According to [QSZ12, § 3] one can take e1 = π(w1) and e2 = π(w+) for the generators
in Ch(G0) corresponding to the components j1 and j2, respectively, where π : Ch(X) → Ch(G0)
is the pullback map (see § 3).

The goal of this section is to prove Conjecture 1.2 and to explicitly compute j1.
By [QSZ12, Corollary 5.2] the first component j1 of J(A, σ) is zero if the algebra A is split.

We denote by FA the function field of the Severi–Brauer variety of A, which is a generic splitting
field of A. By Theorem 4.1 we have J(A, σ)FA

= (0, j′2, j3, . . . , jr), that is all components of
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degree > 1 does not change over FA. However, to prove Conjecture 1.2 we still need to check
that j2 = j′2. In order to show this we will use the following proposition.

Proposition 5.1. The first component j1 of the J(A, σ) is equal to jG,A, where G =
PGO+(A, σ).

Proof. Let X be the variety of Borel subgroups in G. Assume n is odd. By the fundamental
relation we have [A] = 2[C+] = 2[C−] ∈ Br(F ), where C+ and C− are two components of the
Clifford algebra of (A, σ). Using the exact sequence (2.2) we see that w1 ∈ Ch(X). Hence, by
definition, j1 = jG,A = 0.

Assume now that n is even. Observe that in Definition 3.3 of j1 we can assume a = e2j1

1 .
Indeed, e2j1

1 is the smallest monomial of codimension 2j1 with respect to the order defined at
the beginning of § 3. Note also that π(w2j1

1 ) = e2j1

1 . It follows from Definition 3.3 that j1 is the
smallest non-negative integer, such that there exists an F -rational homogeneous cycle of the
form w2j1

1 + δ ∈ Ch(X), where δ is an element of codimension 2j1 from the kernel of the map
π : Ch(X) → Ch(G0). Since n is even, we have [A] + [C+] + [C−] = 0 ∈ Br(F ). Hence, the cycle
w1 + w ∈ Ch1(X) is F -rational, where we set w = w+ + w−. Therefore, in the definition of j1

we can replace w1 by w.
Recall that the kernel of π is the ideal in Ch(X) � Ch(G0/B) generated by the rational

elements of positive codimension for the twisted form ξ(G0/B) given by a generic cocycle ξ (see
Remark 3.5). Our goal is to show that we can assume δ = 0 in the definition of j1. To do this
we first show that, instead of X, we can consider a ‘smaller’ variety, where the cycle w is also
defined and where there are ‘few’ rational cycles in the generic case.

Namely, let Y be the variety of isotropic right ideals in (A, σ) of reduced dimension n − 1 (it
corresponds to the parabolic subgroup P ⊂ G0 of type {1, 2, . . . , n − 2}). We have a natural pro-
jection f : X → Y . Since Y is generically split, the projection f is a cellular fibration. Therefore,
by [PSZ08, Theorem 3.7] the motive of X decomposes into a direct sum

M(X) �
m⊕

l=0

M(Y ){il} (5.2)

of twisted copies of the motive M(Y ) with some twisting numbers i0, . . . , im, where i0 = 0
and il > 0 for l ∈ [1, m]. More precisely, we have a decomposition of the diagonal class ΔX ∈
Ch(X× X) into a sum of pairwise orthogonal projectors ρ0, . . . , ρm, such that (X, ρl) � M(Y ){il}
for every l ∈ [0, m], and, moreover, the Chow group of (X, ρ0) � M(Y ) as a subgroup of Ch(X)
can be identified with Ch(Y ) via the pull-back f∗. Thus, we can assume Ch(Y ) ⊂ Ch(X).

Note that decomposition (5.2) also holds for a generic cocycle ξ (that is, for ξ(G0/B) and
ξ(G0/P ) instead of X and Y , respectively). Thus, we can assume that the projectors ρ̄0, . . . , ρ̄m

are rational for the generic cocycle. Since Ch0(X, ρ̄l) = 0 for l > 0, the projector ρ̄l can be
written, by Remark 3.12, as a linear combination of cycles of the type (b × 1)α, where b ∈ Ch(X),
α ∈ Ch(X × X) are rational in the generic case and codim b > 0. It follows that for l > 0 the
Chow group of (X, ρ̄l) lies in the kernel of π, that is Ch(X, ρ̄l) = (ρ̄l)∗ Ch(X) ⊂ Kerπ.

Since the cycle w (and also w2j1 ) is defined in Ch(Y ), the projection of the F -rational cycle
w2j1 + δ ∈ Ch(X) on the subgroup Ch(Y ) is also F -rational and has the form w2j1 + δ̃, where
δ̃ = (ρ̄0)∗(δ). Note that δ̃ = δ − ∑m

l=1(ρ̄l)∗(δ) ∈ Kerπ.
Recall that the varieties Y and G0/P are isomorphic over any splitting field of G and consider

the pull-back π̃ : Ch(Y ) → Ch(G0) induced by the quotient map. Note that π̃ = π ◦ f∗. Hence,
δ̃ ∈ Ker π̃.
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Denote by Ch(Y )gen the subring of rational cycles in Ch(Y ) � Ch(G0/P ) for the twisted form
ξ(G0/P ) given by a generic cocycle ξ (note that Ch(Y )gen ⊆ Ch(Y )). Let I be the ideal in Ch(Y )
generated by all cycles of positive codimension from Ch(Y )gen. Note that the parabolic subgroup
P ⊂ G0 is special (see [Kar18, § 8]) and recall that δ̃ ∈ Ker π̃. Applying the exact sequence from
[PS17, Lemma 7.1] (for G = G0, S = P and a split torsor E) and using [KM06, Theorem 6.4]
we get that δ̃ ∈ Ch(Y ) lies in the ideal I.

We claim that the minimal non-zero codimension of a cycle in Ch(Y )gen is 2k1 . It would
follow from the claim that any non-zero cycle in I has codimension at least 2k1 and any cycle
of codimension 2k1 in I lies in Ch(Y )gen. In particular, since δ̃ ∈ I and codim δ̃ = 2j1 ≤ 2k1 ,
we obtain that δ̃ ∈ Ch(Y )gen (more precisely, δ̃ = 0 if j1 < k1). Recall that Ch(Y )gen ⊆ Ch(Y ).
Then the cycle δ̃ ∈ Ch(Y ) is also F -rational and w2j1 ∈ Ch(X). Since αX(ω+ + ω−) = [A], by
the definition of jG,A we have jG,A = j1.

It remains to show the above claim. Note that the Poincaré polynomial of P (Y, t) is known
and can be computed by Solomon’s formula (see [Car72, 9.4 A]). Using the explicit formula
(3.8) for the Poincaré polynomial P (R2(ξG0), t), where ξ is a generic cocycle, and applying
Proposition 3.10 we get

P (Ch(Y )gen, t) =
P (Y, t)

P (R2(ξG0), t)
=

tn − 1
t2

k1 − 1
= 1 + t2

k1 + · · · .

It follows that in the generic case a rational cycle in Ch(Y ) has codimension either zero or at
least 2k1 . This proves the claim. �

Corollary 5.3. Conjecture 1.2 holds.

Proof. The Conjecture follows from Theorem 4.1 and the above proposition. �

Let J(A, σ) = (j1, j2, . . . , jr). Then by the above corollary we have J(A, σ)FA
= (0, j2, . . . , jr).

Note that the group PGO+(A, σ) over the field FA becomes isomorphic to PGO+(qσ), where
qσ is the respective quadratic form adjoint to the split algebra with involution (A, σ)FA

. Hence,
we can reduce the computation of the components j2, . . . , jr of J(A, σ) to the case of quadratic
forms. However, over the field FA we lose information about the first component j1. Our next
goal is to find an explicit formula for j1.

We know that j1 ≤ k1 = v2(n). Thus, j1 = 0 if n is odd. Starting from now, in this section
we assume that n is a positive even integer.

Note that in this case all three algebras A, C+, and C− have exponent 2. Therefore, the
indices of these algebras are powers of 2. We denote by iA (respectively, by i+, i−) the 2-adic
valuation of the index of A (respectively, of C+, C−).

We start the computation of j1 by collecting upper bounds for j1. Clearly we have

j1 ≤ k1. (5.4)

By [QSZ12, Corollary 5.2] we have another upper bound for j1

j1 ≤ iA. (5.5)

Finally, the lemma below shows that

j1 ≤ max{i+, i−}. (5.6)

Lemma 5.7. Inequality (5.6) holds.
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Proof. Let X be a variety of Borel subgroups in PGO+(A, σ). Let i = max{i+, i−}. Since [A] +
[C+] + [C−] = 0 ∈ Br(F ), the cycle w1 + w+ + w− ∈ Ch1(X) is F -rational. We have

(w1 + w+ + w−)2
i
= w2i

1 + w2i

+ + w2i

− .

By [PS10, Proposition 4.2] the cycles w2i

+ and w2i

− are F -rational and, hence, w2i

1 is also F -rational.
It follows from the very definition of j1 that j1 ≤ i. �

Combining upper bounds (5.4), (5.5), and (5.6) we get

j1 ≤ min{k1, iA, max{i+, i−}}. (5.8)

It appears that the above upper bound is the exact value of j1.

Theorem 5.9. The following formula holds for the first component j1 of J(A, σ):

j1 = min{k1, iA, max{i+, i−}}. (5.10)

Proof. Since inequality (5.8) holds, it remains to show that

j1 ≥ min{k1, iA, max{i+, i−}}.
Let X be the variety of totally isotropic ideals in (A, σ) of reduced dimension n (the variety

X is the twisted form of the variety of maximal totally isotropic subspaces of a quadratic form).
Since the discriminant of σ is trivial, the variety X has two connected components X+ and X−

corresponding to the components C+ and C−, respectively, of the Clifford algebra C(A, σ). The
varieties X+ and X− are projective homogeneous under the action of the group PGO+(A, σ).

Recall that SB(A) � P
2n−1 and denote by h the hyperplane class in Ch1(SB(A)). Note that

the variety X = X+ × SB(A) and the cycle 1 × h ∈ Ch1(X+ × SB(A)) satisfy the conditions in
Definition 3.14 for the group G = PGO+(A, σ) and central simple algebra A.

Therefore, by Proposition 5.1, j1 is equal to the smallest integer j, such that 1 × h2j ∈
Ch(X+ × SB(A)) is F -rational. If j is such a smallest integer, then h2j ∈ Ch(SB(A)) is F (X+)-
rational. It follows that 2j ≥ indAF (X+). On the other hand, by the index reduction formula
[MPW96, p. 594] we have

indAF (X+) = min{ind(A), 2k1 ind(A ⊗F A), ind(A ⊗F C+), 2k1 ind(A ⊗F C−)}.
Recall that the algebras A and C− have exponent 2 and [A] + [C+] + [C−] = 0 ∈ Br(F ). Hence,
A ⊗F A is split and the algebras A ⊗F C+ and C− are Brauer equivalent. We get

indAF (X+) = min{ind(A), 2k1 , ind(C−)} = min{2iA , 2k1 , 2i−}.
Therefore, the following inequality holds

j1 ≥ min{k1, iA, i−}. (5.11)

Repeating the same arguments but now for the variety X− × SB(A) we get another inequality

j1 ≥ min{k1, iA, i+}. (5.12)

It follows from inequalities (5.11) and (5.12) that j1 ≥ min{k1, iA, max{i+, i−}} and we
conclude that formula (5.10) holds. �
Corollary 5.13. Assume that (A, σ) is half-spin, that is one of the components of the Clifford
algebra C(A, σ) is split. Then j1 = min{k1, iA}.
Proof. Since [A] + [C+] + [C−] = 0 ∈ Br(F ) and one of the components C+ or C− is split, we
have {i+, i−} = {iA, 0}. Then the formula j1 = min{k1, iA} follows from Theorem 5.9. �
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The J-invariant of (A, σ) contains two components j1 and j2 of degree one. The formula for
j1 is computed in Theorem 5.9. By [QSZ12, Corollary 5.2] we have j2 ≤ min{i+, i−}. It appears
that this upper bound is the exact value of j2 in the following case.

Proposition 5.14. If min{i+, i−} < min{k1, iA}, then j2 = min{i+, i−}.
Proof. Denote by j+

i (respectively, j−i ) the ith component of the J-invariant of (A, σ) over the
function field of SB(C+) (respectively, of SB(C−)). Note that over such a function field the
Clifford invariant of (A, σ) is trivial. By Corollary 5.13 and using the index reduction formula
[MPW96, p. 592] we have

j+
1 = min{k1, v2(indAF (SB(C+)))} = min{k1, iA, i−}.

Similarly, we get j−1 = min{k1, iA, i+}.
Recall that at least one of the numbers i+ or i− is less than min{k1, iA}. Hence, j+

1 = i− or
j−1 = i+. Let ε be a symbol + or −, such that jε

1 = min{i+, i−}. Observe that jε
2 = 0. Therefore,

by Theorem 4.1 we have jε
1 ∈ {j1, j2}. If i+ �= i−, then by Theorem 5.9 we have

j1 = min{k1, iA, max{i+, i−}} > min{i+, i−} = jε
1

and, hence, j2 = jε
1. Assume now i+ = i−, then j1 = jε

1. It follows from Theorem 4.1 that j2 =
jG,Cε . Considering the variety X−ε × SB(Cε) and applying the index reduction formula in the
same way as in the proof of Theorem 5.9 one can check that jG,Cε ≥ i+ = i−. Therefore, in this
case we also have j2 = min{i+, i−}. �
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