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BIPLANAR SURFACES OF ORDER THREE 

TIBOR BISZTRICZKY 

0. Introduction. A surface of order three, P, in the real projective three-
space P 3 is met by every line, not in P, in at most three points. F is biplanar if 
it contains exactly one non-differentiable point v and the set of tangents of F at 
v is the union of two distinct planes, say n and 72. In the present paper, we 
classify and describe those biplanar F which contain the line n C\ r2. 

We describe a surface by determining the tangent plane sections of the 
surface at the differentiable points. This approach was introduced in [1] and it 
is based upon A. Marchaud's definition of * 'surfaces of order three" in [4]. 

We denote the planes, lines and points of P 3 by the letters a, 0, . . . ; L, 
My ... ; and p, q, . . . respectively. For a collection of flats a, L, p, . . . ; 
(a, L, p, . . .) denotes the flat of P 3 spanned by them. For a set *Jt in P3 , ÇJif) is 
the flat of P 3 spanned by the points of <Jt. 

1. Surfaces of order three. 

1.1. A surface of order three F in P3 , is a compact and connected set such that 
every intersection of F with a plane is a curve of order :g 3 and there is a plane 
P such that fi C\ F is a curve of order three which does not contain any lines. 

Plane curves are defined by means of parameter curves. A parameter curve C 
is a continuous map from a line M = {m, m', . . . } into a plane a. A line T is 
the tangent of C at m 6 M if T = lim (C(m), C(m')) a s m ' ^ m tends to m. 
C is differentiable if the tangent T of C at m exists for every m £ M and 
\T C\ C(M)\ < oo. C is degenerate if C is infective and C(M) is a line. C is 
totally degenerate if C(Af) is a point (isolated). 

Let C be differentiable, C(M) C a. Then £ G C(M) is sim^/e if p = C(m) 
has a unique solution nt £ M. We introduce (cf. [6]) the characteristic 
(a0(m), a,i(m)) of C(w), a^m) = 1 or 2, and say that L meets C at m with 
multiplicity a0(m) + ai(w)[a0(w)] if C(m) £ L (Z a and L is (is not) the 
tangent of C a t w . C is of order w if n is the supremum of the number of points 
of M, counting multiplicities, mapped into collinear points by C. 

If C is of order two (three), we denote C(M) by 51[P*1]. Every point of an 
S1 is simple and an P*1 contains at most one point q (double point) such that 
q = C(m) = C(m'), m ^ m'. A simple point of an P*1 is an ordinary, 
inflection or cusp point if it has the characteristic (1, 1), (1, 2) or (2, 1) 
respectively; cf. [3] and [1]. A degenerate C is considered to have order one 
and an isolated point is counted with multiplicity two. 
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A (plane) curve T is the union of a finite collection of sets C\(M) where the 
C\'s are parameter curves. A line T is a tangent of V at p if P is the tangent of 
some C\ at m, £ = C\(m) C C\(A0 C r. The order of T is the supremum of 
the number of points of T, counting multiplicities on each C\, lying on any line 
not in r . 

Let r be of order n, n rg 3. If n = 1, then T is a straight line. If w = 2, 
then T is an 51 or an isolated point or a pair of distinct lines. If n = 3, then T 
is (i) an P*1 or (n) the disjoint union of an P*1 and either an S1 or an isolated 
point or (Hi) the union of a line and a curve r ' of order two. 

We denote a T of order three satisfying (i) or (ii) by F1. Then there is an 
P*1 Ç P1. 

1.2. Let F b e a surface of order three. Let a be a plane through p, p £ F. 
Then p is regular in P[a Pi P] if there is a line iV in P3[a:] such that p £ N and 
|iV P F\ = 3. Otherwise, p is irregular in P[a Pi P]. We note that there is at 
most one point v irregular in a P F if a P F is an P1 and such a */ is a cusp, 
double point or isolated point of a P F. Finally, 

l(P,a) = \{LC a\ P £ LCF}\ èl(*) = \{LCa\ L C F} \ S 3. 

If F is non-ruled, that is, F is not generated by lines, then 1(F) = | |L C P 3 | 
L C F] | < oo and F contains at most four irregular points. 

Let p G F. A line P is a tangent of P at >̂ if P is a tangent of a P F dit p for 
some a through £. Let r(£) be the set of tangents of F at p. Then £ is differ en-
tiable if /? is regular in a P F and r(^) is a plane ir(p) ; otherwise, £ is singular. 

Henceforth, we assume that every regular p in F is differentiate and ir(p) 
depends continuously on p. 

Let p be a regular in P. Then /> £ T C TT(P) implies that T C_ F or 
| P P F\ ^ 2. Thus, l(p) = \{L CP*\ P £ L C F\\ = l(p, ir(p)) and p is 
irregular in w(p) P F. If l(p) = 0, then p is an isolated point, cusp or double 
point of ir(p) P F and we call p elliptic, parabolic or hyperbolic respectively. 

Let v be irregular in F. If 1(F) < oo, then v Ç r C T ( 0 if and only if either 
^ £ T Cl F or T C\ F = {v). Moreover, T(V) is a plane or the union of two 
distinct planes or a cone of order two with the vertex v\ cf. [5]. 

Let Ĵ ~ be a closed connected subset of S1 or P*1. If the end points of F are 
distinct (equal), then F is a subarc (subcurve). We note that a subarc of P*1, 
containing only ordinary points in its interior, is of order two. 

Let p G F be regular. L e t ^ ( p ) be the set of all subarcs Ĵ ~ of order two in F 
such that p e & (t ir(p). Let {^^'\ Ç_^(p). Then «F and #~' are £-a>m-
patible if there is a 0 C P3 \ l^} and an open neighbourhood w(£) of p in P 3 such 
that u(p) P ( f U # ' ) is contained in a closed half-space of P 3 bounded by 
7r(/>) and 13. Otherwise ^ a n d #~' are p-incompatible. 

A pair of subarcs &~\ and P2 are compatible {incompatible1^ if there is a 
£ G ^"1 H J S such that {JS, J Q C^(p) and # \ and J S are ^-compatible 
[^-incompatible]. 
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We consider a subcurve as an element of <F(p) if it contains a subarc Ĵ ~ such 
that p £ ^ C^{p)> In this sense, we say that a subcurve is compatible or 
incompatible with an element of <F(p). 

1.3. For proofs of the following results, we refer to [1] and [2]. 

1. If p is regular in F and isolated i n a H F, then p is elliptic and a = ir(p). 

2. Let p be regular in F, l(p) = 0. Then (i) p is elliptic if and only if #~ 
and J ^ are compatible for [ÏF ,tF'\ <Z<F{p) and (ii) p is hyperbolic if and 
only if there exist incompatible #~ and #" ' in Jr(^>) such that p Ç int(F) H 
int(F'). 

3. Let J ^ C F such t h a t ^ £ J r ( ^ ) for each £ € J*"'. L e t L b e aline such 
that L <£ (F) and for each p 6 J^ ' , there is a n ^ > G J ^ ) with L C <^>>. 
If #~£ depends continuously on p, then F1 and J^"^ are either compatible for 
all p <E Ff or incompatible for all £ Ç J r / . 

4. Let p\[a\] be a sequence of points (planes) converging to p(a); p\ £ a\ 
for each X. 

(a) If a H F is not of order two oraDF does not contain an isolated point, 
then l i m ( a x P F) = a P F. 

(b) If px is a cusp (isolated point) of a\ P F for each X, then l(p) = 0 implies 
that £ is a cusp (isolated point or cusp) of a P F and a P F = L VJ S1 implies 
that L P S 1 = {p). 

5. Let 7 P F = L \J L' such that y = ir(p) for p £ L\L'; L ^ Z/. Let 
«x[ftj be a sequence of planes through L[L'] converging to 7; y 9e fix for 
each X. Then lim (ax P F) = 7 P F and there is a subsequence ft/ of 0\ such 
that either lim (ft/ H F ) = L \J L' or lim ft/ H F = L'. (We shall simply say 
that lim (ft, Pi F) is either L U L ' o r Z/.) 

6. Let 7 P F be of order two. Then 7 P F = L U Z/, L 9^ L'', and either 
1/ C 7r(p) for every regular p £ £ (in short, 1/ C n(L)) or L C *"(<?) for every 
regular q G 1/ (Z, C *•(£')). 

2. Biplanar surfaces. 

2.0. Let F be a surface of order three. A point v 6 ^ is a binode if J> is irregular 
in T7 and r(y) is the union of two distinct planes, say n and r2. i7 is biplanar 
if 71 is non-ruled and contains a binode *> as its only irregular point. 

We wish to examine those biplanar F which contain the line n P r2. Unless 
stated otherwise, we assume that F is biplanar with the binode v where 
T(V) = T\VJ r2 and n P r2 C Z\ Since y £ 7" C T(Ï') if and only if v £ T Q. F 
or m F = \v}y l(v) ^ l(p,n) + /(^,r2) ^ 6. Then MQ = n P r2 C /^im­
plies that 1 ^ /(?) ^ 5. 

LEMMA 2.1. Le£ v £ (3 such that 0 P T tis a line N\; i = 1, 2. 
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1. If Mo = Ni = N2, then either p P F consists of M0 and an Sl such that 

Mo P S1 = {v) or (3 P F = ¥ 0 U L where v £ L and L C ir(M0). 

2. If l(v, (3) = 0, then v is the double point of $ C\ F. 

3. If Ni C F and Nj P F = {v}, then fi P F consists of Nt and an S1 such 

that l i V . n ^ 1 ! = 2andv £ TV, P S 1 ; [i, j) = {1, 2}. 
4. If l(v, 13) = 2, then p P F = Nx U N2 U L12 where v g L12. 

Proof. We note t ha t v £ ir(p) if and only if (v, p) C F iov p £ F\{v) and 
v £ L (£_ T\\J T2 implies tha t \L P F\ = 2. The lemma now follows by listing 
all possible (0 P F) ' s . 

LEMMA 2.2. 1. For {p, p'\ C M0\{v], v(p) = *•(£')• 

#. Ifl(Tt) = 2fori = lor2,thenn = ir(p)forp Ç MoM?}. 
5. 7 / Z(» ^ 3, «w?« / ( r f ) = 3 /o r i = 1 or 2. 

Proof. By 2.1.1, we may assume tha t ir(p) is n or r2 for £ £ Afo\{^}. As 
ir(p) depends continuously on p, 1 follows. 

LeU(r<) = 2 and pu t r , H F = M0^J Mû {i,j} = {1,2}. By 1.3.6, ei ther 
Mt C TT(MO) or Mo C T(Mi). Let N, C r , such tha t Njl^ F = {u}. By 2.1.3, 
<M„ # , ) P F = M , U S 1 where Mtr\Sl = {v, pt), v j * pt. Then v(pt) = 
(Mu Nj) 9* n and Mi C T(M0). 

Clearly, 2 implies 3. 

T H E O R E M 2.3. Let F be biplanar with the binode v, n Pi r2 C F. Then F is 
one of the following types: (1) 1(F) = l(v) = 1; (2) 1(F) = 2 and l(v) = 1; 
(3) 1(F) = l(v) = 2; (4) 1(F) = l(v) = 3 ; (5) 1(F) = 4 and l(v) = 3 ; 
( £ ) / ( / 0 = 6andl(p) = 4 ; ( 7 ) / ( F ) = 10 and I(v) = 5. 

Proo/ . Apply 2.1 and 2.2 with each l(v), 1 ^ /(y) ^ 5. 

2.4. I t is easy to check tha t if F is biplanar with the binode v and one of the 
types listed in 2.3, then n P r2 C F. 

Let v e P such t ha t l(v, 0) = 0. By 2.1.2, v is the double point of 0 P F; 
t ha t is, (3 P F = «£? U J S U # ~ 2 where i f P ( J^ i UJ*~2) = {*}, J S P J S 
= {">£/?} ( ^ *s the inflection point of 0 P F) and i f is the loop of fi P F. 
We note t ha t i f is a subcurve of order two and { J S , J r

2 } C^(pp). We will 
always assume tha t lim(^, r) C r< as r tends to i> in Fi\{^} ; i = 1, 2. 

In the following sections, we examine the surfaces listed in 2.3 by determining 
the existence and distribution of the elliptic, parabolic and hyperbolic points. 
By way of preparat ion, we have the following definitions and results. 

2.5. Let S1 C F, a = (Sl). We denote by int S1, the open disk of a bounded 
by S1, and we pu t ext S1 = a \ C l ( i n t S1). 

Let L C F and r G F\L such tha t (L, r) P F consists of L and 5 1 . We denote 
this S1 by SUA r). 

Let 1(E) be the set of parabolic (elliptic) points of F. From 1.3.4, E is open 
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and {r Ç bd(£) | l(r) = 0) Ç 7, In each of the surfaces we examine, it will be 
immediate that E = 0 if and only if I = 0. 

THEOREM 2.6. Let F be a surface of order three. Let G be an open region in F 
such that a0 P\ G = 0 for some a0, bd(F\G) = bd(G), (bd(G)) is a plane 
and r is regular in F with l(r) = 0 for each r £ G. Then G C\ E ^ 0. 

Proof. We note that any line in a plane (F*1) meets F*1 and thus, any line 
in P 3 meets F. 

Let r £ G and put L = aQ H (bd(G)). Then L C\ G = 0 implies that 
L C\ (F\G) 9e 0 and (L, r) P\ G is an 5 1 or an isolated point of (L, r) C\ F. 
Obviously, a0 C\ G = 0 implies that there is an r0 G G such that (L, r0) 
n G = {r0}.Thenr0 G £witti7r(r0) = (L, r0) by 1.3.1. 

3. F with one line. 
3.0. LetPbebiplanarwiththebinode^, 1(F) = 1. Then M0 = n H r2 C F 

and T< H F = M0; i = 1, 2. By 2.1.1, (M0, r) H F = M0 U ^ (Mo, r) with 
ikfo H S1 W>, r) = {?} for r g ^ \ M 0 . We note that S^Mo, r) G F(*0; tf. 1.2. 

Let 0 H Mo = {i/}. Then *> is the double point of (3 H F = i f U J S U J S . 
We fix a point f £ £ \ M a n ( l let <^i and ^ 2 be the open half-spaces of P 3 

determined by T\ and r2. Put F{ = & t C\ F and assume that f 6 Fi. Then 
0 H A = if , 0 H A = ^" i ^ ^ 2 and 

ftU72=(^ ^M(r) = 0}. 

We fix a point p £ M0\{^} and choose T C ri such that p £ T ^ M0. Then 
Pt = (v, f, t) is a plane for ^ G T (fi = (3f, say), 

fe-n F = Mo^J S'iMo, f) C A and 0, H F - if f W J V U JS<, 

LEMMA 3.1. &'C Fi for all t £ T\{p}. 

Proof. Let r ( i ) = {t £ T\ Ll C Ft], i = 1, 2. Let t tend toi 9^ p in r ( i ) . 
Then 0* P\ ^ = J£l converges to PJC\ FU which is Ll or F\\J F2

f. Since 
lim ^£l cannot be a curve of order three, we obtain that 

«ifr = lim Ll = lim ptC\ Ft = $jC\ Ft. 

Thus ? G r ( i ) and !T(i) is closed. Then T\{p} = T(l) U T(2) and *' £ T( l ) 
imply that T(2) = 0. 

COROLLARY. As t 9^ p tends to p} lim i f ' = ^ (Mo, f) and lim TV W TV = 
M0. In particular, F2 = F2^J Mo. 

THEOREM 3.2. F\ = Fi U {v} and every point of Fi is elliptic. 

Proof. Let p\ £ Fi tend to p £ Mo such that ax = {v, f, p\) is a plane for 
each £x. Let a be a limit plane of a\. Then {v,f,p} C ^1 and by 3.1, a C\ Fi is 
either 5 1 (Mo, f) or a loop if*. Thus a H A = (a H Fi) U {?} and £ = .̂ 
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Let r G Fi. Since Fxr\ F2 = {v} and w(r) P M0 5* {?}, 7r(r) H F is not 
connected and r must be elliptic. 

COROLLARY. l.Letpr\M0={v\. Then (3 P Fi w *fte / ^ of p C\ F. 
2. Lei r G F2. FÂew x(r) P A = 0. 

Proof. Clearly, 1 implies # and /3 P Fior fi C\ F2 is the loop of £ P i7. Since 
Fi Ç. E, p P Fi does not contain any inflection points. 

3.3. Let 0 P Mo = {*>}. Then /3 H A = ^ S W J S where Jr
1 P J S = 

{v, pp}. Since p$ is the inflection point of /3 P F, J S and J S are incompatible. 
We may assume that 51(Afo, ^ ) and J S f J S ] are compatible [incompatible]. 
Then 1.3.3 (with L = M0) yields that S1(M0, r) and J S f J S ] are compatible 
[incompatible] for all r G F i t ^ ] ; r ^ *>. 

Let £ G M0\{^}. Let w(£) be an open neighbourhood of p in F2 such that 

(l) u(p) = Wl(^) w (w(p) p Mo) u «2(^) 
where U\(p) and «2(/>) are open disjoint regions not meeting M0. 

L e t / / G Ui(p) be arbitrarily close to p; {i, j} = {1, 2}. Then p' is arbitrarily 
close to p in some aC\ F2 where {p, p') C a; M0 (£ a. Since ?r(£) is n or r2, 
(7r(̂ >) P I a) P F = {p} yields that p is an inflection point of a P F. Thus 
\{p,p')r\u(p)\ = 3and(p , p')r\Uj(p) ^ 0. 

LEMMA 3.4. Under the hypotheses of 3.3, fe/ rx ^^ « sequence in ^~\\v\ 
[-̂ ~V\{ v)] converging to v. Then Sl(Mo, rx) converges to v[M0]. 

Proof. Since (M0, rx) tends to n or r2, {̂ } C lim S1(M0, rx) Ç M0. 
Let rx tend to i> in J S and let JS,x be the subarc of J S with the end points 

v and rx. Then JS,x converges to ^ and, from 3.3, JS.x and 51(M0, rx) are in­
compatible for each rx. From 1.2,JS.x and Sl(M0, rx) are contained in different 
closed half-spaces bounded by r2 and 7r(rx). Then rx close to v and J^S.x arbi­
trarily small imply that S^Mo, rx) is arbitrarily large. Clearly, S1(Mo, rx) 
converges to Mo. 

Le t£ G Mo\{^} and let u(p) satisfy 3.3 (l).Thenp G lim S 1 ^ , rx) implies 
that p G lim(tt(p) P SU^o, rx)). In fact, 3.3. yields that 

p £ lim (Ui(p)n S1 (Mo, rx)); i = 1, 2. 

Obviously, there is a w'(/>) ^ w(p) satisfying 3.3 (1) such that for p' G 
u'(p)\M0, p' G S1 W>, rx) for some rx G ^"2. Then w'(/>) P ^ (Mo, rx') = 0 
for rx' G in t (J r i ) and the lemma follows. 

3.5. Let r G F2. In view of 3.4, Sl(Mo, r) is the boundary of an open region 
F2(M0,r) C ^2 such that M0 P F2(Mo,r) = 0. Then l imSU^o, r) = {»} 
implies that lim C1(F2(M0, r)) = {?}. Clearly, F2(M0} r) satisfies 2.6 and thus 
contains elliptic points. Hence, F2C\ E ^ 0 with v G C1(F2 P £ ) . 

From 3.3, 1.3.2 and 1.3.3, F2 also contains hyperbolic and parabolic points. 
We note that r2 = ir(p) for p G Mo\{v} from 3.4. 
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FIGURE 1 

THEOREM 3.6. Let F be biplanar with the binode v, 1(F) = 1. Then F = 
A W A where ftPl A = {v}, every point of F\ is elliptic and P2 is described 
in 3.0 and 3.5. 

We refer to Figure 1 for a representation of F. The surface in P 3 defined by 
#i3 + #23 + Xo2x2 + XiX2Xz = 0 satisfies 3.6 with v = (0, 0, 0, 1). 

4. F with two lines; /(*>) = 1. 

4.0. Let F be biplanar with the binode v\ 1(F) =/(*>) + 1 = 2. Let L0 and 
Mo = n P T2 be the lines of P. Then L0 P M0 is a point £0 ^ *>, (L0, M0) 
P F = L0 W Mo and r< P F = M0) i = 1,2. By 2.1.1, L0 C TT(M0). 

Let r Ç P, l(r) = 0. Then M0 H ^ (Mo , r) = {v} and if L0 <£ *(r), |L0 H 
SHicOl ^ 2. 

Let ^ i and ^ 2 be the open half-spaces of P 3 determined by n and r2. We 
assume L0 C ^ 2 and put P* = &\C\ F. Then (c/. Figure 2) L0 C A . 

LEMMA 4.1. 1. Let q £ L0. Then w(q) P Pi = 0. 
0. Le/ 0 H Mo = {?}. Then $ P A « «WJ ZOO£ of 13 f^ F. 

Proof. Since 7r(£0) = (Lo, M0) C A , we take q ^ p0. Then L C TT(?) ?-
7T(^0) implies that ir(q) C\ F is connected and Or(g) H rt) P F = \p0} ; i == 
1,2. Thus Lo C A yields that w(q) P P C A-

Clearly, 1/ is the double point of 0 Pi P = i f VJ J ^ VJ J S and i f is either 
0 P A or 0 P A. Since 7r(r) P Ç0r

1 P J S ) ^ 0 for r G L\{^}, P implies 2. 
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FIGURE 2 

THEOREM 4.2. ft = ft U (c| and every point of ft is elliptic. 

Proof. Fix f £ ft and apply 4.1 as in the proof of 3.2. 

LEMMA 4.3. Let rx be a convergent sequence in F\(M0 U L0). If lim (M0, r) = 
<M0| io)[r J, then lim S^Mo, rx) = M0 W L0M; i = 1, 2. 

.FW/. Since L0 C ir(Af0), lim (M0, rx) = (M0, L0) and 1.3.5 imply that 
lim (MQV S1(M0,rx)) = MQKJ L0. It is easy to check that in fact 
Hm51(Afo,rx) = I 0 U L 0 . 

Let £ € ATo\{ ,̂ £o} and let u(p) C ft satisfy 3.3 (1). Then (cf. the proof of 
3.4) u(p) C\ S^Mo, rx) = 0 for all (M0, rx> sufficiently close to <M0, Lo) by 
the preceding and the lemma follows. 

4.4. From 4.1, there is an rx Ç ft such that (L0, r\) C\ F = L0 \J {ri}. Thus 
there is an a0 through L0, sufficiently close to (L0, n ) , such that a0 ^ i7 = £o. 
Then a0 and ri or r2 decompose ft into two open disjoint regions, say fti and 
ft2, such that 

ft = fti W ft2, A i H ft2 = Mo^J U and 

ftUftiW^ = K ^1/(0 = o}. 
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Let Y G F2i. Then ao C\ F2 = L0 implies that Sl(MQ}r) C F2i and 4.3 
implies that S1(Mo, r) is the boundary of an open region F2i(M0, r) C F2i 

such that C\(F2i(Mo} r)) tends to v as S1(Mo, r) tends to v. Clearly, F2i(Mo, r) 
satisfies 2.6 and thus F2iC\E ^ 0 with y G Cl(F2 i H E ) ; i = 1, 2. 

The surface in P 3 defined by xx
3 + x2

3 + x0
2(^o + #2) + XiX2x3 = 0 satisfies 

4.0 with v = (0, 0, 0, 1), M0 = Xi = x2 = 0 and L0 = Xi + x2 = x3 = 0. 

THEOREM 4.5. Let F be biplanar with the binode v and the lines Mo = n r\ r2 

and L0; 1(F) = l(v) + 1 = 2. Then F = A U fti U P22 wfeere A = 
Fi VJ {^}, F2i = F2iVJ L0\J Mo, every point of Fi is elliptic and F2] and F22 

are described in 4.4. 

5. F with two lines; l(v) = 2. 

5.0. Let F be biplanar with the binode^; 1(F) = l(v) = 2. Let Mo = n Pi r2 

and Mi be the lines of F. Since M0 P\ Mi = {v}, we assume that r2C\ F = 
Mo U Mi. Then n n F = M0 and Mi C TT(M0). 

Let r 6 F, l(r) = 0. Then M0 H ^ (Mo, r) = {v\ and |Mi H ^ ( M i , r)\ = 2 
b y 2 . 1 . I f M i n 5 1 ( M i , r) = {?, g}, then 7r(g) = (Mi, r). Clearly, ir(g) ^ T ( g ' ) 
for g ^ g' in Mi\{^}. 

LEMMA 5.1. Le/ rx 6e a convergent sequence in F\(Mo ^J Mi). 
1. If lim (Mo, rx) = T2[n], then lim Sl(Mo, rx) = M0 U Mib]. 
2. If lim (Mi, rx) = r2, /ftew lim ̂ ^ M i , rx) w ei/Aer M0 or v. 

Proof. Since Mi C TT(M0), 1 follows as in the proof of 4.3. If lim (Mi, 
rx) = r2, then lim (Mi KJ S^Mi, rx)) = ¥ i U limSHMi, rx) is either M0 U 
Mi or Mi by 1.3.5. Since r2 ^ ir(q) for g G Mj\{v), we obtain that 

lim (Mi H 5UMi, rx)) = {?} and Mi <£ lim ̂ ( M i , rx). 

Thus Mi P\ lim SUMi, rx) = {*>} and 2 follows. 

5.2. Let 0 H (Mo U Mi) = {^}. Then ? is the double point of 0 H F - i f U 
J S U J S and (cf. 3.3) ^ (Mo, r) is compatible (incompatible) with J r , [ J r

i ] 
for all r € J ^ t ^ S ] ; r ^ *, {i,j} = {1, 2}. Similarly, ^ (Mo, r) and <£ are 
either compatible for all r G £ \ M or incompatible for all r £ L\{^}. 

Then (cf. the proof of 3.4) 5.1.1 implies that Sl(Mo,r) and J S f J S ] are 
compatible [incompatible] for all r G ^i[^Y], r ^ v, and S^Mo, r) and i f are 
compatible for all r G if\{i/}. 

5.3. Let ̂ 0 and <^\ be the open half-spaces of P 3 determined by n and r2. 
Let Ff = Ptr\ F, i = 1, 2. Then Fi U F2 = {r G F| /(r) = 0}. 

Since r Ç F, implies that Sl(Mo,r) C F*, bd(F<) = M0 U Mi by 5.1; 
i = 1, 2. 

Let 0 H (Mo UMi) = {v}. Then 0 H F = i f W J S U J S and 0 H F, 
is «if or J S U ^ . In either case, there is rx Ç /3 Pi Fj tending to ẑ  such that 
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lim (Mo, r\) = TX and limS^Mo, t\) = {*>}. Thus S1(M0l r\) is the boundary 
of an open region F*(M0, r\) C Ft such that Cl(F<(Mo, r\)) tends to v as 
S1 (Mo, t\) tends to *>. Clearly, F(M0, rx) satisfies 2.6 for each rx and ^ £ CI (Ft Pi 
£ ) ; * = 1,2. 

The surface in P 3 defined by x2
3 + Xo2x2 + ^o^i2 + XiX2x3 = 0 satisfies 5.0 

with M0 = Xi = X2 = 0 and Mi s x0 = x2 = 0. We observe in Figure 3 that 
F has a 'fold' in the neighbourhood of Mi due to \MX C\ S1(Mlt r)\ = 2 for 
r <E A (Mo VJ Mi) and the existence of loops (of 0 C\ F where l(v, 0) = 0) 
in F\ and F2. Clearly, both F\ and F2 contain hyperbolic and parabolic points. 

FIGURE 3 
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THEOREM 5.4. Let F be biplanar with the binode v and the lines M\ and 
M0 = TO H r2; 1(F) = l(v) = 2. Then F = FiU F2 where A C\ F2 = 
Mo V Mi and v G Cl(Ftr\E); i = 1,2. 

6. F with three lines. 

6.0. Let F be biplanar with the binode v\ 1(F) = / ( » = 3. Let M0 = 
ri Pi 72, Mi and M2 be the lines of F. 2.2.3, we may assume that T\ C\ F = 
Mo U Mi U M2 and r 2 H f = M0. Then 72 = TT(£) for all £ 6 M0\{v} by 
2.1.1. Let r G F, l(r) = 0. Then M0 H S^Mo, r) = {?} and |M< H S^M,, r ) | 
= 2; i = 1, 2. 

LEMMA 6.1. Z ^ rx be a convergent sequence in F\TI. 

1. If lim (Murx) = r^thenWm Sl(Murx) = Mj U Mk; {i,j, k) = {1,2,3}. 
2. If lim (M0, rx) = T2I /Aen lim SU^o, rx) w ei/Aer M0 or v. 

Proof, cf. 1.3.4 and the proof of 3.4. 

6.2. Let v be the double point of p H F = <£ U J S U J S . As in the previous 
sections; S^Mo, r) and «if are either compatible for all r G ££\\v\ or incom­
patible for all r G L\{v\ and S^Mo, r) and J^J^~ ;-] are compatible [incom­
patible] for all r (E ^ [ ^ 1 ; r ^ v, {i,j} = {1, 2). 

Let Jtifo andJf^i be the closed half-planes of n determined by Mi and M2. 
We assume that Mo C«^V If f\ is a sequence in F\TI such that lim (Mo, 
f\) = TU then 6.1.1 and 2.1.1 imply that 

lim CUintSHMo, rx)) = Hi. 

LEMMA 6.3. Let v Ç, $ C\ F = <£ W J S U#"2 , /(>, 0) = 0. I/' 0 H n C 

^ o [ ^ i ] , /feew ^ (Mo, r) and S^ are compatible [incompatible] for all r £ L\{y), 
51(Mo, r) and^i are compatible [incompatible] for all r £ 7 î\{z^}. 

Proof. There are rx ^ v in «if [ J S ] tending to *> such that 13 C\ n = lim (Virx). 
Clearly, 

/3Pi7i C ^ i = limCUintSUMo, rx)) 

if and only if ^ (Mo, rx) and <if [J^i] are incompatible for all rx close to v. Now 
apply 6.2. 

6.4. Let SP1 and ^ 2 be the open half-spaces determined by 71 and 72. Let 
Ft = ëPtr\F and fix a 0* such that v £ 0* H F = ^ * W J S * U . f 2*, 
/(y, 0*) = 0 and 0* H n C ^ i . We assume that p* H Fi = £>* and 0* C\ P2 = 

LEMMA 6.5. bd(Fi) = M0 U Mi U M2 and bd(F2) = Mx U M2. 

Proof. Clearly, Mx U M2 C ^1 H F2 by 6.1.1. 
Let r G Z\. Then S 1 ^ , r) meets L * \ M at an r*, Sl(M0, r) = Sl(M0, 

r*) and S1(Mo, r*) and<if * are incompatible. If r* G L*\{y} tends to v such that 
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lim (Mo, r*> = r2, then (cf. the proof of 3.4) lim S^Mo, r*) = M0 by 6.1.2 and 
6.3. Thus bd(Fx) = M0U Ml U I 2 . 

By a similar argument, r* Ç int(P2*) C ^2 tending to v implies that 
lim Sl(M0} r*) = W and thus bd(P2) = Mx U M2. 

THEOREM 6.6. Every point of Fi is hyperbolic. 

Proof. Let r' 6 Pi. Then ^(Mo, r') = S^Mo, f*) for some r* Ç if*. 
Put (3* C\^fl = TV*. Clearly, *> is the double point of (N*, r) C\ F = 

Lr \J FUr \J F2,r for each r £ S1 (Mo, r ') , r ^ ?. If r G ̂ (Mo, r') tends to 
? ?£ v, then lim «if? = «if r and lim ^ 1 ^ U P2>f = Pi,r ^ p2,F; cf. the proof of 
3.1. Thus 

5 = ( r G SHMo, r')l ^ ^ ^ and r Ç Lr} 

is open and closed in 51(Afo, r')\{v}, a connected set. Since r* £ 5, 5 = 
^ (Mo, r ' ) \ M and r' G £ r ' C (N*, rf) f\ F where N* C ^ i . By 6.3 and 1.3.2, 
r' is hyperbolic. 

6.7. Let r* tend to ? in int(JS*). Then HmSUMo, r*) = {v} and S^Mo, 
r*) is the boundary of an open region F2(M0, r*) C F2 such that C1(P2(M0, 
r*)) tends to v. Clearly, F2(M0, r*) satisfies 2.6 for each r* and v 6 C1(P2 Pi E). 
By 6.3 and 1.3.2, P2 also contains hyperbolic points. 

The surface in P 3 defined by Xi3 — x2
3 + x0

2x2 + Xix2x3 = 0 satisfies 6.0 
with Mo = xi = x2 = 0, Mi = Xi = x0 + x2 = 0 and Af2 = Xi = x0 — 
x2 = 0. In Figure 4, we observe that the loops of fi C\ F(l(v, £) = 0 and 
5 P I T I C ^ i ) form the boundary of a hole in P. 

THEOREM 6.8. Let F be biplanar with the binode v and the lines M\, M2 and 
M0 = n n r2; 1(F) = l(v) = 3. Then P = Pi U P2 where bd(P) = M0 U 
Mi U M2, bd(P2) = Mi U M2, gz/er̂  /ww/ 0/ Pi is hyperbolic and *> Ç CI 
(F2C\E). 

7. F with four lines. 

7.0. Let F be biplanar with the binode v\ 1(F) = l(v) + 1 = 4. Let 
Mo = T\ C\ r2, Mi and M2 be the lines of F through v and let L0 C F with 
i/ g L0. By 2.2.3, we may assume that n H F = l o W ^ U I j and r%C\ F 
= M0. Then L0 meets M0 at £0 ^ ?, Po Pi (Mi W M2) = 0, (L0, M0) 
H F = Lo U Mo and P0 C TT(MO). 

Let r G F, /(r) = 0. Then MoC\Sl(Mo,r) = {v}, \L0 H Sl(L0, r)\ = 2 
and J Mi P\ ^ (M*, r)\ = 2 ; i = 1, 2. Let rx be a convergent sequence in 
F \ ( T I U L 0 ) . 

1. If lim (Mt, rx> = ri, then lim 5HMt-, rx) = M;- U MA; {i, j , k) = 
{0, 1,2}. 

2. If lim (Mo, rx> = (M0, L0> [r2], then lim ^ (Mo, rx) = M0V L0[v]. 
3. If lim (L0, rx) = (M0, L0), then lim S1 (L0, ^x) is either M0 or p. 
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FIGURE 4 

7.1. Let v be the double point of 0 H F = i f VJ#"x \J J S . Let r G i f \ { ^ 
tend to ? such that lim (M0, r) = r2. Then lim S^MQ, r) = {V\ and (cf. the 
proof of 3.4) S1(Mo, r) and S£ are compatible for r sufficiently close to v. 
Similarly, S1(Moy r) and J S are compatible for r sufficiently close to v in 

By 1.3.3, L0 H i f = 0 implies that S^Mo, r) and i f are compatible for all 
Y 6 Z,\{?} and Lo H (#"i U J S ) = 0 implies that SX{M^ r) and J S l ^ S ] are 
compatible [incompatible] for all r £ J r

2 [ ^ r i ] , r ^ v. 
LetJ^o andJ^ i be the closed half-planes of ri determined by Mi and M"2, 

LEMMA 7.2. Le* ^ ( 3 H F = i f U J i U ^ , /(*>, 0) = 0. 77œw L0 H 
i f 5* 0 # and only if p C\ n C ^ i . 

Proof. If rx is a sequence in F\n such that lim (Mo, r\) = n , then lim 
Cl(int S^Mo, r\)) = J^ i . Now apply 7.1 and compare the proof of 6.3. 
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7.3. ^Let &\ and ^ 2 be the open half-spaces determined by n and r2, 
Po C &I. Then (Mo, Po) is the common boundary of two open quarter-spaces 
of Pi , say Pn and Pi2. We assume that n C ^ u ; ^ = 1, 2. 

Let P H = Pu H F and P2 = ^ 2 H P. Then 

P n W P i 2 w p 2 = K PUO) = o}. 

Fix a |8* such that ^ £ £* P P = i^7* U J V * W J S * , /<>, /?*)_ = 0 and 
0* P n C ^ i . Then P0 meetsif * at a point Z0 ^ , /3* H ( P n W P12) = i^7* 
and pC\ F2= J S * U J S * . Let B P Fu = if,*. Then i f x* and i^2* are the 
subarcs of «if*, with the end points ^ and /0 and ££ i* P i f 2* = {^,/0}. If r* tends 
to i/ in L**\{y}, then lim (Mo, r*) = n\ i = 1, 2. From 7.1 and the proof of 
6.3, SHM'o, r*) and ifi*[i^2*] are incompatible [compatible] for all r f 
int(ifi*)[int(if2*)]. 

LEMMA 7.4. bd(Pn) = P0 U M0 U Mi VJ M2, bd(Pi2) = P0 W M0 and 
bd(P2) = M i U M 2 . 

Prw/ . If r 6 Pn, then S^Mo, r) = S^Mo, r*) for some r* € int(i?i*). If 
r* e int( if i*) tends to /0H, then lim S^Mo, r*) = M0 U P0[Mi U M2] from 
7.0. Thus bd(Pn) = U W Mo U Mi U M2. 

By similar arguments, we obtain the other two boundaries. 

THEOREM 7.5. Pe/ F be a biplanar surface satisfying 7.0. P&ew 

P = Pn U Pi2 W P2 

wAerg every /w>z2 o/ Fn is hyperbolic, v £ Cl(P i 2 H P) awd y £ C1(P2 H P) . 

Proof, cf. 6.6 and 6.7. 

We observe in Figure 5 that the loops of /3 P F(l(v,/3) = 0 and /3 P 
n C ^ i ) again form the boundary of a hole. The surface in P 3 defined by 
Xi3 + %23 + x0

2(xi — x2) + XiX2x3 = 0 satisfy 7.0 with M0 = X\ = x2 = 0, 
Mi = Xi = x0 + x2 = 0, M2 = xi = x0 — x2 = 0 and P0 = x\ — x2 = 
x3 + 2xi = 0. 

8. P with six lines. 

8.0. Let P be biplanar with the binode v\ 1(F) = / (» + 2 = 6. Let 
Mi, 0 ^ i ^ 3, be the lines of P through v, Mo = T I H r2. We assume that 
n P P = Mo U Mi U M2. Then r2r\ F = M0^J M, and M3 C ir(M0). 

By 2.1.4, (M3, Mj) P P contains a third line P„ j = 1, 2. Clearly, 
Pi P P2 = 0 and Ï/ (? Pi U P2. Let P., Pi M, be the point q^ and P,- P M3 be 
the point g./3. 

Let r € P, /(r) = 0. Then M Q P S U ^ O , r) = {*}, \M\ P S1 (M"„ r) | = 2 
for i = 1, 2, 3 and |P;- P S1^^, r)\ S 2 for j = 1, 2. Let rx be a convergent 
sequence in P, /(rx) = 0 for each rx. Since M3 C 7r(M0), lim (M0, rx) = r2 

implies that lim ^ (Mo, rx) = M0^J M% and lim (M3, rx) = r2 implies that 
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FIGURE 5 

lim Sl(Mz, r\) is either Mo or v. The limits of the plane sections through the 
other lines of F are immediate. 

Let v be the double point of 0 C\ F = i f \J #"i \J ^ 2 . Since M0 C\ 
(Lx U L2) = 0, 51(Mo, r) exists for r G (0 H F)\{i/}. Let Jf0 and ^ be the 
closed half-planes of n determined by M\ and Af2, M0 C ^ o - We observe 
that 6.2 and 6.3 are true for this F. Arguing as in the proof of 6.3, we obtain 

LEMMA 8.1. Let a = (M, f) where f £ F, 1(f) = 0. / / aC\n C ^ o P ^ i ] , then 
Sl(Mo, r) and Sl(Mz, f) are compatible [incompatible] for all r £ Sl(Mz, f)\Mz. 

8.2. Let &o and ^ \ be the open half-spaces determined by (M2j Mi) and 
<M3, Af2), Mo C ^ o . Then ^ H n = Jf7,- (j = 0, 1) and r2 is the common 
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boundary of two open quarter-spaces of SP o, say & o\ and & 01. We assume that 
(Mu Lt) C Pou i= 1, 2. 

Let f\ be a convergent sequence such that l(rx) = 0 for each rx and lim (Mz, 
r\) =jr2. We assume that lim Sl(Mz, rx) = MQ[V] as (Mz, rx) tends to r2 in 

Let f! = ^ n F, Foi ^ ^ o i H F and F02 = ^02 H F. Clearly; 

F,U Foi^J F02 = {r e F\l(r) = 0}, 

l i U ^ U I i U ^ C bd(Fi), Mi ULi C bd(Foi) and M 0 W ¥ 2 U L 2 C 
bd(F02). 

LEMMA 8.3 Le/ v be the double point of (3 C\ F = <£ U J S U J S , ^ n 
C ^ i . FAenif C\ ^01 = 0 a«d ( J S U J S ) H ^02 = 0. 

Proo/. Since £ C\ n C ^ i , i ^ H &x j± 0 and either i f Pi ^01 = 0 or 
i f n ^ 0 2 = 0. By 6.3, S1 (Mo, r) and i f are incompatible for all r G L\{*/}. 

Let rx 6 i f \ ^ i tend to ». For each rXf <M8| rx> C ^ 0 , <M8, rx) H n C ^ o 
and thus S1(Mz, rx) and i f are incompatible by 8.1 and the preceding. Then 
S'(Mz, rx) converges to M0 (cf. 8.0 and 3.4) and ^f C ^ i W ^02 from 8.2. 
Thus, i f H ^01 = 0 and ( ^ U J S ) n ^02 = 0. 

THEOREM 8.4. E^ery .^ow/ of Fx U E02 w hyperbolic. 

Proof. Let r 6 EL Then <M3, r) C &i and <M3, r) H n C ^ i . By 8.1 and 
1.3.2, r is hyperbolic. 

Let r G -F02 and choose N C ^ 1 such that N C\ F = {*>}. Then » is the double 
point of (iV, r) C\ F = ^ U J S W J S . By 8.3, 6.3 and 1.3.2, r is hyperbolic. 

8.5. The points v, qn and g23 are mutually distinct. Let Mz* be the closed 
segment of Mz, with the end points v and qn, such that g23 $ M3*. Let A0 and 
Ai be the triangles determined by Mi, L\ and Mz*. Then v, qn and gi3 are the 
vertices of A0 and Ai. 

Let r 6 F01 and put M3 H S^Mz, r) = {v, qr}. As Sl(Mz, r) tends to Mi U 
£ i H , 9> ^ *> tends to gi3|>] and thus Ë0i P M3 is either Af3* or Cl(Af3\M3*). 
Since (M2, L2) <Z Ë01, 323 ë ^01 H M3 and in particular 

bd(Foi) = I i W l ! U M3* = A 0 U A,. 

As |Af3 H 5 1 (^3 , 01 = 2, this implies S^Afs, r) C\ F01 is the union of two 
open disjoint sets. It is immediate that 

Foi = Go^J Gi 

where Go and Gi are open disjoint regions such that Sl(Mz, r) C\ Go and 
S1(Mz,r)r\Gi are the maximal connected subsets of S1(Mz, r) C\ Foi. 
Obviously, bd(G0) is either A0 or Ai. We assume that bd(G0) = A0, then 
bd(Gi) = Ax and G0 H & = Mz* VJ {qn}. 

From 8.2, there is a sequence rx in Foi such that lim S1(Mz, r\) C\ Gj = {v\ ; 
j = 0, 1. Clearly, S1(Mz r\) C\ Gj is the boundary of an open region Gj (Mz, 
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FIGURE 6 

r\) C Gj such that C\(Gj{Mz, rx)) tends to v and G](Mz, rx) satisfies 2.6 for 
each rx. Thus v £ Cl (G, C\ E) ; j = 0, 1. 

We observe in Figure 6 that there are two holes in this surface. Also, there is 
an r' d Fx such that L\ C\ S1(Lil rf) = 0 and for any r G F with /(r) = 0, 
\L2 H 5H^2 , r)\ = 2 with g22 £ int S 1 ^ , r). 

The surface in Pz defined by XiX2x3 + x0
2x2 + x0Xi2 — x2

3 = 0 satisfies 8.0 
with Mo = Xi = %2 = 0, Mi = Xi = x0 + x2 = 0, ilf2 = xx = x0 — x2 = 0, 
•M3 = x0 = x2 = 0, L\ = x0 + x2 = x3 — Xi = 0 and L2 = x0 — x2 = Xi + 
x3 = 0. 
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THEOREM 8.6. Let F be a biplanar surface satisfying 8.0. Then 

F = F1 U Fo2 U Go \JGi 

where every point of Fi U ^02 is hyperbolic and v G C1(G; C\E)\ 7 = 0, 1. 

9. F with ten lines. 

9.0. Let F be biplanar with the binode v\ 1(F) = / (» + 5 = 10. Let Mu 

0 g i S 4, be the lines of F with M0 = rx C\ r2, n Pi 7? = M0 W Mi W M2 

and T2 H F = M0 W M3 U M4. By 2.1.1, there is an L0 C F such that 
L0 Pi Mo is a point £0 ^ v, (Mo, L0) H F = M0 ^ £0 and LQ C TT(M0). 

By 2.1.4, (Mit Mj)r\ F contains a third line Lu\ i£ { l , 2}and jG {3,4}. 
Clearly M§C\Ln = 0, L0 P\ L0- is a point Z0- and Ltjr\Lki = 0 when 
{i, 7} C\ {k, 1} ^ 0. Since L0 C TT(M0) and L24 H M2 ^ 0, 1.3.6 implies that 
l((L0, L24)) = 3 and L24 H (Xi4 P £23) = 0 implies that Z,13 C (L0, L24). 
Similarly, L14 C (Lo, L2z). 

Let r G F, /(r) = 0. Then M0 H ^ (Mo, r) = {?}, |M* H ^ ( M , , r)\ = 2 
for & = 1, 2, 3, 4, I L O H ^ ^ O , r) | ^ 2 and |L„ H S^L^, r)\ ^ 2 for 

i G {1, 2} and 7 G {3, 4}. Let rx be a convergent sequence in F, /(rx) = 0 for 
each r\. 

1. If lim (Mo, n) = ri[r2], then lim S 1 ^ , rx) = Mi \J M2[MZ \J M4]. 
2. If lim (Mo, rx) = <M0, L0>, then lim S^Mo, rx) = M0 U L0. 
3. If lim (L0, rx) = (Mo, L0), then lim 51 (L0, r\) is either M0 or v. 

9.1. Let */ be the double point of 0 H F = i f U J S VJJS . Let ^ 1 0 and 
j f 11 [^20 and «^21] be the closed half-planes of n[r2] determined by Mi, 
M2[M3, M4]. We assume that M0 = ^ 1 0 n j f 2 o - As in sections 6 and 7, we 
obtain the following: 

1. If 0 r\ n C ^ \ i [ ^ < o ] for i = 1, 2 then L0 C\3? = 0, ^ (Mo, r) and i f 
are incompatible [compatible] for all r G L\{v} and ^ (Mo, r) and Fk(k = 1,2) 
are incompatible [compatible] for r sufficiently close to v in F^\{^}. 

2. Let {i,j\ = {1, 2}. If (3 C\ rt C Hi0 and p C\ r3; C HjU then L0 meetsS£ 
at a point /. Let i f 1 and i f 2 be the subarcs of i f such that 

i f = i ^w^ 2 , ^ n y 2 = {,,/} 

and lim (M0, r) = ri[r2] as r 7^ v tends to v in i f i[if2]. Then ^ (Mo, r) and 
i f t(if ;] are compatible [incompatible] for all r G int(L*)[int(L ;)]. 

9.2. Since L0 H Mi = 0, 9.0.3 clearly implies that 

Mi = [m G Mi| m G T(1) for some / G L0} 

is a proper closed segment of Mi with the end points v and (say) w0. Since 
7r(/) depends continuously on l G L0, it is easy to check that m G 7r(/) for 
exactly two / G £0 for each m G int(Mi). Le£/0 G L0 such that 7r(/o) = (L0, w0). 
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As (L0, Lu) ^ (L0, L24), we may assume that 7r(/0) 3̂  (L0, LU, P23). Then 
(Lu, L23) P int(Afi) 7e 0, lu 9^ hz and £0 G £0, the closed segment of L0 

bounded by / i4 and hz which contains /0. 
Without loss of generality, we may assume that {/24, /13} C L0. Then /0 is 

contained in the closed segment L0* of £ 0 bounded by /24 and /13. If Po* = IM, 
then 7r(/o) = (£24, £13) and L0, P24 and Lu are concurrent. If L0* ^ {/o}, then 
there is an r0 6 P such that/(>o) = 0 and P0 P «S îPo, fo) = {h}. 

9.3. Let ^ 0 and &i be the closed half-spaces of P 3 determined by (Mi, Mz) 
and (M2, M4>, M0 C ^ 0 . Then £0 6 @\ and 9.2 imply that 

^ P P o ^ P o * , Lnr\LuC^i and ^ ^ 1 ^ / ^ , 
î e {0, 1} and j € {1,2}. 

If L0* ^ (M» let G\ be the closed triangular region of ^ \ H P, bounded by 
Po* and segments of P13 and P24, which does not contain v. If P0* = {/o}, let 
Gi = {/o}. WeputFx = C l ( ( P i n P)\Gi) .Then 

^ i H F = F i U Gi. 

THEOREM 9.4. 1. If r £ Pi such that l(r) = 0, / / ^ r is hyperbolic. 
2. ifGi 9* {lo}, thenGxC\E ^ 0. 

Proof. Let j8 = (?, /*, n ) where L13 H P24 = {/*} and r1 Ç Pi, / (n) = 0. 
Then y is the double point of p P F = & U J S U J S and 0 P Ti C^n, 
i = 1, 2. By9.1.1,51(M0 , r ) a n d i f are compatible for all r £&\{p}. 

If P0* = (Mi then /* = l0 and TT(/0) H P = P0 U P13 U P24 imply that /* is 
the inflection point of (3 H P. If P0* ^ {/0}, put 0 H P0* = {/'}• T h e n 0 H 
(Pi P Gi) = {/*,/'}, /' Ç TT(/*) and y g Gi imply that the inflection point of 
(3 P P is contained in Gi. In either case, 9.1.1 clearly implies that Sl(Mo, r) 
and ^ k are incompatible for all r G i n t ( P i n J r 0 ; ft = 1, 2. By 1.3.2, 
ri G Pi P (o^7 U J^ i U J S ) is hyperbolic. 

From 9.3, it is immediate that a non-empty int(Gi) satisfies 2.6. 

9.5. Let &o' and <^V be the closed half-spaces of P 3 determined by n and r2, 
L o C ^ o ' . Then L I 4 n i M C ^ i ' and {/*} = L18 H P24 C ^ 0 ' . We now 
examine int(P0 n P / j f l F . 

Let 0 = <>, /*, r), r G int(P0 H P / ) Pi P. Then (3 C Po, ? is the double 
point of 0 P F = & U J S U#~ 2 , p P T , C ^ o (* = 1, 2) and P0 P - ^ 
= 0. Thus Lo C ^ 0 ' implies that 0 Pi in t (^V) H P = P\{^}. Finally, 
Pi4 P P2 3 C ^ i H ^ Y yields that 

(L14 u p23) p in t (^ 0 P ^V) = 0 

and /(r) = 0. 
Let £ G Mo\{v}. Since L0 C ^ V P P and Lo C n(p), there is an open 

neighbourhood u(p) oi p in Psuch that u(p) C <^Y- Hence, 

M 0 P C l ( i n t ( ^ o P ^ Y ) P P) = {?}. 
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Obviously, i n t ( ^ 0 H ^ 7 ) is disconnected and i n t ( ^ 0 H <^Y) H ^consists 
of two maximal open disjoint regions, say Go and Go'. By the preceding, we 
may assume that 

bd(Go) Ç M i U M3UL13 and bd(G0
/) C M2 U M± U L24. 

Then 

i n t ( ^ 0 n ^ 7 ) n F = GoVJGo' where G 0 n G 0 ' = M . 

Let ft 9^ (Mi, Mz) converge to (Mu Mz) in ^ 0 . Then ft H Go' = 0 and 
ft H Go is the loop of ft H F for ft sufficiently close to (Mi, Mz). Thus 
lim(ft P\ Go) is a curve of order ^ 2. It is easy to check that lim(ft P Go) is 
a triangle in (Mi, Mz) P <^Y P abounded by segments of Mi, Mz and L13. 

Thus Go and (similarly) Go' are bounded triangular regions in F. Clearly, 
each region satisfies 2.6 and thus contains elliptic points. From 9.0 and 1.3.4, 
each region also contains hyperbolic and parabolic points. 

9.6. Let ^ 1 * and <^2* be the closed quarter-spaces of SP Ô determined by 
(Mo,L0). We assume that Ti C SP? and put F0i = (&<* P &0) C\ F; 
i = 1, 2. Then 

(1) ( ^ n ^ o ' ) n F = F 0 1 UF 0 2 , 
(2) ^ 0 P F = Foi W F02 W Go W Go' and 
(3) F = Foi U F02 U Fi U Go U G0' U GL 

THEOREM 9.7. / /> Ç Foi ^ F02 swc& /Aa/ /(r) = 0, then r is hyperbolic. 

Proof. We recall that ^ 1 is a closed half-space bounded by (Mu Mz) and 
(Mz, MA) such that SPX P (Mi, M2) = 3fn and Pi P (Mz, M4> = ^ 2 1 . It is 
easy to check that p G &i if and only if (M*, £) H jff2i ^ \v\ for i = 1, 2 or 
(Mhp)C\jea * \v) forj = 3,4. 

Let r Ç F0i /(r) = 0. Since r é ^ 1 , we may assume that (Mi, r) H j f 2 i 
= {*/}. Then there is an Ni C ^ n arbitrarily close to Mi, such that Ni P F 
= jï/j and (TVi, r) P ^ 2 1 = {P}. Then (iVj, r) P ^ 2 0 is a line iV2; iV2 P F 

= M-
Let 0 = <#!, iV2). By 2.1.2, */ is the double point oi $ C\ F = <£ \J&x 

U J S . By 9.1.2, LoC\^ ^ 0 and therefore i f ^ ^ ^ (/3 P ^ / ) 
P F = # ' 1 U i r

2 a n d 

(pp&>o') r^ F = [pn (0>i*u^2*)] n F = ^iU^2. 

Clearly, (0 P ^1*) H F = <£x and (0 H ^ 2 * ) P F = <£2. As r € 0 H F0i 

C ^ H ^ ! * P F = i f 1, ^ (Mo, r) and i f j are incompatible by 9.1.2 and r 
is hyperbolic by 1.3.2. 

By a similar argument, we prove the theorem for the points of ^02. 

In Figure 7, we represent the lines of F with L0* 9^ \U\ and in Figure 8, we 
represent F with L0* = {/o}. We observe that there are two holes in this 
surface, \Li± C\ Sx{Li±, r)\ = |Z23 Pi 51(L23, r)\ = 2 for any r £ F with 
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FIGURE 7 

l(r) = 0 and there are points r' and r" in F such that L24 C\ S1(L2A, r') = LUC\ 
Sl(L13,r") = 0. 

The surface in P 3 defined by X]X2x3 = (xi + x2)(xi2 + ^22 — x0
2) satisfies 

9.0 with Mo = Xi = x2 = 0, Mi = xx = x0 — x2 =? 0, M2 = %\ = x0 + x2 

= 0, Mz = x2 = x0 — Xi = 0, 7kf4 = x2 = x0 + xi = 0, L0 = x3 = xx -f 
x2 = 0, L14 = x3 — 2(xi + x2) = x0 + Xi — x2 = 0, L23 = x3 — 2(xi + 
x2) = Xo — Xi + x2 = 0, Lu = x3 + 2(xi + x2) = x0 — Xi — x2 = 0, 
L2A = x3 + 2(xi + x2) = Xo + Xi + x2 = 0 and Z0* = {h} = (0, 1, — 1, 0). 

THEOREM 9.8. Let F be a biplanar surface satisfying 9.0. Then 

F = Foi W Fo2 U f t U G o U Go' U Gi 
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FIGURE 8 

where every r £ Foi ^J F02 W Fi with l(r) = 0 is hyperbolic and Go, GV and Gi 
are described in 9.3 through 9.5. 
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