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BIPLANAR SURFACES OF ORDER THREE
TIBOR BISZTRICZKY

0. Introduction. A surface of order three, F, in the real projective three-
space P? is met by every line, not in F, in at most three points. F is biplanar if
it contains exactly one non-differentiable point » and the set of tangents of F at
v is the union of two distinct planes, say 7; and 7.. In the present paper, we
classify and describe those biplanar F which contain the line 7, M 7.

We describe a surface by determining the tangent plane sections of the
surface at the differentiable points. This approach was introduced in [1] and it
is based upon A. Marchaud's definition of ‘‘surfaces of order three' in [4].

We denote the planes, lines and points of P? by the lettersa, 8, ...; L
M, ...; and p, g, ... respectively. For a collection of flats a, L, p, ... ;
{a, L, p, . . .)denotes the flat of P? spanned by them. For a set .# in P3, (M) is
the flat of P? spanned by the points of A.

)

1. Surfaces of order three.

1.1. A surface of order three F in P3, is a compact and connected set such that
every intersection of F with a plane is a curve of order <3 and there is a plane
B such that 8 M Fis a curve of order three which does not contain any lines.

Plane curves are defined by means of parameter curves. A parameter curve C
is a continuous map from a line M = {m, m/, ...} into a plane . A line T is
the tangent of Catm € M if T = lim (C(m), C(m')) as m' # m tends to m.
C is differentiable if the tangent 7" of C at m exists for every m € M and
[T M C(M)| < . C is degenerate if C is injective and C(M) is a line. C is
totally degenerate if C(M) is a point (isolated).

Let C be differentiable, C(M) C a. Then p € C(M) is simple if p = C(m)
has a unique solution m € M. We introduce (cf. [6]) the characteristic
(ao(m), a1(m)) of C(m), a;(m) = 1 or 2, and say that L meets C at m with
multiplicity ag(m) + ar(m)lao(m)] if C(m) € L C a and L is (is not) the
tangent of C at m. C is of order n if n is the supremum of the number of points
of M, counting multiplicities, mapped into collinear points by C.

If Cis of order two (three), we denote C(M) by S'[Fx!]. Every point of an
St is simple and an Fx! contains at most one point ¢ (double point) such that
g=C(im) =C@m'), m=m'. A simple point of an F,' is an ordinary,
inflection or cusp point if it has the characteristic (1, 1), (1, 2) or (2, 1)
respectively; cf. [3] and [1]. A degenerate C is considered to have order one
and an isolated point is counted with multiplicity two.
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A (plane) curve T is the union of a finite collection of sets Cy (M) where the
C\'s are parameter curves. A line 7" is a tangent of T at p if T is the tangent of
some Cy atm, p = G(m) C G(M) C T. The order of T is the supremum of
the number of points of T, counting multiplicities on each Gy, lying on any line
not in T.

Let T be of order n, n = 3. If » = 1, then T is a straight line. If n = 2,
then T is an S! or an isolated point or a pair of distinct lines. If # = 3, then T
is (1) an Fy! or (47) the disjoint union of an F4! and either an S! or an isolated
point or (772) the union of a line and a curve T’ of order two.

We denote a T of order three satisfying (z) or (iz) by F'. Then there is an
Fe ' C FL

1.2. Let F be a surface of order three. Let a be a plane through p, p € F.
Then p is regular in Fla M F] if there is a line N in P3[a] such that p € N and
[N M F| = 3. Otherwise, p is irregular in Fla M F]. We note that there is at
most one point » irregular in @« M F if « M Fis an F! and such a v is a cusp,
double point or isolated point of a M\ F. Finally,

I(p,a) ={LCa| p€ LCF|=la)=|{LCeo LCF}=3.

If Fis non-ruled, that is, F is not generated by lines, then I(F) = |{L C P3|
L C F}| < o0 and F contains at most four irregular points.

Letp € F. Aline T is a tangent of Fat p if T is a tangent of « M F at p for
some « through p. Let 7(p) be the set of tangents of F at p. Then p is differen-
tiable if p is regular ina M Fand 7(p) is a plane 7 (p); otherwise, p is singular.

Henceforth, we assume that every regular p in F is differentiable and = (p)
depends continuously on p.

Let p be a regular in F. Then p € T C #(p) implies that T C F or
|T M F| 2. Thus, I(p) = |{LC P} pe€LCF} =1LUp n(p)) and p is
irregular in = (p) M F. If I(p) = 0, then p is an isolated point, cusp or double
point of w(p) M F and we call p elliptic, parabolic or hyperbolic respectively.

Let » be irregular in F. If [(F) < oo, thenv € T C 7(v) if and only if either
v €T C For TN\ F = {y}. Moreover, 7(v) is a plane or the union of two
distinct planes or a cone of order two with the vertex »; ¢f. [5].

Let.# be a closed connected subset of S! or Fy!. If the end points of F are
distinct (equal), then F is a subarc (subcurve). We note that a subarc of Fy!,
containing only ordinary points in its interior, is of order two.

Let p € F be regular. Let.# (p) be the set of all subarcs# of order two in F
such that p € # ¢ =(p). Let {(F , F'} CZ (p). ThenF and ' are p-com-
patible if there isa 8 C P*\{#p} and an open neighbourhood u (p) of p in P? such
that u(p) N (F UZ’) is contained in a closed half-space of P? bounded by
7(p) and B. Otherwise # and F ' are p-incompatible.

A pair of subarcs #, and F, are compatible [incompatible] if there is a
p €F 1 NF, such that {(F 1, F .} CF (p) and F , and & , are p-compatible
[p-incompatible].
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We consider a subcurve as an element of # (p) if it containsa subarc # such
that p € # C.Z (p). In this sense, we say that a subcurve is compatible or
incompatible with an element of % (p).

1.3. For proofs of the following results, we refer to [1] and [2].
1. If p is regular in F and isolated in « M F, then p is elliptic and a = = (p).

2. Let p be regular in F, [(p) = 0. Then (i) p is elliptic if and only if #
and %" are compatible for {# %'} C% (p) and (i) p is hyperbolic if and
only if there exist incompatible # and %’ in % (p) such that p € int(F) N
int(F").

3. Let#' C Fsuch that#' € # (p) for each p € % '. Let L be aline such
that L ¢ (#"') and for each p € #', thereis an ¥ p € Z (p) with L C (¥ p).
If % p depends continuously on p, then # ' and % p are either compatible for
all p € # ' or incompatible for all p € % .

4. Let pr[an] be a sequence of points (planes) converging to p(a); pr € ax
for each .

(a) If a M Fis not of order two or « M F does not contain an isolated point,
then lim(ax N F) = a N F.

(b) If pr isa cusp (isolated point) of ax M F for each A, then /(p) = 0implies
that p is a cusp (isolated point or cusp) of a M Fanda M F = L \U S'implies
that L M St = {p}.

5.Let yM F=L\UL" such that vy = «(p) for p € L\L'; L = L’. Let
ar[Br] be a sequence of planes through L[L’] converging to v; v # B for
each \. Then lim(ay M F) = v M F and there is a subsequence 3\" of B\ such
that either im (B M F) = L\J L' or lim B M F = L’. (We shall simply say
that lim (B M F) is either L\J L’ or L'.)

6. Let vy M F be of order two. Theny N F = LU L', L # L', and either
L' C w(p) for every regular p € L (inshort, L’ C n(L)) or L C w(q) for every
regularg € L' (L C w(L")).

2. Biplanar surfaces.

2.0. Let F be a surface of order three. A pointv € Fisa binode if v is irregular
in Fand 7(v) is the union of two distinct planes, say 7, and 7. F is biplanar
if Fis non-ruled and contains a binode » as its only irregular point.

We wish to examine those biplanar F which contain the line 7; M 7,. Unless
stated otherwise, we assume that F is biplanar with the binode » where
() =1 Ureand 7, N7, C F.Sincev € T Cr(v)ifandonlyifv € T C F
or TN F={v}, ) =l )+ Il 1) £6. Then My =7, N\ 72 C F im-
plies that 1 < I(v) < 5.

LEmMA 2.1. Letv € B suchthatB (M ryisaline Ny, 1 =1, 2.
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1. If Mo = Ny = Ny, then either B\ F consists of My and an S* such that
My St = {yborBNF = My\J Lwherev ¢ Land L C w(M,).

2. If l(v, B) = 0, then v is the double point of 8 M F.

3. If NyC Fand N; N\ F = {v}, then B M\ F consists of N, and an S* such
that IN,N\ S = 2andv € N;N S {4, 7} = {1, 2}.

4. Ifl(l/, ﬁ) = 2, thenﬁf\ F = N1 U N2U Lm where v € le.

Proof. We note that » € w(p) if and only if (v, p) C F for p € F\{»} and
v € L Z 71\U 7, implies that |[L M F| = 2. The lemma now follows by listing
all possible (8 M F)’s.

LEMMA 2.2. 1. For {p, p'} C Mo\{v}, 7(p) = =(p').
2. If l(ry) = 2fori = lor2,thent; = w(p) for p € M\{»}.
3. If l(v) = 3, then I(r;) = 3 fori =1 or 2.

Proof. By 2.1.1, we may assume that w(p) is 71 or 7o for p € M\{v}. As
7 (p) depends continuously on p, I follows.

Leti(ry) = 2andputrs; N\ F = M,\J M;; {i,7} = {1,2}. By 1.3.6, either
M, C w(M,) or My C w(M,). Let N; C 7;such that N, F = {»}. By 2.1.3,
(M, NyNF = M;\US"where M; N\ S' = {», pi}, v # p,. Then 7(p,;) =
(M, N;) # ryand M, C w(My).

Clearly, 2 implies 3. -

THEOREM 2.3. Let F be biplanar with the binode v, 71\ 7o C F. Then F 1s
one of the following types: (1) I(F) =1(») =1; (2) I(F) =2 and I(v) = 1;
B) UF) =10)=2; (¢4) UF) =1k =3; (6) (F) =4 and I(») = 3;
B)YIUF) =6andl(v) =4; ()I(F) = 10andl(y) = 5.

Proof. Apply 2.1 and 2.2 witheach I(v), 1 = I(») = 5.

2.4. It is easy to check that if F is biplanar with the binode » and one of the
types listed in 2.3, then 7, M\ 7o C F.

Let v € 8 such that I(v, 8) = 0. By 2.1.2, v is the double point of 8 N F;
thatis, BN F =X UF, UF, where X N\ (¥, UF,) = (v}, F1NF,
= {»y, ps} (ps is the inflection point of 8N F) and .& is the loop of 8 N F.
We note that . is a subcurve of order two and {% |, % 2} C.% (ps). We will
always assume that lim(v, 7) C r;as7 tends tovin F\{v}; 7 =1, 2.

In the following sections, we examine the surfaces listed in 2.3 by determining
the existence and distribution of the elliptic, parabolic and hyperbolic points.
By way of preparation, we have the following definitions and results.

2.5. Let St C F, a = (S'). We denote by int S!, the open disk of o bounded
by S!, and we put ext S' = o\Cl(int S?).

Let L C Fandr € F\Lsuch that (L, ) M F consists of L and S'. We denote
this S by S'(L, ).

Let I(E) be the set of parabolic (elliptic) points of F. From 1.3.4, E is open
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and {r € bd(E)| I(r) = 0} € I. In each of the surfaces we examine, it will be
immediate that E = @ if and only if I = 6.

THEOREM 2.6. Let F be a surface of order three. Let G be an open region in F
such that ao N G = @ for some oy, bd(F\G) = bd(G), (bd(G)) is a plane
and r 1s regular in F with [(r) = 0 for each v € G. Then G\ E # 0.

Proof. We note that any line in a plane (F,!) meets Fy! and thus, any line
in P?® meets F.

Let » € G and put L = ayMN (bd(G)). Then LN G = @ implies that
LN (F\G) # 0 and (L,7) N\ G is an S' or an isolated point of (L, 7) M F.
Obviously, ay G = @ implies that there is an 7, € G such that (L, ro)
NG = {7’0}. Then 7o € E with 7I'(T()) = <L, 70) by 1.3.1.

3. F with one line.

3.0. Let F be biplanar with the binode », I(F) = 1. Then M¢=r1MN\ 7. CF
and 7, F = M,y; 1=1,2. By 2.1.1, (Mo, 7) N F = My\J S"(M,, r) with
My SY (M, r) = {v} for r € #\M,. We note that S*(M,, 7) € F(r); cf. 1.2.

Let M My = {v}. Then v is the double point of SN F = ¥ UF | UF,.
We fix a point 7 € L\{r} and let &, and &, be the open half-spaces of P?
determined by 7; and 7. Put F; = &, M F and assume that 7 € F,. Then
BN F =%, BN F, =%,U%;and

FI\J F, = {r € F|l(r) = 0}.

We fix a point p € M\{v} and choose T C 71 such that p € T # M,. Then
B, = (v,7,t)isa plane fort € T (8 = B, say),

BN\ F = Mi\JSY (M, 7?) CF and B, NF =L UF ' UF
t # p.

LEMMA 3.1. L C Fy for all t € T\{p}.

Proof. Let T'(¢) = {t € T| L' C Fy}, i =1,2 Letttendtof s pin T(7).
Then 8, N F; = %" converges to 87/ F,, which is L* or F;*\J F;* Since
lim.%t cannot be a curve of order three, we obtain that

Fr=limL'=1limB,N F, =8:N F,.
Thus £ € T(z) and 7'(2) is closed. Then T\{p} = T (1) U T'(2) and ¢’ € T(1)
imply that 7°(2) = @.

COROLLARY. As t # p tends to p, lim £t = SU(M,, 7) and lim F,*\J F,t =
M. In particular, Fy = Fy\JU M,.

THEOREM 3.2. F, = F,\J {v} and every point of F, is elliptic.

Proof. Let py € F, tend to p € M, such that ay = (v, 7, p») is a plane for
each px. Let a be a limit plane of ay. Then {», 7, p} C Fyand by 3.1, a M F, is
either S1(My, 7) or aloop.Z*. Thusa M\ Fy = (@M F) U {v} and p = ».
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Let r € Fy. Since [y N\ Fy = {v} and =(r) N\ M, # {v}, =(r) N\ F is not
connected and » must be elliptic.

COROLLARY. I. Let 8 M My = {v}. Then 8 M F; is the loop of 3 M F.
2. Letr € Fo. Then w(r) M Fy = 0.

Proof. Clearly, I implies 2 and 8 M\ F, or 8 M\ Fy is the loop of 8 M F. Since
F, C E, B M Fydoes not contain any inflection points.

3.3.Let BN Mo = {v}. Then BN Fy =%, UF, where F, NF, =
{v, ps}. Since pg is the inflection point of 8 N F, % ,and% ,are incompatible.
We may assume that S!(M,, ps) and % |[F 4] are compatible [incompatible].
Then 1.3.3 (with L = M,) yields that S'(M,, ) and F [ 1] are compatible
[incompatible] for all » € Fi[F.]; 7 # ».

Let p € Mo\{r}. Let u(p) be an open neighbourhood of p in F, such that

(1) w(p) = ua(p) \J (u(p) N Mo) \J us(p)

where u,(p) and u2(p) are open disjoint regions not meeting M.

Let p’ € u;(p) be arbitrarily close to p; {7, j} = {1, 2}. Then p’ is arbitrarily
close to p in some a M Fy where (p, p') C a; M, Z a. Since 7(p) is 71 or 74,
(r(p) Na) N\ F = {p} yields that p is an inflection point of @ M F. Thus
IKp, p) N u(p)| = 3and (p, p") M u;(p) = 0.

LeEMMA 3.4. Under the hypotheses of 3.3, let r\ be a sequence in F \{v}
[F \{v}] converging to v. Then S'(M,, r) converges to v[ M,).

Proof. Since (M, n) tends to 7, or 74, {r} C lim S'(M,, rn)  M,.

Let 7, tend to » in% , and let.# 5, be the subarc of % , with the end points
v and r\. Then.% ,, converges to » and, from 3.3, % », and S'(M,, r\) are in-
compatible for each 7,. From I.Q,fu and S*(M,, r\) are contained in different
closed half-spaces bounded by 7, and 7 (r). Then r, close to » and % , , arbi-
trarily small imply that S'(M,, r\) is arbitrarily large. Clearly, S'(M,, r\)
converges to M,.

Let p € M,\{»} and let u(p) satisfy 3.3 (1). Then p € lim S'(M,, r\) implies
that p € lim(u(p) M S (Mo, n)). In fact, 3.3. yields that

p € lim (u;(p) NS (Mo, n)); ©=1,2.

Obviously, there is a #'(p) C u(p) satisfying 3.3 (1) such that for p’ €
w (p)\M,, p' € S1(M,, n) for some 7, € %, Then o' (p) N\ S (Mo, ') =0
for n/ € int(# ;) and the lemma follows.

3.5. Let r € F,. In view of 3.4, S'(M,, r) is the boundary of an open region
Fo(My, r) C Fs such that My M Fo(My,7) = 0. Then lim S'(M,, 7) = {»}
implies that lim CI(Fo(M,, r)) = {v}. Clearly, F.(M,, r) satisfies 2.6 and thus
contains elliptic points. Hence, Fs M E # @ with » € CI(F, N E).

From 3.3, 1.3.2 and 1.3.3, F; also contains hyperbolic and parabolic points.
We note that 7, = 7 (p) for p € Mo\{r} from 3.4.
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THEOREM 3.6. Let F be biplanar with the binode v, I[(F) = 1. Then F =
Fy\J Fy where Fy M\ Fy = {v}, every point of F, is elliptic and F is described
in 3.0 and 3.5.

We refer to Figure 1 for a representation of F. The surface in P? defined by
%1% 4 x93 4 x0%xs + x1x2x3 = O satisfies 3.6 withv = (0,0, 0, 1).

4. F with two lines; I(v) = 1.

4.0. Let F be biplanar with the binode »; I(F) = I(») + 1 = 2. Let L, and
My = 71 M\ 75 be the lines of F. Then Ly M M, is a point po #= v, (Lo, My)
NF=LyJ Myand7; \ F = My;2 = 1,2. By 2.1.1, Ly C 7(M,).

Letr € F, I(r) = 0. Then My N\ S (My,7) = {v} and if Lo Z =(r), |Lo N
Sl(Lo, f)l é 2.

Let £, and:_@z be the open half-spaces of P? determined by 7; and .. We
assume Lo C %, and put F; = & ;N F. Then (¢f. Figure 2) Ly C Fo.

LEmMMA 4.1. 1. Let ¢ € Ly. Then w(q) N Fy = 0.
2. Let BM My = {v}. Then 8 M\ F, is the loop of B8 M F.

Proof. Since w(po) = (Lo, M) C Py, we take g % po. Then L C w(q) #
7 (po) implies that w(¢) M F is connected and (w(q) M 7;) N F ={po}; 1 =
1,2. Thus Ly C F, yields that w(¢g) N\ F C Fo.

Clearly, v is the double point of BN F =¥ U ZF |, UF, and ¥ is either
BN Fyor BN Fy Since w(r) N (F 1 NF,) # @forr € L\|»}, 1. implies 2.
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FIGURE 2

THEOREM 4.2. F; = Fy \U {v} and every point of F, is elliptic.
Proof. Fix 7 € F; and apply 4.1 as in the proof of 3.2.

LeEMMA 4.3. Let r\ be a convergent sequence in F\ (Mo \J Ly). If lim (M,, r) =
(My, Lo)[73], then im S* (Mo, ) = Mo\J Lo[v]; 1 =1, 2.

Proof. Since Lo C w(Mo), lim (Mo, n) = (Mo, Ly) and 1.3.5 imply that
lim (Mo \J SY (Mo, n)) = Mog\J Lo. It is easy to check that in fact
lim SY(M,o, n) = My \J L.

Let p € Mo\{», po} and let u(p) C F; satisfy 3.3 (1). Then (cf. the proof of
3.4) u(p) NS (Mo, n) = 0 for all (M,, rn) sufficiently close to (M,, Ly) by
the preceding and the lemma follows.

4.4. From 4.1, there is an 7; € F; such that (Lo, 71) "\ F = Ly \J {r1}. Thus
there is an «p through Lo, sufficiently close to (Lo, 1), such that ag M F = L.
Then a and 7; or 72 decompose F, into two open disjoint regions, say Fs; and
Fs, such that

Fz = Fgl U Fn, lem Fn = MouLo and
F1 UF21 UFzz = {7’ E Fll(?’) = O}
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Let 7 € Fy;. Then agM Fy = L, implies that S'(M,,r) C Fe; and 4.3
implies that S'(M,, ») is the boundary of an open region Fy,(M,,7) C Fy;
such that C1(Fy;(M,, 7)) tends to v as S'(M,, 7) tends to v. Clearly, Foi (Mo, )
satisfies 2.6 and thus Fo; NV E # @withv € Cl(Fy; VE); 1=1,2.

The surface in P? defined by x1® + x2® + x® (o + x2) + x1x2x3 = O satisfies
4.0 withy = (0,0,0,1), My=2x, =%, =0and Lo =x; + x2 = x3 = 0.

THEOREM 4.5. Let F be biplanar with the binode v and the lines Mo = 71 (M 14
and Lo, U(F) =10)+1=2 Then F= F\J Fyy\J Foy where F, =
Fi\U v}, Faoy= Fou \J Lo \J M, every point of Fy is elliptic and Fyy and Fa
are described in 4.4.

5. F with two lines; /(v) = 2.

5.0. Let F be biplanar with the binode v; [(F) = [(v) = 2. Let My = 7. M\ 7
and M, be the lines of F. Since M, M\ M, = {v}, we assume that 7, N\ F =
My\J M;. Then 7.\ F = Myand M, C 7 (M,).

Letr € F,I(r) = 0. Then My N SY(M,, r) = {v} and |M; N SY (M, )| =2
by 2.1. If My N\ S (M, r) = {», ¢}, thenn(q) = (M, r). Clearly, v(q) #= 7(¢")
for ¢ # ¢ in M\ {»}.

LEMMaA 5.1. Let r\ be a convergent sequence in F\ (M, \J M,).
1. If im (M, r) = 72[71], then lim S' (Mg, r\) = Mo \J M,y[v].
2. If im (M, r\) = 7o, then lim SY(M,, r\) is either Mg or v.

Proof. Since M, C w(M,), 1 follows as in the proof of 4.3. If lim (JM;,
7’)\> = T2, then lim (AMl U Sl(Ml, 7’)\)) = A{l Y limSl(Ml, 7’)\> is either 1M0 V)
M, or M, by 1.3.5. Since 72 # w(q) for ¢ € M,\{r}, we obtain that

lim (M, N SY (M1, n)) = {v} and M;  lim SY(My, ).
Thus M; N lim S* (M, n) = {»} and 2 follows.

5.2. Let 3 M (M,\J M;) = {v}. Thenis the double pointof 8 N\ F = . U
F1UZF, and (¢f. 3.3) S(M,,r) is compatible (incompatible) with % ,[F ;]
for all r € # [F]; r # v, (4,5} = {1,2}. Similarly, S1(M,, 7) and & are
either compatible for all » € L\{r} or incompatible for all € L\{»}.

Then (cf. the proof of 3.4) 5.1.1 implies that S'(M,, r) and & [F ;] are
compatible [incompatible] for all » € Fy[F,], 7 # v,and S'(M,, r) and.¥ are
compatible for all » € £\ {»}.

5.3. Let 2, and &, be the open half-spaces of P? determined by 7, and 7.
Let F;=P,NF, 1=1,2.Then F;,\U Fy, = {r € F|l(r) = 0}.

Since 7 € F; implies that SY(M,,r) C F;, bd(F;) = M,\J M, by 5.1;
1 =1,2.

Let 8N (My\UM,) = {»}. Then SN F =L UF , UF, and BN F,
s or ¥, \UZ,. In either case, there is r, € 8 /M F, tending to » such that
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lim (Mo, ) = 71 and lim S*(M,, n) = {»}. Thus S'(My, n.) is the boundary
of an open region F;(My, n) C F; such that CI(F,(M,, n)) tends to » as
SY(M,,n) tends to v. Clearly, F(M,,r\) satisfies 2.6 for each r, and » € CI(F; N
E), 1=1,2.

The surface in P? defined by x2® + xo%xs + x0x12 + x1x203 = O satisfies 5.0
with My = x; = x2 = 0 and M; = xy = x2 = 0. We observe in Figure 3 that
F has a ‘fold’ in the neighbourhood of M, due to |M; N S' (M, r)| = 2 for
r € F\(M,\J M,) and the existence of loops (of 8/ F where I(v,3) = 0)
in F; and F,. Clearly, both F; and F; contain hyperbolic and parabolic points.

FIGURE 3
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THEOREM 5.4. Let F be biplanar with the binode v and the lines M, and
Mo= 10N 1y; LF) =1w) =2 Then F= F\JF, where F, N\ F, =
My\J Myandv € CL(F;\E); 1=1,2.

6. F with three lines.

6.0. Let F be biplanar with the binode »; [(F) = I(v) = 3. Let M, =
71 M\ 12, M1 and M, be the lines of F. 2.2.3, we may assume that 7, M F =
My\J M;\J My and 72\ F = M, Then 7o = w(p) for all p € M\{»} by
2.1.1. Letr € F,1(r) = 0. Then M, N SY(M,,7) = {v} and |M; N S (M, 7)|
-2 i=1,2

LEMMA 6.1. Let 7\ be a convergent sequence in F\ri.
1. Iflim (M, n) = 71, thenlim SY(M;, n) = M;\J M; {4,7, k} = {1,2,3}.
2. If lim (Mo, rn) = 79, then lim SY (Mo, r\) 1s either My or ».

Proof. cf. 1.3.4 and the proof of 3.4.

6.2. Let » be the double pointof N\ F = ¥ UZ, UZ,. Asin the previous
sections; S'(M,, r) and £ are either compatible for ail » € £ \{»} or incom-
patible for all » € L\{»} and S*(My, 7) and F (% ;] are compatible [incom-
patible] for all r € F# [F ]; r #», {3,5} = {1, 2}.

Let %, and %, be the closed half-planes of 7, determined by M, and M.
We assume that M, C5%,. If 7\ is a sequence in F\r; such that lim (1,
7) = 71, then 6.1.1 and 2.1.1 imply that

lim Cl(int SY(M,, n)) = Hi.

LEMMA 6.3. Let v € BN F =L UF L UF,, 1(nB) =0. If 8N C
Ao Ay, then SY (Mo, r) and L are compatible [incompatible] for all v € L\{»},
SY(My, r) and F 1 are compatible [incompatible] for all v € Fi\{»}.

Proof. There are ry # v in.¥[# 4] tending to » such that 8 N 7; = lim {nn).
Clearly,

B f\ T1 C%I = llm Cl(lﬂtSI(Mo, 7’)\))
if and only if S*(M, ) and £ [ ,] are incompatible for all 7, close to ». Now
apply 6.2.

6.4. Let £, and £, be the open half-spaces determined by 7; and 7. Let
F;=2,NF and fix a B* such that » € B* N F = L* UZF * U F*,
I(v, B*) = Oand g* N 7y CH#1. We assume that g* N\ F; = L*and g* M 7y =
F U F

LEMMA 6.5. bd(Fl) = ]‘Io U ]l/[l U M2 and bd(Fz) = M1 ) Mz.

Proof. Clearly, M;\J M, C F; "\ F, by 6.1.1.
Let » € Fi. Then S'(M,, r) meets L*\{»} at an r*, S'(M,,r) = S'(M,,
r*) and S (M, r*) and £ * are incompatible. If r* € L*\{»} tends to » such that
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lim (Mo, r*) = 75, then (cf. the proof of 3.4) lim S'(M,, r*) = M, by 6.1.2 and
63 ThUS bd(Fl) = Mo U M} UMz

By a similar argument, 7* € int(Fy*) C F, tending to » implies that
lim S*(M,, r*) = {»} and thus bd(F,) = M;\U M.,.

THEOREM 6.6. Every point of F1 is hyperbolic.

Proof. Let v’ € Fy. Then SY (M, ') = S'(M,, r*) for some r* € L*,

Put g* N, = N*. Clearly, » is the double point of (N* 7)Y N\ F =
L,\J F,,,\J F,, for each » € S'(My,7"), r #Zv. If r € S (M, ') tends to
7 # v, then lim¥7 = %, and lim% ,,\U Fy 7 = F;,\U F, 5; cf. the proof of
3.1. Thus

S ={re S (Myr)rs#v and r € L,}

is open and closed in S'(My, 7")\{r}, a connected set. Since 7* € §, S =
SY(M,, ¥ )\{v} and ' € L, C (N*, 'Y N F where N* C.#,. By 6.3 and 1.3.2,
v’ is hyperbolic.

6.7. Let 7* tend to » in int(Z 2*). Then lim S'(My, 7*) = {v} and S'(M,,
r*) is the boundary of an open region Fy(M,, r*) C F. such that Cl(Fy(M,,
7*)) tends to ». Clearly, Fo(M,, r*) satisfies 2.6 for each r* and » € CI(F. N E).
By 6.3 and 1.3.2, F; also contains hyperbolic points.

The surface in P? defined by x;® — x2% 4+ x02xs + x1x2x3 = 0 satisfies 6.0
withMy=x,=2=0, Mi=x1=%+2% =0 and M;=x, = x9 —
x2 = 0. In Figure 4, we observe that the loops of 8\ F(l(»,8) = 0 and
B N 1y C#4) form the boundary of a hole in F.

THEOREM 6.8. Let F be biplanar with the binode v and the lines M,, M, and
Mo = T]ﬂ T2, Z(F) = l(V) =3. Then F = Fl U Fz where bd(F) = M()U
M \J M,, bd(Fs) = M1\J M,, every point of Fi is hyperbolic and v € Cl
(Fo M\ E).

7. F with four lines.

7.0. Let F be biplanar with the binode »; I(F) =1I(») +1 = 4. Let
My =71, 71, M;and M, be the lines of F through v and let Ly, C F with
v & Lo. By 2.2.3, we may assume that 7\ F = MU M;\JU Myand 72N\ F
= Mo. Then Lo meets Mo at Po # v, Lom (Mlu Mg) = 0, <Lo, Mo>
ﬂ F = Lo U Mo and Lo C W(Mo).

Let » € F, I(r) = 0. Then MM SY (Mo, 7) = {v}, |[LoN\ S (Lo, 7)| =2
and | M, N SY(M;r) =2; i=1, 2. Let n, be a convergent sequence in
F\(Tl U Lo)

1. If lim (M, n) =7, then lim S'(M;n) = M;\J M, {1, j, k} =
{0, 1, 2}.

2. Ifllm <M0, 7’)\> = <M0, Lo) [Tz], then lim Sl(Mo, 7)\) = Mo U Lo[l’].

3. If lim (Lo, ) = (Mo, L), then lim S'(Ly, 7,) is either M, or v.

https://doi.org/10.4153/CJM-1979-044-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-044-3

408 TIBOR BISZTRICZKY

Ficure 4

7.1. Let » be the double point of 8N F =¥ UF, UF,. Let r € L\{v}
tend to » such that lim (M,, 7) = 5. Then lim S'(M,, ) = {v} and (cf. the
proof of 3.4) S'(M,, r) and . are compatible for » sufficiently close to ».
Similarly, S*(M,, 7) and %, are compatible for » sufficiently close to » in
F\{v}.

By 1.3.3, Ly N\ .Y = @ implies that S1(M,, ) and ¥ are compatible for all
r € L\{v} and Ly N\ (¥, UZF,) = @ implies that S!(M,, ) and F o[ F 4] are
compatible [incompatible] for all # € F o[ %], r # ».

Let 5%, and 5, be the closed half-planes of r, determined by M; and M,
My, CH,.

LEMMA 7.2. Let v € BNF =L JUF UF, I B) =0. Then LyN
& # @ if and only if 3N\ 71 CH L.

Proof. If r. is a sequence in F\r; such that lim (M,, n) = 7, then lim
Cl(int S*(M,y, n)) = 1. Now apply 7.1 and compare the proof of 6.3.
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7.3. Let Z; and &, be the open half-spaces determined by 7, and 7,
Ly C .. Then (M,, L) is the common boundary of two open quarter-spaces
of Py, say Py, and Py,. We assume that 1y C Pyy; i =1, 2.

LetF11=W1iﬂF and F2=g’gf\F.Then

FnU F12U F2 = {T E Fll(?’) = 0}

Fix a 8* such that » € B* N F = L*UF *UZF* I, B*) =0 and
B* M 7, CHy. Then Lymeets.¥* atapointly # », B* N (F, U Fpy) = £*
and BN Fo = F ¥ UZF* Let BN Fy, = % * Then %* and Z.* are the
subarcs of £*, with the end points v and lgand £ * N\N.L* = {v, l,}. If r* tends
to » in L*\{»}, then lim (M,, r*) = 7;; 4 = 1, 2. From 7.1 and the proof of
6.3, SY(M,, r*) and Z *[¥*] are incompatible [compatible] for all 7 €
int (& 1*)[int (£ 5*)].

LEMMA 7.4. bd(F]]) = Lo V) Mo V) M1 U Mz, bd(Flz) = Lo U Mo and
bd (Fy) = M, \J M.,.

Proof. If v € Fy1, then S'(M,, r) = S'(M,, r*) for some r* € int(&L*). If
r* € int(Z1*) tends to l[v], then lim S*(My, 7*) = My \J Lo[M,\J M,] from
70 Thus bd(Fu) = Lo U Mo U Ml U Mz.

By similar arguments, we obtain the other two boundaries.

THEOREM 7.5. Let F be a biplanar surface satisfying 7.0. Then
F=Fu\UF,UF,
where every point of Fiy1s hyperbolic,v € Cl(Fio M E) andv € CI(F; N E).
Proof. cf. 6.6 and 6.7.

We observe in Figure 5 that the loops of 8/ F(l(»,8) = 0 and B8N
71 C 1) again form the boundary of a hole. The surface in P? defined by
%1% 4+ %23 + xo2(x; — x2) + x1xoxs = 0 satisfy 7.0 with My = x; = x, = 0,
M15x1=x0+x2=0, M25x1=x‘0'—x'2=0 and Lole—x2=
x3 + 2x; = 0.

8. F with six lines.

8.0. Let F be biplanar with the binode v; I(F) = I(v) +2 = 6. Let
M;, 0 =1 = 3, be the lines of F through v, My = 7; M 7.. We assume that
Tlm F = MOUM1UM2. Then sz F = MOUM3and MaCﬂ'(Mo).

By 2.1.4, (M;, M;) "\ F contains a third line L;, j =1, 2. Clearly,
LiNLy=@andv & L;\J L,. Let L; M M, be the point ¢;; and L; M M; be
the point ¢3.

Let r € F, I(r) = 0. Then M, N\ S' (Mo, 7) = {»}, | M. N\SY(M;, r)|=2
fors=1,2,3and |L,\NS'(L;, r)| £ 2forj =1, 2. Let . be a convergent
sequence in F, I(n) = 0 for each .. Since M3 C 7w (M), lim (Mo, n) = 72
implies that lim S'(Mo, n) = Mo\J M; and lim (M3, n) = 7o implies that
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lim SY(Ms3, ry) is either M, or ». The limits of the plane sections through the
other lines of F are immediate.

Let » be the double point of SN F =% \U%,;\U%, Since M, N
(Ly\U Ly) = @, SY(M,, r) exists for » € (8 N F)\{»}. Let 7, and 3", be the
closed half-planes of 7; determined by M; and M,, M, C ¢, We observe
that 6.2 and 6.3 are true for this F. Arguing as in the proof of 6.3, we obtain

LeEMMA 8.1. Leta = (M, 7Y where 7€ F, 1(7) =0.If a N\ 1y CHo[H 1], then
S (Mo, ) and S' (M3, 7) are compatible [incompatible] for all r € S*(Ms, 7)\ M.

8.2. Let #, and 21 be the open half-spaces determined by (M, M) and
(M3, My), My C Po. Then P, N7y =5, (j =0,1) and r, is the common
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boundary of two open quarter-spaces of 17 say P and 2. We assume that
(M, L) C Pyy, 1=1,2.

Let 7\ be a convergent sequence such that /(r) = 0 for each 7, and lim (113,
n) = 7o. We assume that lim S'(Ms, n) = Mo[v] as (M3, r) tends to 75 in
(@02[‘@01]-

Let /y = P N\ F, Fp=%uNF and Fy = Pe N F. Clearly;

Fi1\U Fo U Foo = {7 € F“(’) = 0},

M1 U Mg UL1 U Lz C l)d(Fl), M1 ULl C bd(F()l) and Mo U ]‘12 U L2 C
bd (Fy2).

LEMMA 8.3 Let v be the double point of BN F =¥ UF, UF, 8N
C%l. Thengf\ﬁm = ﬂ(md (ﬁlufz)m?m = ﬂ

Proof. Since 8N 7, CHy, L NP, #0 and either L NPy =0 or
LN Py = 0.By 6.3, S (M, r) and £ are incompatible for all 7 € L\{»}.

Let , € X\Z; tend to v. For each n,, (M3, n) C Po, (Ms, 1) N\ vy CHy
and thus S'(M3, n) and ¥ are incompatible by 8.1 and the preceding. Then
S1(Ms, n) converges to M, (cf. 8.0 and 3.4) and ¥ C £, U Py, from 8.2.
Thus,.Z NPy =B and (F1UF,) NPy, = 0.

THEOREM 8.4. Every point of F1\J Fy is hyperbolic.

Proof. Let r € Fy. Then (M3, vy C %y and (M, r) N 7, C#1. By 8.1 and
1.3.2, r is hyperbolic.

Letr € Fysand choose N C 5, such that NN\ F = {»}. Then »is the double
pointof (N, rYN\ F =% UF,UZ, By 8.3, 6.3 and 1.3.2, 7 is hyperbolic.

8.5. The points v, ¢13 and g3 are mutually distinct. Let M3* be the closed
segment of M, with the end points v and ¢i3, such that ¢.3 ¢ Mz*. Let Ay and
A, be the triangles determined by M, L, and M;*. Then v, ¢11 and ¢; are the
vertices of Agand A;.

Letr € Fy, and put M; N SY (M3, 7) = {v, ¢.}. As S*(M3, r) tends to M, \J
Li[»], ¢, # v tends to qi3[v] and thus Fo M M3 is either M3* or Cl1(M;\M3*).
Since (M, LyY @ Foi, q23 ¢ For M Mj; and in particular

bd(["()]) = L] V) M1 U ]113* = Ao U A].

As | M3 M SY(M;, r)| = 2, this implies S'(M3, r) M Fyy is the union of two
open disjoint sets. It is immediate that

F()l = GoUGl

where G, and G; are open disjoint regions such that S'(M3,7) M Gy and
SY (M3, ) M G, are the maximal connected subsets of S'(Msj,7) M Fo.
Obviously, bd(G,) is either Ay or A;. We assume that bd(G,) = Ao, then
bd(G:) = Arand Gy N G = M3* \J {qu1}.

From 8.2, there is a sequence 7\ in Fo; such that lim S'(M3, ) N G, = {v};
j =0, 1. Clearly, S*(M3 rn) M G, is the boundary of an open region G; (M3,
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n) C G; such that CI(G,;(Ms3, r\)) tends to v and G,(M3, r\) satisfies 2.6 for
each 7,. Thus» € CI(G; N E); j=0,1.

We observe in Figure 6 that there are two holes in this surface. Also, there is
an v’ € Fy such that L; N\ S'(L,,7") = @ and for any r € F with I(r) = 0,
ILz f\ Sl (Lz, Y)[ =2 With q22 e il’lt Sl (Lg, 1’).

The surface in P3 defined by x1xsx3 4+ xo2x2 + x0x12 — x2* = 0 satisfies 8.0
with My=x,=%=0, Mi=x1=%+%=0, My=2x;=%x90— x2=0,
Miy=xo=%,=0, Li=xo+xs=x3—2%,=0 and Lo=x;— x2 = x1 +
X3 = 0.
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THEOREM 8.6. Let F be a biplanar surface satisfying 8.0. Then
F=F\V Fp\ G UG
where every point of F1\J Fos is hyperbolicand v € CI(G; N\ E); j=0,1.

9. F with ten lines.

9.0. Let F be biplanar with the binode v; [(F) = [(») + 5 = 10. Let M,
0 <17 =<4, be thelinesof Fwith My =717y, 71N\ F=M,\J M,\J M,
and 7N\ F = M,\J M;\J M, By 2.1.1, there is an L, C F such that
Lo N M() 1sa point Po = v, <M0, L0> NF = Mo U Lo and L() C W(Mo).

By 2.1.4, (M, M;) N F contains a third line L,;; ¢ € {1,2} andj € {3, 4}.
Clearly Mo\ L;; =0, Ly L;; is a point l;; and L;; M Ly, = @ when
{’i, ]} N {k, l} #= 0. Since Lo C W(Mo) and L24 N Mz # ﬂ, 1.3.6 1mp11es that
l((Lo, L24>) =3 and L24 M (L“ M ng) = ﬂ 1mp11es that L13 C <L0, L24>.
Similarly, L14 C <L0, L23>.

Letr € F, I(r) = 0. Then My N\ SY (M, 7r) = {v}, |MyN\SY(M;, 1) =2
for k=1, 2, 3, 4, |[LoMN S (Lo, 7)] £2 and [L;; NS Ly, 7)| £ 2 for
1 € {1, 2} and j € {3, 4}. Let »\ be a convergent sequence in F, I(r,) = 0 for
each .

1. If lim <Mo, 7’)\> = T1[T2], then lim SI(M(), 1’)\) = M1 U MQ[M;:, U M4].

2. If lim <M0, 7’)\> = <M(), Lo), then lim Sl(Mo, 1’)\) = Mo U Lo.

3. If lim (Lo, n) = (Mo, L), then lim S (L, 7\) is either M, or ».

9.1. Let » be the double point of BN F =¥ UZF, UF,. Let &5, and
Hn[H 9 and Hy1) be the closed half-planes of 7i[r:] determined by M;,
Mo[Ms, Mi]. We assume that M, = 10 N 5. As in sections 6 and 7, we
obtain the following:

LIfBN 7 CHu[H ] fori=1,2then LN =0, S M, r) and ¥
are incompatible [compatible] for all € L\{»} and S'(M,, 7) and F.(k = 1,2)
are incompatible [compatible] for 7 sufficiently close to v in F;\{»}.

2. Let {4,7} = {1,2}.1f 8N 7, C Hyand 8N r; C H;;, then L, meets ¥
at a point I. Let .¥; and .&; be the subarcs of & such that

Qg:glugm glﬂgz={v,l}

and lim (Mo, 7) = 71[r2] as 7 % » tends to v in Z,[.¥,]. Then S'(M,, ) and
L& ;] are compatible [incompatible] for all » € int(L,)[int(L;)].

9.2. Since Lo M M, = 0, 9.0.3 clearly implies that
M, = {m € My|m € =(l) for some I € Lo}

is a proper closed segment of M; with the end points » and (say) m,. Since
7 (l) depends continuously on [ € L, it is easy to check that m € w(I) for
exactly twol € Lyforeachm € int(M,). Letly € Losuch thatx(ly) = (Lo, m).
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As <L0, L14> # <Lo, L24>, we may assume that W(lo) #~ (Lo, L14, L23>. Then
(Lys, Log) N int (M) # 0, Ly # Iy and p, € Lo, the closed segment of L
bounded by l;4 and 53 which contains [,.

Without loss of generality, we may assume that {lss, 113} C Lo. Then I, is
contained in the closed segment L¢* of L, bounded by l54 and 5. If Lo* = {10},
then 7(ly) = (Las, L13) and Ly, Las and Ly3 are concurrent. If Lo* ## {lo}, then
thereisanry € Fsuch thatl(ro) = 0and Ly M S (L, 7¢) = {lo}.

9.3. Let ) and &, be the closed half-spaces of P3 determined by (M, M;)
and (M, My), My C Py Then py € P and 9.2 imply that

ﬁlmL():Lo*, L23HL14C@1 and :@if\n:)f”,
1€ {0,1} and j€ {1,2}.

If Lo* # {ly}, let G, be the closed triangular region of 2, N F, bounded by
Lo* and segments of L3 and Ly, which does not contain ». If Lo* = {l¢}, let
G1 = {lo}. Weput F, = CI((P. N F)\G1). Then

ﬁlmF=F1UGl.

THEOREM 9.4. 1. If r € Fysuchthatl(r) = 0, then r is hyperbolic.
2. If Gy # {lo}, then Gy "\ E # 0.

Proof. Let B = (v, I*, 1) where L1z Loy = {I*} and r, € Fy, I(r;) = 0.
Then » is the double point of BN F =¥ UZF , UF, and 8N r; CH 4y,
1= 1,2 By9.1.1, S} (M,, r) and ¥ are compatible for all » € L \{»}.

If Lo* = {lo}, then I* = [y and 7 (lp) N\ F= Ly\J Ly3\J Loy imply that [* is
the inflection point of 8 M F. If L¢* # {lo}, put M Lo* = {I'}. Then 8N .
(FiNGy) = (%'}, ' € #(I*) and » ¢ G, imply that the inflection point of
B M F is contained in G;. In either case, 9.1.1 clearly implies that S'(M,, r)
and &, are incompatible for all 7 € int(F;, % ,); k=1, 2. By 1.3.2,
rn € FLN (& UF, UZF,) is hyperbolic.

From 9.3, it is immediate that a non-empty int(G,;) satisfies 2.6.

9.5. Let ¢ and &, be the closed half-spaces of P? determined by 7; and 73,
L() Cﬁo'. Then L14 M L23 C @1/ and {l*} = L13 M L24 C ?0/. We now
examine int(Py M\ P;/) M F.

Let 8 = (v, I*,7), 7 € int(Py\P/)N F. Then 8 C Py, v is the double
point of BN F=YL UF UZF, BN, CHyw @G =1,2) and LyNY
=@. Thus L, C %, implies that BN int(#,) N\ F = L\{v}. Finally,
L14 N L23 C t@l N @1/ y1€ldS that

(L14 U ng) f\ iﬂt(go f\ yll = ﬂ

and /(r) = 0.
Let p € Mo\{»}. Since Lo C %y N\ F and L, C =(p), there is an open
neighbourhood % (p) of p in F such that «(p) C £,'. Hence,

My N\ Cl(int(Po N P/ N F) = (v},
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Obviously, int(#, N Zy') is disconnected and int (%, N ') N F consists
of two maximal open disjoint regions, say G, and Gy'. By the preceding, we
may assume that

bd(Go) _C_—_-M1UM3UL13 and bd(Go’) §M2UM4UL24.
Then
il’lt(e@omﬁll) NF = GQU Gol Where Gom Gol = {V}

Let B\ # (M,, M) converge to (M, M;) in . Then g N Gy’ = 0 and
By M Gy is the loop of By M F for By sufficiently close to (M, M3). Thus
lim (8x N Go) is a curve of order £ 2. It is easy to check that lim (8, N Go) is
a triangle in (M;, M3) N 2’ N Fbounded by segments of My, Mz and L;.

Thus Gy and (similarly) G, are bounded triangular regions in F. Clearly,
each region satisfies 2.6 and thus contains elliptic points. From 9.0 and 1.3.4,
each region also contains hyperbolic and parabolic points.

9.6. Let £ ,* and £°y* be the closed quarter-spaces of &’ determined by
(Mo, Ly). We assume that 7, C Z* and put Fo = (P*NP)NF;
7 =1, 2. Then

(1) (PoNPY)NF = Fu U Foa,

(2)@0(\F=F01UF02UGOUGOI and

(3) F: F()lUF()gUFlUGoUGo/UGl.

THEOREM 9.7. If r € Fo1 \J Foo such that l(r) = 0, then r is hyperbolic.

Proof. We recall that &2, is a closed half-space bounded by (M, M;) and
(M3, Mi)y such that 1 N (M., My) =, and Py N (M3, M) = . It is
easy to check that p € &, if and only if (M, p) N Ha # {v} fori =1, 2 or
(M, p) N3y, 5= (v} forj = 3, 4.

Let r € Fou I(r) = 0. Since r ¢ &,, we may assume that (M, r) NH 'y
= {»}. Then there is an N; C 5, arbitrarily close to M, such that N; N\ F
= {v} and (Vy, r) NH% = {v}. Then (N, 7) \H is a line Ny; NN\ F
= {»}.

Let 8 = (N;, N;). By 2.1.2, v is the double point of BN\ F = ¥ UZF,
U%, By 9.1.2, LiN.Y # @ and therefore ¥ =¥, UY,, BNP/)
N F =g‘~1 ng'z and

BNLPYNFEF=BNPF*IPHHNEF=F,UY,.
Clearly, BNP*)YNF =%, and BNLP*NF =Y, Asr € BN Fy
CBNP*NF =%, S'(My,r) and ¥, are incompatible by 9.1.2 and 7

is hyperbolic by 1.3.2.
By a similar argument, we prove the theorem for the points of F,.

In Figure 7, we represent the lines of F with L¢* # {l,} and in Figure 8, we
represent F with L¢* = {l;}. We observe that there are two holes in this
surface, |[Lia M S' (L1, 7)| = [Los M\ S'(La3, )| = 2 for any r € F with
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FiGure 7

I(r) = O0and there are points 7’ and '/ in Fsuch that Loy M\ S'(Lay, 7') = L1z M
Sl (L13, 7’”) = ﬂ

The surface in P? defined by xjxax; = (x1 4+ x2) (%12 + x2? — x¢%) satisfies
JOwith My =%, =%.=0, Mi=x1=%0—%x2=0, Ms=2x, = x¢ + X2
=0, M:;Ex2=QC()—QC1=0, M4Exg=xo+x1=0, L05x3=x1+
X =0, Liy=x3 —2(x1 + x2) = %0+ x1 — %2 =0, Loz =x3 — 2(xxy +
X9) = %o — %1 + x2 = 0, L13Ex3+2(x1—}—x2) =Xy — %1 — X2 = 0,
Loy = x3 + 2(x1 + x2) = %0 + 21 + x2 = 0and Lo* = {l;} = (0, 1, — 1, 0).

THEOREM 9.8. Let F be a biplanar surface satisfying 9.0. Then

F= F()]UFOZUFIUGOUGO’UGl
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FIGURE 8

where every r € For \J Foo \J Fy with I(r) = 0 s hyperbolic and G,, Gy and G,
are described 1n 9.3 through 9.5.
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