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Abstract

We characterise finite unitary rings R such that all Sylow subgroups of the group of units R∗ are cyclic.
To be precise, we show that, up to isomorphism, R is one of the three types of rings in {O, E,O ⊕ E},
where O ∈ {GF(q),Zpα } is a ring of odd cardinality and E is a ring of cardinality 2n which is one of seven
explicitly described types.
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1. Introduction

In this paper, we examine the properties of finite rings in which every Sylow subgroup
of the group of units is cyclic. In 1966, Erickson [3] showed that the order of a finite
noncommutative ring (without unity) is squarefree. In 1968, Eldridge [2] extended this
result and proved that if R is a finite ring with unity of order m such that m is cubefree,
then R is a commutative ring. In 1989, Groza [5] showed that if R is a finite ring and
at most one simple component of the semi-simple ring R/J(R) is a field of order 2,
then R∗ (the group of units of R) is a nilpotent group if and only if R is a direct sum of
two-sided ideals that are homomorphic images of group algebras of type SP, where S
is a particular commutative finite ring and P is a finite p-group for a prime number p.
More recently, in 2009, Dolzan [1] improved this result and described the structure of
finite rings in which the group of units is nilpotent. Here we characterise the structure
of all finite unitary rings R, in which every Sylow subgroup of the group of units R∗

is cyclic. Let F be a field and let Mn(F) and Tn(F) be respectively the set of all n × n
square and upper triangle matrices over F. Also, let GF(q) be the Galois field of finite
order q. The main result of this paper is the following theorem.
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Theorem 1.1. Let R be a unitary ring of finite cardinality 2nm, where n is a positive
integer and m is a positive odd number. If all Sylow subgroups of R∗ are cyclic,
then, up to isomorphism, R is one of the three types of rings in {O, E,O ⊕ E}, where
O ∈ {GF(q), Zpα : p a prime number} is a ring of cardinality m and E is a ring of
cardinality 2n which is one of the following seven explicitly described types:

E ∈
{
M2(GF(2)),T2(GF(2)),T2(GF(2)

k⊕
i=1

GF(2ni )),

Z4,Z4

k⊕
i=1

GF(2ni ),
k⊕

i=1

GF(2ni )
}
,

where gcd(ni, n j) = 1 for 1 ≤ i, j ≤ k and i , j, or

E � M2(GF(2))
k⊕

i=1

GF(2ni ),

where gcd(ni, n j) = 1 = gcd(2, ni) for 1 ≤ i, j ≤ k and i , j. Furthermore, if R = O ⊕ E,
then gcd(|O∗|, |E∗|) = 1.

In the proof of the theorem, we use the following concepts and notations. Let R be
a ring with identity 1 , 0. We denote by char(R) the characteristic of R, by J(R) the
Jacobson radical of R, by R∗ the set of all unit elements of R (or the group of units of
R), and by R0 the prime subring of R (the subring generated by the identity element 1).
The cardinality of a set X is denoted by |X|. For a given prime number p, the set of
all Sylow p-subgroups of R∗ is denoted by Sylp(R∗). For g ∈ R∗, the smallest positive
integer m such that gm = 1 is called the order of g in R∗ and is denoted by o(g). The
subgroup generated by g in R∗ is denoted by 〈g〉. For a subset S of R, we denote by
R0[S ] the subring generated by {S ∪ R0} or equivalently by {S ∪ {1}}. The ring of all
n × n matrices over R is denoted by Mn(R) and the ring of integers modulo m is denoted
by Zm. For a pair of elements a, b ∈ R, the Lie bracket of a and b is [a, b] = ab − ba.
Finally, GF(pm) denotes the unique finite field of characteristic p and order pm.

2. Proof of Theorem 1.1

We begin with two elementary lemmas.

Lemma 2.1. Let R be a ring and I an ideal of R such that I ⊆ J(R). If all Sylow
subgroups of R∗ are cyclic, then all Sylow subgroups of (R/I)∗ are cyclic. In addition,
(R/I)∗ = (R∗ + I)/I.

Proof. The canonical epimorphism f : R∗ −→ (R/I)∗ defined by f (a) = a + H shows
that every Sylow subgroup of (R/I)∗ is cyclic. Clearly, (R∗ + I)/I ⊆ (R/I)∗. For
the reverse inclusion, let x + I ∈ (R/I)∗. Then there exists y + I ∈ (R/I)∗ such that
xy + I = 1 + I. It follows that xy − 1 ∈ I. Since I ⊆ J(R), we have xy = xy − 1 + 1 ∈ R∗,
so x ∈ R∗ and x + I ∈ (R∗ + I)/I. �
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Lemma 2.2. Suppose that R is a unitary finite local ring with a nontrivial minimal ideal
I and J(R) is commutative. Then J(R) = AnnR(I).

Proof. By [4, Theorem 2.4], there is an integer m such that J(R)m = 0. Suppose
In = 0 and In−1 , 0, where 2 ≤ n ≤ m. It is clear that In−1 = I. Since 2n − 2 ≥ n,
we see that I2 = (In−1)2 = 0. Therefore n = 2. Let u ∈ I and h ∈ J(R). If hu , 0, then
RhuR = I = RuR and u =

∑
finite

rhus, for some r, s ∈ R. By commutativity of J(R),

u =
∑
finite

(rh)(us) =
∑
finite

(us)(rh) =
∑
finite

u(srh) =
∑
finite

srhu,

and hence u(
∑

finite
srh − 1) = 0. Since (

∑
finite

srh) − 1 ∈ R∗, clearly u = 0, which is a
contradiction. Consequently hu = 0 for all h ∈ J(R), that is, J(R) = (I). �

Remark 2.3. Let R = A ⊕ B be a finite ring, where A and B are two ideals of R. Then
R∗ = A∗ ⊕ B∗ and 1 = 1A + 1B, where 1A and 1B are the identity elements of A and
B, respectively. It is also clear that A∗ + 1B ≤ R∗ and A∗ + 1B � A∗. In addition, if
p | gcd(|A∗|, |B∗|) for some prime number p, then by Cauchy’s Theorem, R∗ has two
elements a + 1B and 1A + b with the same order p. Clearly, 〈a + 1B〉 , 〈1A + b〉, and this
implies that the Sylow p-subgroups of R∗ are not cyclic. This idea can be generalised
for any similar finite decomposition of R.

We need the following lemma, which is a direct consequence of [5, Lemma 1.1].

Lemma 2.4. If R is a finite unitary ring of odd cardinality, then R = R0[R∗].

The first step in the proof of the theorem is to characterise all finite unitary rings R
of odd cardinality with a specific assumption.

Proposition 2.5. Let R be a unitary ring of finite odd cardinality m. If every Sylow
subgroup of R∗ is cyclic, then, up to isomorphism, R is either a finite field or Zpt , for a
positive integer t.

Proof. Let |R| = m = pα1
1 · · · p

αk
k be the canonical prime factorisation. Then

R = R1 ⊕ R2 ⊕ · · · ⊕ Rk,

where each Ri is an ideal of order pαi
i . If k > 1, then Remark 2.3 shows that 2-Sylow

subgroups of R∗ are not cyclic. Hence either k = 1 or |R| = pα, for a prime number p
and positive integer α. We continue the proof by induction on α. First suppose that
|R| = p2. From [2], every unitary ring of order pα with α < 3 is commutative. Hence
R is either a field of order p2 or one of the rings Zp2 and Zp ⊕ Zp. Again, Remark 2.3
removes the case Zp ⊕ Zp and the ring R is as desired. Now let |R| = pα, where α > 2
and consider the following two cases depending on the Jacobson radical: J(R) = 0 or
J(R) , 0.

Case 1. If J(R) = 0, then R is a semi-simple Artinian ring and by the structure theorem
of Artin–Wedderburn R �

⊕t
i=1 Mni (Di), where all Di are finite fields (see [6, page 33]

and [7]). By Remark 2.3 we may consider t = 1 or R � Mn(D), where D is a finite
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field and n is a positive integer. If n = 1, then R = D is a finite field, as desired. So
suppose that n > 1. Since R has odd cardinality, char(D) , 2, and hence −1 , 1 and the
two diagonal matrices diag(−1, 1, . . . , 1) and diag(−1,−1, . . . ,−1) belong to the same
Sylow 2-subgroup of GLn(D) (the general linear group). This shows that the Sylow
2-subgroups of GLn(D) are not cyclic, which is a contradiction.

Case 2. Suppose J(R) , 0. An induction argument guarantees that every proper
subring of R is commutative. Suppose that R is noncommutative.

If R∗ is a nilpotent group, then it is a direct product of its Sylow subgroups which
are all cyclic, so R∗ is an abelian group. Therefore, by Lemma 2.4, R is commutative,
which contradicts our assumption. Hence R∗ is not a nilpotent group.

Let H be an ideal of R with 0 , H ⊆ J(R). By Lemma 2.1, every Sylow subgroup
of (R/H)∗ is cyclic. By induction, the ring R/H is commutative and the additive
commutator subgroup of R is contained in H, that is, [R, R] ⊆ H. Let M be a
maximal ideal of R. Then R/M is a simple commutative ring and so is a finite
field. By [5, Lemma 1.2], 1 + J(R) is a p-group and o(−1) = 2. Therefore Sylp(R∗)
and Syl2(R∗) are nonempty. Let {M1, . . . , Mk} be the set of all maximal ideals of
R. Then R/J(R) = R/(M1 ∩ · · · ∩ Mk) � R/M1 × · · · × R/Mk, from which (R/J(R))∗ �
(R/M1)∗ × · · · × (R/Mk)∗. Lemma 2.1 and Remark 2.3 guarantee that k = 1 and so
R is a local ring. Let |R/M1| = pγ with γ ≤ α. Clearly J(R) = M1. So (R/J(R))∗ =

〈x + J(R)〉 = pγ − 1. Since |R| = pγ|J(R)|, we have |R| = (pγ − 1 + 1)|J(R)| and then
|R| − |J(R)| = |R∗| = (pγ − 1)|J(R)| = o(x + J(R))|J(R)|. Also, since gcd(pγ − 1, p) = 1
and 1 + J(R) is a normal p-subgroup of R∗,

|J(R)| = |1 + J(R)| ≤ |P| ≤ |J(R)|.

Thus 1 + J(R) = P. Since |〈x〉P| = |〈x〉||P|/|〈x〉 ∩ P| = |R∗|, we have R∗ = 〈x〉P. Since
R = R0[R∗] and R is not commutative, the equality R∗ = 〈x〉P shows that x < Z(R∗).
Since J(R) is commutative and R/J(R) is a finite field, J(R) is not a central ideal
(otherwise R would be a commutative ring, which is a contradiction). So there exists
w ∈ J(R) such that wx , xw. Consequently, R = R0[w, x]. Let I be a minimal ideal of
R. We consider two subcases: Z(R) ∩ I , 0 or Z(R) ∩ I = 0.

Subcase 1. Suppose 0 , a ∈ Z(R) ∩ I. By Lemma 2.2, J(R) = AnnR(I). It follows that
I = Ra = (R∗ ∪ J(R))a = {

∑
finite

nia : ni ∈ R∗}. Let y ∈ R∗. Then y + J(R) = xi + J(R) for
some integer i with 0 ≤ i ≤ pγ − 1, that is, y = xi + s for some element s ∈ J(R). Hence
ya = xia + sa = xia and so I = {0, xa, . . . , xpγ−1a} ⊆ J(R). Since xxia = xiax, w(xia) =

(xia)w and R = R0[x,w], we have xia ∈ Z(R), and so I ⊆ Z(R). Also, for all u, v ∈ R∗,
we have uv − vu ∈ I and so uvu−1v−1 − 1 ∈ I ⊆ Z(R). Therefore uvu−1v−1 ∈ Z(R∗) and
the multiplicative derived subgroup of R∗ is a central subgroup of R∗. It follows that
R∗ is nilpotent and so abelian, which implies that R is commutative and contradicts our
assumption.

Subcase 2. Let Z(R) ∩ I = 0. If 0 , b ∈ I, then bw = wb and [b, x] , 0. Hence
R = R0[b, x] and we may consider w = b ∈ I. Let m1,m2 ∈ J(R). Since J(R) is a
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commutative ring and xm1, m2x ∈ J(R),

(xm1)m2 = m2(xm1) = (m2x)m1 = m1m2x.

Since R = R0[w, x], we conclude that m1m2 ∈ Z(R) and so J(R)2 ⊆ Z(R). If J(R)2 , 0,
then by the induction hypothesis R/J(R)2 is a commutative ring, and so 0 , [R,R] ⊆
J(R)2 ∩ I. Since I is a minimal ideal and J(R)2 is an ideal, I ⊆ J(R)2 ⊆ Z(R), which is
a contradiction.

Hence J(R)2 = 0. By considering R as a local ring, for all s ∈ J(R), we find
AnnR(s) = J(R). We claim that I = J(R). Otherwise consider l ∈ J(R) \ I. Since R =

R0[w, x], we have l = (
∑

finite
nixi) + c, where c ∈ I and ni ∈ R0. Since l − c ∈ J(R), we

have a =
∑

finite
nixi ∈ J(R). Then aw = wa and ax = xa. It follows that a ∈ Z(R) ∩ J(R).

Let H = Ra. Since AnnR(a) = J(R),

H = Ra = (R∗ ∪ J(R))a =

{∑
finite

nia : ni ∈ R∗
}

= {0, xa, . . . , xpγ−1a} ⊆ J(R).

If H , 0, we reach a contradiction by an argument similar to that in Subcase 1. If H = 0,
then l = c ∈ I, which is again a contradiction. Therefore I = J(R). Since R/J(R) is a
finite field, we deduce that char(R/J(R)) = p , 0. Hence p + J(R) = J(R) and p ∈ J(R).
Let L = pR. If L , 0, then J(R) = L and p ∈ Z(R) ∩ J(R), which is a contradiction.
Therefore L = pR = 0, so char(R) = p. Let h ∈ J(R). Since (1 + h)p = 1p + hp = 1, we
see that P = 1 + J(R) is an elementary abelian p-group and since P is a cyclic group,
we have |P| = p. Thus |J(R)| = |P| = p. Since |J(R)| = |{0,w, xw, . . . , xp−1w}| ≤ p,
there exists an integer i such that 1 ≤ i ≤ p − 1 and xiw = xpw. Since w , 0, we
have xp−i − 1 ∈ J(R) \ {0}. Since J(R) is a commutative ideal, we have (xp−i − 1)w =

w(xp−i − 1). Also, (xp−i − 1)x = x(xp−i − 1), and so xp−i − 1 ∈ Z(R) ∩ J(R) = 0. Hence
o(x + J(R)) ≤ p − 1 and |(R/J(R))∗| = p − 1. Therefore |R| = |J(R)|p = p2. This
contradicts our first assumption that |R| < {p, p2}.

To sum up, the two subcases show that R is a commutative ring. Now, let I
be the minimal ideal contained in J(R) with char(I) = pi. If i > 1, then I p is a
nontrivial ideal of R, so I = I p. Let s ∈ I. Then s =

∑
vp for some v ∈ I. It follows

that spi−1 =
∑

vpi = 0, and so char(I) = pi−1, which is a contradiction. Therefore
char(I) = p. Clearly, I2 = 0. For all s ∈ I, we have (1 + s)p = 1. Therefore 1 + I is
an elementary abelian p-group. Since Sylow p-subgroups of R∗ are cyclic, we have
|1 + I| = |I| = p. Therefore I = {0,a,2a,3a, . . . , (p − 1)a} for any nonzero element a ∈ I.
By the first part of the proof of Case 2, R is a local ring. By the induction hypothesis,
R/I is a finite field or R/I � Zpv where v is a positive integer.

First, suppose R/I is a finite field. Then I = J(R) and |R/I| = pv for some positive
integer v (v ≤ t). Therefore (R/I)∗ is a cyclic group. Let w be a generator for this
group. A similar argument to that given in the first part of this case shows that
I = {0, a,wa, . . . ,wpv−1a} where pv − 1 = o(w + I). If wia = w ja for i < j ≤ pv − 1,
then w j−i − 1 ∈ AnnR(a) = I. Then w j−i + I = 1 + I and so o(w + I) ≤ j − i < pv − 1,
which is a contradiction. If v > 1, then |I| > p, which is a contradiction. If v = 1,
then |R| = p2, which is again a contradiction. Now, let R/I � Zpv . If v = 1, then
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|R| = p2, a contradiction. Hence v > 1. Clearly, either char(R) = pv+1 or char(R) = pv.
If char(R) = pv+1, then R � Zpv+1 , as desired. So suppose that char(R) = pv. Since
o(1 + pv−1) = p, we deduce that I = Rpv−1 = { jpv−1 : j = 0, 1, . . . , p − 1}. Let o(x + I)
= pv−1 for some x ∈ R. Since R/I � Zpv and o(x + I) = pv−1, we have x − j ∈ J(R) for
some integer j. Since o(1 + pv−1(x − j)) = p, we have pv−1(x − j) ∈ I. So there is an
integer 1 ≤ f ≤ p − 1 such that pv−1(x − j) = pv−1 f . Therefore pv−1(x − j − f ) = 0.
If x − j − f ∈ J(R), then f ∈ J(R), which is a contradiction. If x − j − f ∈ R∗, then
pv−1 = 0, which is also a contradiction. �

In the following three propositions, we characterise the rings of order 2n, all of
whose Sylow subgroups are cyclic. Since in this case 2 | |R|, Proposition 2.5 may
no longer be true. As an example, let R be the set of all 2 × 2 matrices over the
finite field GF(2). Then R∗ � S 3, where S 3 is the symmetric group of order 6 and
all its Sylow subgroups are cyclic, but R is noncommutative, is not a finite field
and is not isomorphic with Zpt for any integer t. For simplicity, we denote by ∆

the set of all rings R with R � M2(GF(2)) or R � M2(GF(2))
⊕k

i=1 GF(2ni ), where
gcd(ni, n j) = 1 = gcd(2, ni) for all i, j with 1 ≤ i, j ≤ k and i , j.

Proposition 2.6. Let R be a unitary ring of finite cardinality 2n, such that R = R0[R∗].
If every Sylow subgroup of R∗ is cyclic, then either R is commutative or R ∈ ∆.

Proof. Let R be a noncommutative ring with minimal cardinality satisfying the
assumptions stated in the proposition. We aim to show that R ∈ ∆. We consider two
cases depending on the Jacobson radical: either J(R) = 0 or J(R) , 0.

Case 1. If J(R) = 0, then R is a semi-simple Artinian ring and by the Artin–
Wedderburn structure theorem, R �

⊕t
i=1 Mni (Di), where all the Di are finite fields.

If t = 1, the only possible case is R � M2(GF(2)) ∈ ∆. Let t > 1. If ni = 1 for all i,
then R is a commutative ring, a contradiction. It follows that there is some ni with
ni > 1 and, as above, this implies that ni = 2 and Di = GF(2). If there are two distinct
indices i and j such that ni > 1 and n j > 1, then Mni (Di) � Mn j (Di) � M2(GF(2)) and
the Sylow 2−subgroups of R∗ are not cyclic, a contradiction. Therefore n j = 1 for all
j , i and gcd(|D∗j |, |D

∗
s |) = 1 for 1 ≤ j , s ≤ t, that is, R ∈ ∆, as desired.

Case 2. Suppose J(R) , 0. We show that this case always leads to a contradiction.
Let I be a minimal ideal of R with 0 , I ⊆ J(R). Arguing as in the proof of

Proposition 2.5, char(I) = 2, I2 = 0 and I is an elementary abelian 2-group. Since
a Sylow 2-subgroup of R∗ is cyclic, |I| = 2 or I = {0, a} for the unique nonzero element
a ∈ I. Since 1 + I C R∗, we have 1 + I ≤ Z(R∗) and, from R = R0[R∗], it follows
that AnnR(I) is a two-sided ideal. By Lemma 2.2, (R/I)∗ = (R∗ + I)/I. Moreover
every Sylow subgroup of (R/I)∗ is cyclic. By the minimality of R, either R/I is a
commutative ring or R/I ∈ ∆.

First, suppose R/I is a commutative ring. Then [R,R] ⊆ I. Since R = R0[R∗] and
R is noncommutative, there are two elements x, y ∈ R∗, such that xy , yx, and at
least one of them, say x, has odd order. Then xyx−1y−1 + I = 1 + I = 1 + {0, a} and
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x2yx−2y−1 + I = 1 + I = 1 + {0, a}, so xyx−1y−1 = 1 + a = x2yx−2y−1, which implies
yx = xy, a contradiction. Now suppose that R/I ∈ ∆. Either R/I � M2(GF(2)) or
R/I � M2(GF(2))

⊕k
i=1 GF(2ni ), where gcd(ni, n j) = 1 = gcd(2, ni) for 1 ≤ i, j ≤ k

and i , j. Let A be an ideal of R containing I such that R/A � M2(GF(2)) and let
z + A ∈ (R/A)∗ with o(z + A) > 1. Then az ∈ I = {0, a}, so az = a and z − 1 ∈ AnnR(I).
Since R/A is a simple ring and AnnR(I) = Ra = aR is a two-sided ideal, it follows that
AnnR(I) ⊆ A, from which z − 1 ∈ A and o(z + A) = 1, a contradiction. �

Let Γ be the set of all finite rings R such that R � Z2v or R �
⊕k

i=1 GF(2ni ) or
R � Z2v

⊕k
i=1 GF(2ni ), where gcd(ni, n j) = 1 for i , j and v = 1, 2. Let m be a positive

integer and let Cm be a cyclic group of order m. We recall that for v ≥ 3 the group
(Z2v )∗ � C2v−2 ×C2 is not cyclic.

Proposition 2.7. Let R be a unitary commutative ring of finite cardinality 2n, such that
R = R0[R∗]. If every Sylow subgroup of R∗ is cyclic, then R ∈ Γ.

Proof. We proceed by induction on n. The case |R| = 22 has already been discussed.
Let n > 2. We consider two cases depending on the Jacobson radical: J(R) = 0 or
J(R) , 0.

Case 1. Let J(R) = 0. Then R is a semi-simple ring and by the Wedderburn structure
theorem, R �

⊕k
i=1 Ri is a direct product of matrix rings over division rings. Since R is

a commutative ring, all the Ri are finite fields and, by Remark 2.3, gcd(|(Ri)∗|, |(R j)∗|)
= 1 for 1 ≤ i , j ≤ k. Consequently, R ∈ Γ.

Case 2. Suppose J(R) , 0 and let I ⊆ J(R) be a minimal ideal of R. Arguing as in
the proof of Proposition 2.5, char(I) = 2, I2 = 0 and I is an elementary abelian 2-
group. Since a Sylow 2-subgroup of R∗ is cyclic, |I| = 2 or I = {0, a}, for a unique
nonzero element a ∈ I. Let y ∈ R \ AnnR(a). Since ya ∈ I, we have (y − 1)a = 0 and
y − 1 ∈ AnnR(a). Hence the group index [(R,+) : (AnnR(a),+)] = 2. By induction,
R/I � Z2v or R/I �

⊕k
i=1 GF(2ni ) or R/I � Z2v

⊕k
i=1 GF(2ni ), where gcd(ni, n j) = 1

for i , j and v = 1, 2.
If R/I � Z2v , we claim that R � Z2c , where c = 1, 2. Let char(R) = 2r. First suppose

that r = v. If 2r = 0, then (1 + 2r−1)2 = 1 and 2r−1 = a ∈ I, a contradiction (because
R/I � Z2r ). Hence char(R) = 2v+1 and R � Z2v+1 , where v + 1 = 2, 3. If v = 2, then
R∗ �C2 ×C2, which is impossible. Hence R/I � Z2v . Now, suppose that R/I �GF(2v).
By the earlier arguments, we may consider v > 1. Let (R/I)∗ = 〈z + I〉. Then there
exists y ∈ R such that y(z − 1) + I = 1 + I. Since z < AnnR(a), we have z − 1 ∈
AnnR(a). But then y(z − 1) − 1 ∈ I ⊆ AnnR(a) and −1 ∈ AnnR(a), a contradiction.
Therefore R/I � GF(2v) and R/I � Z2v . It follows that either R/I �

⊕k
i=1 GF(2ni )

or R/I � Z2v

⊕k−1
i=1 GF(2ni ), where k > 1, v = 1, 2 and gcd(ni, n j) = 1 for i , j. Clearly

|J(R)| ≤ 4. Let {M1, . . . , Mk} be the set of all maximal ideals of R. By the previous
arguments, we may consider k > 1. We may assume that M1 = AnnR(a). Then
f : R/M1 ⊕ R/M2 ⊕ · · · ⊕ R/Mk � R/J(R). Let f ((1 + M1,M2,M3, . . . ,Mk)) = x + J(R).
It is clear that |(AnnR(x) + J(R))/J(R)| = |R|/2|J(R)|, so |Rx| = |R/AnnR(x)| = 2|J(R)|.
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Since ax , 0, we have a < AnnR(x). Since I is the unique minimal ideal of R and
a < AnnR(x), we have AnnR(x) ∩ J(R) = 0. If I = J(R), then clearly I ⊆ Rx. So
suppose that I , J(R). Then J(R) = {0, b, b2 = a, b3}. Since J(R) ∩ AnnR(x) = 0,
we have bx , 0. Then J(R)x ⊆ Rx. If J(R)x , J(R), then xbi = 0 for some positive
integer i and so xb2i = xa = 0, a contradiction. It follows that J(R) ⊆ Rx and so
R = AnnR(x) ⊕ Rx. By the induction hypothesis, AnnR(x) and Rx belong to the set
Γ. Clearly gcd(|(AnnR(x))∗|, |(Rx)∗|) = 1 and so R ∈ Γ, as desired. �

Proposition 2.8. Let R be a unitary ring of finite cardinality 2n and H = R0[R∗] and
suppose that every Sylow subgroup of R∗ is a cyclic group. If H is a commutative ring
and R is noncommutative, then either R � T2(GF(2)) or R � T2(GF(2)) ⊕ A where
A ∈ Γ and gcd(|A∗|, 2) = 1.

Proof. Let R be a finite noncommutative ring with minimal cardinality 2n, such that
every Sylow subgroup of R is cyclic. Let I ⊆ J(R) be a minimal ideal of R. From
[3], every unitary noncommutative ring of order 8 is isomorphic to T2(GF(2)), so we
may assume that |R| > 8. By the minimality of R, either R/I is a commutative ring or
R/I � T2(GF(2)) or R/I � T2(GF(2)) ⊕ A where A ∈ Γ and gcd(|A∗|, 2) = 1.

First suppose that R/I is noncommutative. Suppose that f : R/I � T2(GF(2)) ⊕ A.
Let T/I be a subring of R/I, such that T/I � T2(GF(2))/I. It is clear that To[T ∗] , T
and |J(T )| = 4. By induction T = T2(GF(2)) or T2(GF(2)) ⊕ B where B ∈ Γ and
gcd(|B∗|, 2) = 1. Hence |J(T )| = 2, a contradiction. Therefore R/I � T2(GF(2)),
|R| = 16, char(R) ≤ 4, R is a local ring and J(R) = {0, a, b, a + b} where a ∈ I \ {0}.
If b2 = 0, then o(1 + b) = 2, and so a Sylow 2-subgroup of R∗ is not cyclic, a
contradiction. If b2 , 0, then ab = a(a + b) = 0 and b(a + b) = b2 = (a + b)b, so J(R)
is a commutative ideal. Choose z ∈ R with f (z + I) = 1. Then z − 1 ∈ J(R), since
f (z − 1 + I) ∈ J(T2(GF(2)). Therefore z ∈ CR(J(R)). Since the ring generated by z and
J(R) is R, it follows that R is a commutative ring, a contradiction.

Now suppose that R/I is commutative. Let {M1, . . . , Mk} be the set of all maximal
ideals of R and let a ∈ I \ {0}. If k = 1, then J(R) = M1 = AnnR(a), because R/I
is commutative. Since [R : AnnR(a)] = 2, we have R = R0[(1 + J(R))] = R0[R∗], a
contradiction. So k > 1 and we may assume that M1 = AnnR(a). We have f :
R/M1 ⊕ R/M2 ⊕ · · · ⊕ R/Mk � R/J(R). Let f ((1 + M1, M2, M3, . . . , Mk)) = x + J(R)
where x ∈ R. It is clear that AnnR(x) � R/M2 ⊕ · · · ⊕ R/Mk ∈ Γ is a commutative ring,
so |(AnnR(x) + J(R))/J(R)| = |R|/2|J(R)|. Since ax , 0, we have a < AnnR(x). Since I
is the unique minimal ideal of R and a < AnnR(x), we have AnnR(x) ∩ J(R) = 0. Then
|Rx| = |R/AnnR(x)| = 2|J(R)|. If I = J(R), then I ⊆ Rx. So suppose that I , J(R). Then
J(R) = {0, b, b2 = a, b3}. Since J(R) ∩ AnnR(x) = 0, we have bx , 0 and J(R)x ⊆ Rx.
If J(R)x , J(R), then xbi = 0 for some positive integer i and so xb2i = xa = 0, a
contradiction. It follows that J(R) ⊆ Rx, and hence that R = AnnR(x) ⊕ Rx. Since
R is not commutative, neither is Rx. By the induction hypothesis, either Rx �
T2(GF(2)) or Rx � T2(GF(2)) ⊕ B where B ∈ Γ and gcd(|B∗|, 2) = 1. Hence either
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R � AnnR(x) ⊕ T2(GF(2)) or R � AnnR(x) ⊕ T2(GF(2)) ⊕ B for some positive integer
k, where gcd(|B∗|, 2) = 1. Clearly, AnnR(x) ⊕ B = A ∈ Γ. �

Proof of Theorem 1.1. Let |R| = pα1
1 · · · p

αk
k be the canonical factorisation of |R| into

prime powers. Then R = R1 ⊕ R2 ⊕ · · · ⊕ Rk, where each Ri is an ideal of order pαi
i

containing 1Ri . We may assume that p1 is a the smallest prime divisor of |R|. Let E = 1
and O = R if p1 > 2, and E = R1 and O = R2 ⊕ · · · ⊕ Rt if p1 = 2. By Proposition 2.5,
O is either a finite field or Zpt , for a positive integer t.

First suppose that E is noncommutative. If E = E0[E∗], then by Proposition 2.6,
E ∈ ∆. If E , E0[E∗], then by Proposition 2.8, E ∈ Γ.

Now suppose that E is a commutative ring. If J(E) = 0, then by the Wedderburn
structure theorem E ∈ Γ. Therefore suppose that J(E) , 0. Let I be a minimal
ideal of E contained in J(E) and T = E0[E∗]. By Proposition 2.7, T � Z22 or
T � Z22

⊕s
i=1 GF(2ni ), where gcd(ni, n j) = 1 for i , j. If T = E, then clearly, E ∈ Γ.

Suppose that T , E. Then 2 - |(E/I)∗| = |(T ∗ + I)/I| and J(E) = I. Let {M1, . . . , Mq}

be the set of all maximal ideals of E and let a ∈ I \ {0}. If q = 1, then J(E) =

M1 = AnnE(a). Since [E : AnnE(a)] = 2, we have E = E0[(1 + J(E))] = E0[E∗] = T ,
a contradiction. So q > 1. We may assume that M1 = AnnE(a). Then f : E/M1 ⊕

E/M2 ⊕ · · · ⊕ E/Mq � E/J(E). Let f ((1 + M1, M2, M3, . . . , Mq)) = x + J(E), where
x ∈ E. By a similar argument to that in Proposition 2.8, E = AnnE(x) ⊕ Ex and
J(E) ⊆ Ex. Clearly gcd((AnnE(x))∗, 2) = 1, because AnnE(x) ∩ J(E) = 0. Since
J(E) ⊆ Ex and |Ex| = 4, we have Ex � Z22 and it follows that E ∈ Γ. The rest of
the proof is clear. �
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69080-900, Manaus-AM, Brazil
e-mail: mohsen@ufam.edu.br

M. ARIANNEJAD, Department of Mathematics,
University of Zanjan, Zanjan, Iran
e-mail: arian@znu.ac.ir

https://doi.org/10.1017/S0004972719000017 Published online by Cambridge University Press

https://orcid.org/0000-0003-3314-0301
mailto:mohsen@ufam.edu.br
https://orcid.org/0000-0002-5213-1315
mailto:arian@znu.ac.ir
https://doi.org/10.1017/S0004972719000017

	Introduction
	Proof of Theorem 1.1
	References

