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Modelling the effect of soluble surfactants
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A hybrid lattice Boltzmann and finite difference method is applied to study the influence
of soluble surfactants on droplet deformation and breakup in simple shear flow. First, the
influence of bulk surfactant parameters on droplet deformation in two-dimensional shear
flow is investigated, and the surfactant solubility is found to influence droplet deformation
by changing average interface surfactant concentration and non-uniform effects induced by
non-uniform interfacial tension and Marangoni forces. In addition, the droplet deformation
first increases and then decreases with Biot number, increases significantly with adsorption
number k and decreases with Péclet number or adsorption depth; and among the
parameters, k is the most influential one. Then, we consider three-dimensional shear
flow and investigate the roles of surfactants on droplet deformation and breakup for
different capillary numbers and viscosity ratios. Results show that in the soluble case
with k = 0.429, the droplet exhibits nearly the same deformation as in the insoluble case
due to the balance between surfactant adsorption and desorption; upon increasing k from
0.429 to 1, the average interface surfactant concentration is greatly enhanced, leading
to significant increase in droplet deformation. The critical capillary number of droplet
breakup Cacr is identified for varying viscosity ratios in clean, insoluble and soluble
(k = 0.429 and 1) systems. As the viscosity ratio increases, Cacr first decreases and
then increases rapidly in all systems. The addition of surfactants always favours droplet
breakup, and increasing solubility or k could further reduce Cacr by increasing average
interface surfactant concentration and local surfactant concentration near the neck during
the necking stage.
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1. Introduction

The droplet deformation and breakup under simple shear flow is a fundamental process in
many industrial applications including biomedical and chemical processing (Sackmann,
Fulton & Beebe 2014), emulsification (McClements 2007), coatings (Sharma et al. 2018)
and droplet manipulation in microfluidics (Baret 2012; Riechers et al. 2016), which has
been the subject of numerous experimental, theoretical and computational studies over
several decades. For a clean droplet, the study of droplet deformation under shear flow
can be traced back to Taylor (1934), who derived a theoretical model for predicting
the steady-state deformation as a function of the viscosity ratio (the ratio of droplet
to matrix viscosities) and capillary number (the ratio of viscous to capillary forces).
Inspired by Taylor’s theory, a number of theoretical or phenomenological models (Shapira
& Haber 1990; Maffettone & Minale 1998; Van Puyvelde et al. 2008) were proposed,
which improved the accuracy of Taylor’s model and complemented Taylor’s theory by
additionally introducing the effect of confinement ratio (the ratio of droplet diameter
to wall separation). With regard to the droplet breakup, Grace (1982) experimentally
studied the critical capillary number of droplet breakup under various viscosity ratios, and
Vananroye, Van Puyvelde & Moldenaers (2006) supplemented the effect of confinement
ratio on the critical capillary number. Janssen et al. (2010) identified different critical
breakup modes, namely binary breakup and ternary breakup, and provided a generalized
explanation for the effect of confinement ratio and viscosity ratio on the critical capillary
number. Up to date, these predictive models for droplet deformation and critical capillary
number data have been extensively used to verify numerical methods for two-phase flow
simulation (Li, Renardy & Renardy 2000; Vananroye, Van Puyvelde & Moldenaers 2007;
Liu et al. 2018), and extended to a wider range of viscosity ratios, confinement ratios and
capillary numbers (Komrakova et al. 2015; Yang, Li & Kim 2022).

With the addition of surfactants, the droplet deformation and breakup can be strongly
affected (Riechers et al. 2016). Generally, two types of surfactants can be added to a
two-phase system: insoluble and soluble surfactants. Insoluble surfactants exist only at
the interface, usually generated by the chemical reactions at the interface; while soluble
surfactants are present both at the interface and in the bulk fluid, which are mostly
added to at least one bulk fluid, and then migrate to the interface by the adsorption
process. In the presence of soluble surfactants, the droplet behaviour under shear would
be modified not only by the uneven distribution of surfactants at the interface, which
produces non-uniform capillary forces and Marangoni stresses along the interface, but also
by the adsorption–desorption dynamics between bulk and interface surfactants (Etienne,
Kessler & Amstad 2017).

Experimental studies have been carried out to investigate the deformation and breakup
of a surfactant-covered droplet under shear flow (Megías-Alguacil, Fischer & Windhab
2006; Feigl et al. 2007; Vananroye, Van Puyvelde & Moldenaers 2011). However, it
is challenging to precisely capture the local surfactant concentration and flow fields
using experimental measurements, and experimental studies suffer from the difficulty
to assess the influence of an independent factor. Numerical simulations can overcome
the limitations of experimental studies, helping one to gain additional insights into the
flow physics and influencing mechanisms of surfactants. Since the pioneering work of
Stone (1990), numerical simulation of interfacial flows with surfactants has become a hot
topic. Due to the complexities of numerical simulation, including the solution of interface
surfactant concentration equation over a dynamically deformable interface, incorporation
of adsorption–desorption kinetics between interface and bulk surfactants, and nonlinear
coupling between surfactant concentration and two-phase flow fields, previous numerical
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Effect of soluble surfactant on drop deformation and breakup

studies on surfactants mainly focused on the development and validation of numerical
methods, which can be classified into sharp-interface (Stone 1990; Milliken & Leal
1994; James & Lowengrub 2004; Bazhekov, Anderson & Meijer 2006; Xu et al. 2006;
Muradoglu & Tryggvason 2008; Xu, Yang & Lowengrub 2012; Chen & Lai 2014; Khatri
& Tornberg 2014; Muradoglu & Tryggvason 2014; de Jesus et al. 2015; Hu, Lai & Misbah
2018; Shin et al. 2018; Zhao, Ren & Zhang 2021) and diffuse-interface methods (Liu &
Zhang 2010; Teigen et al. 2011; van der Sman & Meinders 2016; Liu et al. 2018; Soligo,
Roccon & Soldati 2019; Zhu et al. 2019, 2020; Zong et al. 2020; Far, Gorakifard & Fattahi
2021; Zhang et al. 2021a).

With the aid of the numerical methods, simulations, albeit not many, have been
conducted to identify the influence of surfactants on the droplet behaviour under shear
flow. In the case of insoluble surfactants, Feigl et al. (2007) used the boundary integral
(BI) method and experimental verifications to study the deformation and orientation
behaviour of a three-dimensional (3-D) droplet for different surfactant coverages over
a range of capillary numbers and viscosity ratios. Through a combination of the 3-D
BI method and finite volume method, Bazhekov et al. (2006) investigated the effect
of insoluble surfactants on the droplet deformation for varying surfactant coverages,
elasticity numbers and Péclet numbers, and obtained the phase diagram showing the
critical capillary number as a function of viscosity ratio for different surfactant coverages.
With a level-set continuum surface force (CSF) method, Xu et al. (2012) studied the
droplet deformation in a two-dimensional (2-D) shear flow for various flow and surfactant
parameters, including surfactant coverage, capillary number, Reynolds number, Péclet
number, density ratio and viscosity ratio. Using the dissipative particle dynamics, Zhang,
Xu & He (2018) investigated the effect of surfactants on the droplet deformation in
3-D shear flow for Reynolds numbers ranging from 1.6 to 16. Recently, a hybrid lattice
Boltzmann and finite difference (LB-FD) method was developed and was applied to
explore the effect of insoluble surfactants on the droplet deformation and critical capillary
number for different confinement ratios and Reynolds numbers (Liu et al. 2018). For the
case of soluble surfactants, Teigen et al. (2011), by developing a diffuse-interface method
that solves the interface and bulk surfactant concentration equations of diffuse-interface
form in the entire fluid domain, studied the influence of Biot number and bulk Péclet
number on the droplet deformation in a 2-D shear flow, and presented an example showing
the droplet breakup in a 3-D shear flow. A level-set method, which solves the bulk
surfactant concentration equation through a diffusive domain method, was proposed by
Xu, Shi & Lai (2018) for two-phase flows with soluble surfactants. By investigating the
influence of four bulk surfactant parameters, including Biot number (Bi), bulk Péclet
number (Peb), adsorption number (k) and adsorption depth (h) on droplet deformation
in a 2-D shear flow, they found that with the increase of Bi, the droplet deformation
decreases due to the decreased Marangoni stresses, while other parameters only slightly
influence the droplet deformation. Soligo, Roccon & Soldati (2020) studied the influence
of bulk surfactant concentration and Péclet number on the droplet deformation in shear
flow using a phase-field method, in which the surfactant transport is described by a
Cahn–Hilliard (CH) equation. Zong et al. (2020) and Zhou et al. (2023) also simulated
the surfactant-laden droplet behaviour through the phase-field method, and found that
increasing the bulk surfactant concentration can enhance the droplet deformation for
various density ratios and capillary numbers. Focusing on the droplet breakup under shear,
Zhang et al. (2021b) studied the breakup regimes for clean and surfactant-laden droplets
using a LB phase-field method, and obtained a regime map for multiple breakup of droplets
in two dimensions.
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As reviewed above, most numerical investigations on soluble surfactants were carried
out using the phase-field method. However, the phase-field method for soluble surfactants
suffers from some limitations: (1) it cannot independently control the diffusivities of
interface and bulk surfactants; (2) it cannot adjust adsorption and desorption rates of
surfactants; (3) bulk surfactants cannot be present in only one bulk fluid but must be
present in both bulk fluids. Thus, the effect of bulk surfactant parameters including Biot
number (Bi), bulk Péclet number (Peb), adsorption number (k) and adsorption depth
(h) on the droplet deformation was rarely studied. In addition, all existing studies on a
soluble-surfactant-laden droplet under shear were limited to two dimensions except for a
3-D example presented by Teigen et al. (2011). This implies the loss of much important
information, which makes the obtained results not representative of the real world. Finally,
although the droplet breakup with critical capillary number curves has been studied, see
Zhang et al. (2021b), the influence of surfactant solubility and bulk surfactant parameters
on the critical capillary number for various viscosity ratios remains unexplored.

In this work a recently developed LB-FD method (Ba et al. 2023) is applied for the
simulation of droplet deformation and breakup under shear with soluble surfactants.
Unlike the phase-field method, the present method uses two equations, with one for
interface surfactant concentration and the other for the bulk surfactant concentration, to
describe the surfactant transport, which can overcome the limitations of the phase-field
method and, thus, allow access to various bulk surfactant parameters. With the LB-FD
method, we first investigate the influence of four bulk surfactant parameters (i.e. Biot
number Bi, bulk Péclet number Peb, adsorption number k and adsorption depth h) on
the droplet deformation in a 2-D shear flow so that the most influential bulk surfactant
parameter can be identified. Then, we focus on a 3-D shear flow and investigate the roles
of surfactants, solubility and the most influential bulk surfactant parameter on the droplet
deformation and breakup for various capillary numbers and viscosity ratios.

2. Problem statement and numerical method

In the present work the role of soluble surfactants on the deformation and breakup of
a single droplet under simple shear flow is investigated. As illustrated in figure 1, we
consider a circular (2-D) or spherical (3-D) droplet (red fluid) with radius R initially placed
halfway between two parallel walls that are separated by a distance H, and the upper and
lower walls move with equal but opposite velocities ±uw to produce a constant shear rate
of γ̇ = 2uw/H. The droplet and the ambient fluid (blue fluid) are assumed to have equal
densities, i.e. ρR0 = ρB0, and their dynamic viscosities are μR0 and μB0, respectively. In
the absence of surfactants, the interfacial tension coefficient between droplet and ambient
fluid is σ0. For the sake of simplicity, the bulk surfactants are considered to be soluble
only in the ambient fluid with an initial uniform concentration of φ0, and the interface
surfactants are present only at the interface with an initial uniform concentration of ψ0.

For the present problems, the droplet behaviour can be characterized by three groups of
dimensionless parameters, including the flow parameters, interface surfactant parameters
and bulk surfactant parameters (Xu et al. 2006; Teigen et al. 2011; Liu et al. 2018; Xu et al.
2018), which are listed in table 1. In the table, L = R and U = γ̇R are the characteristic
length and the characteristic velocity, respectively; Di is the interface surfactant diffusivity,
R is the ideal gas constant, T is the absolute temperature andψ∞ is the maximum capacity
of the interface surfactant concentration; Db is the bulk surfactant diffusivity and ra and
rd are the adsorption and desorption coefficients, respectively.
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Figure 1. Illustration of (a) a 2-D droplet and (b) a 3-D droplet in a simple shear flow. In (a) the initial circular
droplet (represented by red dashed lines) finally evolves to an ellipse-like shape (represented by red solid lines)
with semi-major axis a (measured by the longest distance between two points at the interface) and semi-minor
axis b (measured by the shortest distance between two points at the interface). Point ‘A’ is the right intersection
point between the horizontal centreline of the computational domain (y = 0) and the droplet interface.

Dimensionless parameter Definition Physical meaning

Flow parameters Reynolds number Re = ρB0UL/μB0 The ratio of inertial to
viscous forces

Capillary number Ca = μB0U/σ0 The ratio of viscous to
capillary forces

Viscosity ratio λ = μR0/μB0 The viscosity ratio of
droplet to ambient fluid

Interface surfactant
parameters

Interface Péclet number Pei = UL/Di The ratio of convective to
diffusive transport of
interface surfactants

Elasticity number E0 = RTψ∞/σ0 A measure of the
sensitivity of interfacial
tension to interface
surfactant concentration

Surfactant coverage xin = ψ0/ψ∞ A measure of the initial
interface surfactant
concentration

Bulk surfactant
parameters

Biot number Bi = rd/γ̇ The ratio of characteristic
desorptive to convective
time scales

Bulk Péclet number Peb = UL/Db The ratio of convective to
diffusive transport of
bulk surfactants

Adsorption number k = raφ0/rd The ratio of surfactant
adsorption to desorption
rates

Adsorption depth h = ψ0/(φ0R) The depth depleted by
surfactant adsorption

Table 1. Dimensionless parameters characterizing the deformation and breakup of a droplet in simple shear
with soluble surfactants.
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Numerical simulations are performed to investigate such a multiphase system, in which
the fluid flow and the surfactant transport are respectively governed by (Teigen et al. 2011)

∇ · u = 0, (2.1)

∂t (ρu)+ ∇ · (ρuu) = −∇p + ∇ ·
[
μ

(
∇u + ∇uT

)]
+ F s (2.2)

and

∂t(δΓ ψ)+ ∇ · (δΓ ψu) = Di∇ · (δΓ∇ψ)+ δΓ j, (2.3)

∂t(χφ)+ ∇ · (χφu) = Db∇ · (χ∇φ)− δΓ j. (2.4)

In the above equations, t is the time, μ is the dynamic viscosity, ρ, u and p are the total
density, fluid velocity and pressure, and F s is the interfacial force in the CSF form. Here
ψ and φ are the interface surfactant concentration and the bulk surfactant concentration;
δΓ is the Dirac function used to localize the interface, χ is to localize the bulk surfactants
only in the ambient fluid and j is the source term defined as (Ba et al. 2023)

j = raφ(ψ∞ − ψ)− rdψ, (2.5)

which denotes the net flux of surfactants from the bulk phase to the interface.
In addition to (2.1)–(2.4), an advection equation has to be solved to capture the

interface evolution in traditional multiphase solvers, such as the volume-of-fluid and
level-set methods, which need either sophisticated interface reconstruction or unphysical
reinitialization. To avoid these issues, a recently developed hybrid LB-FD method (Ba
et al. 2023) is applied to simulate such an immiscible two-phase flow with soluble
surfactants. In the hybrid method the LB colour-gradient model is applied to simulate
two-phase flows described by (2.1) and (2.2), while a FD method is applied to solve
the interface and bulk surfactant transport equations, namely (2.3) and (2.4), over the
entire fluid domain (Teigen et al. 2011). The LB model and FD method are coupled by
a modified Langmuir equation of state (EOS), which relates the interfacial tension to the
interface surfactant concentration and allows for the surfactant concentration exceeding
the critical micelle concentration (CMC). The present method for interfacial flows with
soluble surfactants has been validated against analytical solutions and available literature
data by simulating several examples, including the adsorption of bulk surfactants onto
the interface of a stationary droplet, the droplet migration under a constant surfactant
gradient, the deformation of a surfactant-laden droplet in a simple shear flow and the
buoyancy-driven bubble rise in a surfactant solution; see our recent work (Ba et al. 2023)
for details. In the following, we introduce this hybrid method briefly.

In the LB colour-gradient model, two distribution functions f R
i and f B

i are introduced to
represent the red and blue fluids, in which i is the lattice velocity direction ranging from
0 to (n − 1) for a DmQn lattice model. Like in Liu et al. (2018), the D2Q9 and D3Q19
lattice models are used for 2-D and 3-D simulations, respectively, and their corresponding
lattice velocities ei and the weighting factors wi are (Halliday, Hollis & Care 2007; Liu,
Valocchi & Kang 2012; Ba et al. 2015)

ei =
⎧⎨
⎩
(0, 0), i = 0;
(±1, 0), (0,±1), i = 1, 2, 3, 4;
(±1,±1), i = 5, 6, 7, 8,

wi =
⎧⎨
⎩

4/9, i = 0;
1/9, i = 1, 2, 3, 4;
1/36, i = 5, 6, 7, 8,

(2.6a,b)
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and

ei =
⎧⎨
⎩
(0, 0, 0), i = 0;
(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1, 2, . . . , 6;
(±1,±, 0), (±1, 0,±1), (0,±1,±1), i = 7, 8, . . . , 18,

wi =
⎧⎨
⎩

1/3, i = 0;
1/18, i = 1, 2, . . . , 6;
1/36, i = 7, 8, . . . , 18.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

In each time step, the colour-gradient model consists of three steps, namely the collision,
recolouring and streaming. First, the total distribution function, defined as fi = f R

i + f B
i ,

undergoes a collision step as

f †
i (x, t) = fi (x, t)− 1

τ

[
fi(x, t)− f eq

i (x, t)
] +Φi, (2.8)

where fi(x, t) is the total distribution function at the position x and time t in the ith lattice
velocity direction, τ is the dimensionless relaxation time,Φi is the forcing term responsible
for creating the interfacial force F s and f †

i is the post-collision distribution function. Here
f eq
i (x, t) is the equilibrium distribution function, which is related to the total density ρ and

the velocity u by (Ba et al. 2015; Liu et al. 2018, 2012)

f eq
i (x, t) = ρwi

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− u2

2c2
s

]
, (2.9)

where cs = 1/
√

3 is the sound speed, and the total density ρ is the sum of ρR and ρB with
ρR and ρB being the local densities of the red and blue fluids, respectively. For the present
problems, we use the above Bhatnagar–Gross–Krook collision operator (Liu et al. 2012;
Ba et al. 2015), which, when dealing with high-density-ratio problems, has to be replaced
by its multiple-relaxation-time counterpart to improve numerical stability and accuracy
(Ba et al. 2016).

With the body force model of Guo, Zheng & Shi (2002), the forcing term is given by

Φi(x, t) =
(

1 − 1
2τ

)
wi

[
ei − u

c2
s

+ (ei · u)ei

c4
s

]
· F s(x, t). (2.10)

Using the CSF model, the interfacial force F s consisting of normal capillary force
and tangential Marangoni stress can be expressed as (Lishchuk, Care & Halliday 2003;
Halliday et al. 2007)

F s(x, t) = −1
2
σκ∇ρN + 1

2
|∇ρN | [∇σ − (n · ∇σ)n] , (2.11)

where ρN = (ρR − ρB)/ρ is the colour function introduced to distinguish two different
fluids, σ is the interfacial tension coefficient, n = −∇ρN/|∇ρN | is the unit vector normal
to the interface and κ = −∇ · n is the local interface curvature. In the presence of
surfactants, the interfacial tension coefficient σ is no longer a constant but changes with
the interface surfactant concentration ψ . Often, a nonlinear Langmuir EOS, taken in the
form of (Kruijt-Stegeman, van de Vosse & Meijer 2004; Nganguia et al. 2013; Liu et al.
2020)

σ(ψ) = max {σ0[1 + E0 ln(1 − ψ/ψ∞)], σmin} (2.12)

is used to describe the change of σ with ψ . Equation (2.12) suggests that the interfacial
tension coefficient σ would remain a constant σmin when the interface surfactant
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concentration exceeds a critical value, known as the CMC. Here, σmin is set to σ0/10,
which leads to CMC = ψ∞[1 − exp(−0.9/E0)] (Liu et al. 2020; Nganguia et al. 2013).

Then, a recolouring step is applied to produce the phase segregation and ensure the
immiscibility of both fluids. With the recolouring algorithm proposed by Latva-Kokko &
Rothman (2005), the recoloured distribution functions are give by

f R‡
i (x, t) = ρR

ρ
f †
i (x, t)− βwi

ρRρB

ρ
ei · n;

f B‡
i (x, t) = ρB

ρ
f †
i (x, t)+ βwi

ρRρB

ρ
ei · n,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

where f k‡
i is the recoloured distribution function of the fluid k and β = 0.7 is the

segregation parameter.
Finally, the red and blue distribution functions both undergo a propagation step as

f k
i (x + ei, t + 1) = f k‡

i (x, t) , k = R, B, (2.14)

and the resulting distribution functions are applied to calculate the fluid densities through
ρk = ∑

i f k
i .

Using the Chapman–Enskog expansion, it can be shown that the fluid velocity u(x, t)
should be defined as ρu(x, t) = ∑

i fi(x, t)ei + F s(x, t)/2 to correctly recover (2.1) and
(2.2) (Ba et al. 2016; Liu et al. 2012), and the dynamic viscosity of the fluid mixture and
pressure are related to τ and ρ by μ = (τ − 1

2 )ρc2
s and p = ρc2

s , where μ is determined
by a harmonic mean of μR0 and μB0, i.e. 1/μ = (1 + ρN)/2μR0 + (1 − ρN)/2μB0 (Liu
et al. 2020).

Substituting δΓ = 1
2 |∇ρN | and χ = 1

2 (1 − ρN) into (2.3) and (2.4), one can obtain
the interface and bulk convection–diffusion equations defined in the entire fluid domain,
which read as (Ba et al. 2023)

∂t(|∇ρN |ψ)+ ∇ · (|∇ρN |ψu) = Di∇ · (|∇ρN |∇ψ)+ |∇ρN | j, (2.15)

∂t[(1 − ρN)φ] + ∇ · [(1 − ρN)φu] = Db∇ · [(1 − ρN)∇φ] − |∇ρN | j. (2.16)

Following Ba et al. (2023), the interface and bulk surfactant equations, i.e. (2.15) and
(2.16), are both solved by the FD method. Specifically, a modified Crank–Nicolson scheme
(Xu & Zhao 2003; Liu et al. 2018) is first applied for the time discretization. Then, all the
spatial derivatives are discretized using the standard central difference schemes except
for the convection terms ∇ · (|∇ρN |ψu) and ∇ · [(1 − ρN)φu], which are discretized by
the third-order weighted essentially non-oscillatory scheme. Finally, the resulting linear
systems for ψ t+1 and φt+1 are solved by the successive over relaxation method, in which
the relaxation factor is taken as 1.2. To conserve the total mass of surfactants, ψ t+1 and
φt+1 obtained from the FD solutions are rescaled using the technique proposed by Xu et al.
(2018).

3. Deformation of a surfactant-laden droplet in 2-D shear flow

For a droplet in simple shear flow, Liu et al. (2018) found that the presence of insoluble
surfactants increases the droplet deformation, and attributed such an increase to two
reasons: (1) the decreased interfacial tension caused by the average interface surfactant
concentration, which accounts for most of the increase in droplet deformation; and
(2) non-uniform effects including the non-uniform interfacial tension and Marangoni
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stresses caused by the non-uniform surfactants. In the soluble-surfactant case the
surfactant mass exchange between the interface and the bulk phase further leads
to the change in the surfactant distribution at the interface, and thus, one has to
consider the change of the average interface surfactant concentration and the change
of non-uniform effects. To characterize these two changes, we introduce two new
dimensionless parameters, i.e. the dimensionless total mass of the interface surfactants
M∗

s and the dimensionless source term j∗. We define M∗
s as the equilibrium total mass of

surfactants at the interface over the initial total mass, i.e. M∗
s = ∑

i ψ
e
i /

∑
i ψ

0
i , where ψe

i
and ψ0

i are the equilibrium and initial surfactant concentrations at the ith grid point over
the interface. Here j∗ = j/(γ φ0) = Bi[kφ∗(1/xin − ψ∗)− ψ∗] indicates the direction of
the surfactant mass transfer, in which ψ∗ = ψ/ψ0 and φ∗ = φ/φ0. Initially, the interface
and bulk surfactants are evenly distributed at the interface and in the ambient fluid
with ψ∗ = φ∗ = 1. When the dimensionless source term j∗ < 0, the desorption is the
dominating mechanism for the surfactant mass transfer at the interface; when j∗ = 0,
the surfactant mass transfer is zero across the interface; when j∗ > 0, the adsorption is
the dominating mechanism for the surfactant mass transfer at the interface.

In this section, numerical simulations are conducted to investigate the influence of the
Biot number Bi, bulk Péclet number Peb, adsorption number k and adsorption depth h
on the droplet deformation under a 2-D shear flow, which is illustrated in figure 1(a).
Initially, a circular droplet with radius R = 50 is placed in the centre of the computational
domain, which has a size of [−6R, 6R] × [−2R, 2R]. The Reynolds number is taken as
Re = 0.1 to meet the Stokes flow condition, the capillary number is set as Ca = 0.2,
and the viscosity ratio λ = 1. The densities of the two fluids are ρR0 = ρB0 = 1. The
Langmuir EOS is employed with σ0 = 0.001, xin = 0.3 and E0 = 0.5, and the interface
Péclet number is Pei = 10. Under such parametric conditions, the droplet would eventually
deform into an ellipse-like shape with semi-major axis a and semi-minor axis b, and the
droplet deformation can be quantified by the deformation parameter, which is defined as
Df = (a − b)/(a + b) (Taylor 1934). In what follows, all the simulation results refer to the
steady-state values unless otherwise stated.

3.1. Influence of Biot number
The Biot number Bi = rd/γ̇ is an important indicator of the surfactant mass transfer rate,
and its influence on the droplet deformation is studied for Bi ranging from 0 to 10, which
are achieved by varying the desorption coefficient rd and adsorption coefficient ra at the
same time but holding rd/ra unchanged. The adsorption number is taken as k = xin/
(1 − xin) = 0.429, which leads to j∗ = 0 at τ = 0 (τ is the dimensionless time defined
as τ = γ̇ t), meaning an initial zero mass transfer of surfactants across the interface. The
other parameters are chosen as Peb = 10 and h = 0.5.

Figure 2(a) plots Df as a function of Bi, in which Bi = 0 corresponds to the insoluble
case. As shown in this figure, Df first increases and then decreases as Bi increases, with
the maximum Df obtained at Bi = 0.1. To understand the role of the surfactant mass
transfer on the average interface surfactant concentration, we present the dimensionless
total mass of the interface surfactants M∗

s for different Bi also in figure 2(a). It is seen that
for Bi = 0, M∗

s remains almost at 1, indicating no mass transfer of surfactants across the
interface; whereas for Bi > 0, M∗

s is always larger than 1. This suggests that the adsorption
process dominates the dynamics of soluble surfactants as the droplet is elongated, and
some interface surfactants are swept to the poles, thus increasing the amount of interface
surfactants. In addition, like Df , M∗

s first increases and then decreases as Bi increases.
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Figure 2. (a) The deformation parameter Df and the dimensionless total mass of interface surfactants M∗
s as

functions of Bi; the distributions of (b) the dimensionless source term j∗ and (c) the dimensionless interface
surfactant concentration ψ∗ along the arc length s under various Bi; (d) the dimensionless bulk surfactant
concentration φ∗ at different Bi.

To show the influence of the surfactant solubility on non-uniform effects, when the
systems reach the steady state, we present the distributions of the dimensionless source
term j∗ along the arc length s in figure 2(b), the distributions of the dimensionless interface
surfactant concentration ψ∗ in figure 2(c) and the distributions of the dimensionless
bulk surfactant concentration φ∗ in figure 2(d). Herein, the arc length s, measured
counterclockwise from the right intersection point (i.e. the point ’A’ in figure 1a) between
y = 0 and the droplet interface, is normalized by the initial droplet radius R. As shown in
figure 2(b), for Bi = 0, no mass transfer occurs across the interface ( j = 0). For Bi > 0,
j∗ is negative and the desorption dominates the mass transfer process at the droplet tips
or poles; while away from the tips, j∗ is positive and the adsorption becomes dominant.
In addition, the amplitude of j∗ is enhanced with the increase of Bi, corresponding to an
increased mass transfer rate, which further leads to decreased non-uniform effects of the
interface surfactants (see figure 2c) and an increased non-uniformity of the bulk surfactant
distribution (figure 2d). It is also seen in figure 2(c) that at low values of Bi (Bi < 0.1),
the non-uniform effects keep nearly the same, but as Bi further increases above 0.1, the
non-uniform effects decrease sharply.

As mentioned above, at low values of Bi (Bi < 0.1), the non-uniform effects change
slowly, so the increased M∗

s dominates the droplet deformation and leads to an increase
in Df . As Bi further increases above 0.1, M∗

s and non-uniform effects both decrease
(typically with the minimum ψ∗ increasing but maximum ψ∗ decreasing), which results
in a decrease of Df .
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Figure 3. (a) The deformation parameter Df and the dimensionless total mass of interface surfactants M∗
s as

functions of Peb; the distributions of (b) the dimensionless source term j∗ and (c) the dimensionless interface
surfactant concentration ψ∗ along the arc length s under various Peb; (d) the dimensionless bulk concentration
φ∗ under various Peb.

3.2. Influence of bulk Péclet number
The bulk Péclet number Peb = R2γ̇ /Db represents the relative importance of convection
to diffusion of the bulk surfactants, and its influence on the droplet deformation is
investigated for Peb ranging from 0.1 to 100, which are achieved by solely varying Db.
The other parameters are fixed as Bi = 1, h = 0.5 and k = xin/(1 − xin) = 0.429.

Figure 3 shows the deformation parameter Df , the dimensionless total mass of the
interface surfactants M∗

s , the distributions of the dimensionless source term j∗ and the
dimensionless interface surfactant concentration ψ∗ along s, and the dimensionless bulk
surfactant concentration φ∗ for different Peb; the results of insoluble surfactants are also
shown for the purpose of comparison. As expected, Df is larger in the soluble cases than
in the insoluble case and, as Peb increases, Df decreases continuously. This is because
as Peb increases, the bulk surfactant distribution gets more non-uniform due to weaker
bulk diffusion, which prevents the surfactant adsorption from the bulk to the interface
at the droplet surface away from the poles, thus producing a decreased average interface
surfactant concentration (represented by M∗

s and shown in figure 3a). On the other hand, as
Peb increases, the amplitude of j∗ decreases (see figure 3b), corresponding to a decreased
surfactant mass transfer rate and increased non-uniform effects of interface surfactants,
as shown in figure 3(c). In this case, M∗

s dominates the droplet dynamics, and thus, the
droplet deformation Df decreases.
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Figure 4. (a) The distributions of the dimensionless source term j∗ and (b) the dimensionless interface
concentration ψ∗ along the arc length s for various k at different times.

3.3. Influence of adsorption number
The adsorption number k = raφ0/rd is a dimensionless parameter closely related to the
initial adsorption and desorption states of surfactants. For k < xin/(1 − xin) = 0.429, the
initial source term j∗ < 0, indicating a dominant desorption process over the interface
at the initial stage of the simulation; whereas for k > 0.429, j∗ > 0 and the adsorption
process dominates at τ = 0. In this section, k varies from 0.1 to 1 by increasing ra alone,
and the other parameters are taken as Bi = 1, Peb = 10 and h = 0.5.

Since k affects the initial mass transfer of surfactants, in figure 4(a) we present the
distributions of the dimensionless source term j∗ along the arc length at different time τ
for k = 0.1, 0.429, 0.6 and 1. It is seen that, for k = 0.1, initially, j∗ < 0 throughout the
droplet interface, suggesting that the desorption dominates; as time passes by, the overall j∗
increases due to desorption, and an equilibrium state is finally achieved with j∗ < 0 at the
droplet poles (desorption) and j∗ > 0 at the equator (adsorption). For k = 0.429, j∗ = 0
at τ = 0, revealing an initially quasi-equilibrium configuration. In this case, the interface
surfactant concentration increases at the droplet poles but decreases at the equator, and at
equilibrium we also find that j∗ < 0 at the poles and j∗ > 0 at the equator. For k = 0.6
and 1, j∗ > 0 at the beginning; as time passes by, j∗ decreases gradually, and finally we
still get j∗ < 0 at the poles and j∗ > 0 at the equator. Interestingly, we notice that the
difference between j∗ distributions at different values of k reduces as the droplet evolves
towards the equilibrium state, and eventually the influence of k on non-uniform effects can
be negligible.

In figures 4(b) and 5 we plot the evolution of the distribution of ψ∗ along the arc length
s and the distribution of φ∗ in the computational domain for different k. It is observed that
the interface and bulk surfactant distributions are initially of unity for all k, and then the
high- and low-concentration regions are formed at the poles and equators, respectively, for
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Figure 5. The distributions of the bulk surfactant concentration φ∗ at different times for (a) k = 0.1,
(b) k = 0.428, (c) k = 0.6 and (d) k = 1.

both interface and bulk surfactants. In addition, the average interface and bulk surfactant
concentrations vary significantly for different k. Specifically, for k = 0.1, the surfactant
desorption dominates; φ∗ first increases in the neighbourhood of the interface, and then,
the high surfactant concentration spreads to the whole domain due to diffusion, leading to
an overall increase of φ∗ and a decrease of ψ∗. For k = 0.429, as the droplet deforms,
the high- and low-concentration regions are formed at the droplet poles and equator,
respectively, and a relatively small change of the average interface and bulk surfactant
concentrations is observed. For k = 0.6 and 1, the surfactants are initially absorbed onto
the interface, and then a low bulk concentration region appears in the neighbourhood of
the interface that later diffuses to the whole domain. As a result, the overall φ∗ decreases
and ψ∗ increases.

In figure 6 we present Df and M∗
s at different values of k and find that as k increases,

M∗
s increases, leading to an increase in Df . It is also noticed that as k changes from 0.1 to

1, Df increases from 0.310 to 0.376, with an increment up to 20.92 %.

3.4. Influence of adsorption depth
In this section the effect of the adsorption depth h = ψ0/(φ0R) on droplet deformation is
investigated for h varying from 0.1 to 1. Different values of h are achieved by varying φ0,
and ra should be changed accordingly to keep a constant φ0ra. The other parameters are
chosen as Bi = 1, Peb = 10 and k = 0.429.

In figure 7 we plot Df and M∗
s as functions of h, and the distributions of j∗, ψ∗

and φ∗ at different values of h. As shown in figure 7(a), as h increases, M∗
s and Df

decrease. This is because as the adsorption depth h increases, ra increases but φ0 decreases,
indicating a decreased bulk surfactant concentration but a faster adsorption rate. With a
faster adsorption rate from the bulk phase, a decreased bulk concentration in the vicinity
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Figure 6. The deformation parameter Df and the dimensionless total mass of interface surfactants M∗
s versus

the adsorption number k.
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Figure 7. (a) The deformation parameter Df and the dimensionless total mass of interface surfactants M∗
s as

functions of h; the distributions of (b) the dimensionless source term j∗ and (c) the dimensionless interface
surfactant concentration ψ∗ along the arc length s under various h; (d) the dimensionless bulk surfactant
concentration φ∗ under various h.
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Maximum relative
Parameters Dmin

f Dmax
f change of Df

Bi (0–10) 0.3465 0.3566 2.91 %
Peb (0.1–100) 0.3515 0.3570 1.56 %
k (0.1–1) 0.3164 0.3826 20.92 %
h (0.1–1) 0.3576 0.3528 1.35 %

Table 2. The minimum and maximum deformation parameters and their relative change for different bulk
surfactant parameters.

of the droplet equator, as observed in figure 7(d), could hinder the further adsorption from
the bulk phase. As a result, M∗

s decreases with the increase of h. In addition, it can be seen
in figure 7(b) that with increasing h, the amplitude of j∗ decreases, leading to the decrease
of the surfactant mass transfer rate and, thus, to the increase of the non-uniform effects
of interface surfactants, as shown in figure 7(c). In this case, M∗

s dominates the droplet
behaviour, so the droplet deformation Df decreases as h increases.

3.5. Summary of the influences of bulk surfactant parameters
By investigating the influences of various bulk surfactant parameters on droplet
deformation, we have shown that the dimensionless total mass of the interface surfactants
M∗

s and the dimensionless source term j∗ can be good indicators for the variation of
the average interface surfactant concentration and non-uniform effects. The increase of
M∗

s enhances the average interface surfactant concentration, while the increase of the
amplitude of j∗ promotes the surfactant mass transfer rate, thus weakening non-uniform
effects of interface surfactants. In most cases, M∗

s determines the change of Df . In addition,
we summarize the minimum (Dmin

f ) and maximum (Dmax
f ) deformation parameters

obtained from the simulations and their relative change in table 2. It can be seen that all the
bulk surfactant parameters, including Bi, Peb, k and h, influence the droplet deformation
but their influences are different. Specifically, the influences of Bi, Peb and h are relatively
small with the relative Df changes below 3 %, while k has a pronounced effect on the
deformation with the relative Df change as high as 20.92 %. This indicates that Df can be
effectively controlled by varying k, and thus, in the following 3-D simulations, k is varied
to represent different solubilities of surfactants.

Finally, it is interesting to show the connection between the bulk surfactant parameters
used in our investigation and those used in existing experiments. Recently, Kalogirou &
Blyth (2020) summarized the typical values of the properties of fluids and surfactants
and the ranges of dimensionless parameters in existing experiments, from which one can
obtain the ranges of the bulk surfactant parameters involved in experiments: Peb in the
range of 1–107, Bi in the range of 10−9–101, k in the range of 10−11–101 and h in the range
of 10−4–103. In this section we have investigated the impact of dimensionless parameters
on the droplet behaviour for Peb ranging from 0.1 to 100, Bi ranging from 0.01 to 10,
k ranging from 0.1 to 1 and h ranging from 0.1 to 1. It is clear that the bulk surfactant
parameters used in our investigation all fall within the ranges of the previous experimental
parameters except for Peb = 0.1, which is slightly lower than the lower bound of Peb = 1
in experiments. Although Peb = 0.1 may have rarely happened in realistic surfactant
systems, it was still investigated numerically in the literature (Severino, Campana &
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Giavedoni 2005; Xu et al. 2006; Shang et al. 2024), which can provide additional
perspectives for understanding surfactant dynamics and their control mechanisms.

4. Deformation and breakup of a surfactant-laden droplet in 3-D shear flow

In this section we investigate the droplet deformation and breakup under 3-D shear flow
for different values of Ca and λ in clean, insoluble-surfactant and soluble-surfactant (k =
0.429 and 1) systems. As shown in figure 1(b), a 3-D droplet with an initial radius R is
placed halfway between two parallel walls that are separated by a distance H. The upper
and lower walls move with opposite velocities of uw and −uw so that a constant shear rate
γ̇ = 2uw/H is created. The halfway bounce-back schemes are applied at the upper and
lower walls to realize no-slip boundary conditions, while periodic boundary conditions
are imposed at the left and right boundaries as well as at the front and back boundaries.

The simulations are run in a L × W × H = 240 × 160 × 100 lattice domain with R =
25, and a fixed Reynolds number of Re = 0.1 is considered unless otherwise mentioned.
Our recent test indicated that the grid resolution with R = 25 is fine enough to produce
grid-independent results in a two-phase system with soluble surfactants (Ba et al. 2023),
and it is thus used in the present 3-D simulations to minimize the computational cost. The
Langmuir EOS is employed with σ0 = 0.001, xin = 0.3 and E0 = 0.5, and the interface
Péclet number is Pei = 10. Like in the last section, the densities of both fluids are chosen
as ρR0 = ρB0 = 1 and, initially, the interface and bulk surfactants are assumed to be
uniformly distributed at the interface and in the ambient fluid with ψ∗ = φ∗ = 1.

In the present LB-FD simulations, all the parameters are presented in lattice unit,
which can be converted into the physical parameters by using three reference scales,
namely the time scale T0, the length scale L0 and the mass scale M0. Here, we take
the typical case with the lattice parameters R = 25, ρR0 = ρB0 = 1, μR0 = μB0 = 0.158
and σ0 = 0.001 (the corresponding dimensionless parameters are Re = 0.1, λ = 1 and
Ca = 0.1) as an example to show the conversion. To convert the lattice parameters
to the physical parameters, three reference scales are taken as T0 = 7.6 × 10−9 s,
L0 = 1.28 × 10−6 m and M0 = 1 × 10−15 kg. A physical parameter with dimensions
[s]n1[m]n2[ kg]n3 can then be obtained by multiplying the corresponding lattice parameter
by [T0]n1[L0]n2[M0]n3. Therefore, one can obtain the physical values of the droplet radius,
the fluid densities, dynamic viscosities and the interfacial tension: Rp = RL0 = 32 µm,
ρR0

p = ρB0
p = ρR0M0L−3

0 = 880 kg m−3, μR0
p = μB0

p = μR0M0L−1
0 T−1

0 = 0.03 Pa s,
σ0p = σ0M0T−2

0 = 0.032 N m−1, where the subscript ‘p’ corresponds to the physical
parameter and it is added to differentiate from the lattice parameter.

4.1. Droplet deformation
For a clean droplet in simple shear flow, Vananroye et al. (2007) found that in the Stokes
flow regime, the droplet deformation can be accurately predicted by the MMSH model,
which is a combination of the Maffettone & Minale (1998) and Shapira & Haber (1990)
models, when Ca ≤ 0.3. Liu et al. (2018) found that the presence of insoluble surfactants
enhances the droplet deformation in a simple shear flow, and the contribution of surfactants
increases with Ca. Later, Liu et al. (2020) focused on the deformation and breakup of
a 3-D droplet on a solid surface subject to shear flow, and showed that the addition of
insoluble surfactants always promotes droplet breakup regardless of viscosity ratio and
the promoting effect is more pronounced at low viscosity ratios. Here, we investigate how
soluble surfactants influence the droplet behaviour at various Ca and λ.
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Figure 8. (a) The evolution of Df at Ca = {0.1, 0.2, 0.3}, (b) Df vs Ca for λ = 1 in the clean, insoluble and
soluble (k = 0.429 and 1) systems. For the evolution of Df at Ca = 0.3 in the soluble system with k = 1, we
only show the results before droplet breakup. In (b) the predictions from the MMSH model are also shown for
comparison, and an inset is included to show the increment of Df caused by insoluble surfactants (denoted as
δ1) and the increment caused by solubility (denoted as δ2) under various Ca.

Figure 8(a) shows the evolution of the deformation parameter Df for Ca =
{0.1, 0.2, 0.3} and λ = 1 in the clean, insoluble-surfactant and soluble-surfactant (k =
0.429 and 1) cases, and the steady state Df vs Ca is plotted in figure 8(b), where the
deformation parameters for the clean, insoluble-surfactant and soluble-surfactant cases are
denoted as Df 0, Df 1 and Df 2 for description convenience. In addition, the corresponding
steady-state droplet shapes in the surfactant cases are plotted in figure 9, where the droplet
surface is coloured by the dimensionless interface surfactant concentration ψ∗. As shown
in figure 8(a), Df first increases and then evolves to a steady value for all the cases except
the soluble-surfactant case with k = 1 and Ca = 0.3, in which the droplet eventually
breaks into two parts (see figure 9l) and, thus, we only show the evolution of Df before the
breakup occurs. When the droplet can reach the steady state, the steady-state deformation
value increases with Ca, and the surfactants prefer to accumulate at the tips of the droplet
where the interface surfactant concentration is the highest (figure 9g). For a fixed Ca, the
addition of surfactants always enhances the droplet deformation, but the enhancement of
Df varies with the surfactant type and k. For the insoluble case and the soluble case with
k = 0.429, Df varies slightly. This is because the soluble case with k = 0.429 corresponds
to the state where the surfactant desorption and adsorption balance and, thus, the surfactant
mass exchange between the interface and the bulk can be roughly ignored, like in the
insoluble case. For the soluble case with k = 1, Df needs a much longer time to achieve
the steady state, and Df is greatly enhanced, compared with the insoluble case and the
soluble case with k = 0.429.

As shown in figure 8(b), the simulated Df values all agree well with the predictions
from the MMSH model in the clean case. In the presence of surfactants, Df is enhanced
for all the Ca values considered, and the increased deformation δ = Df 2 − Df 0 consists
of two parts: (1) the insoluble part δ1 = Df 1 − Df 0, which is attributed to the decrease
of the interfacial tension induced by the average interface surfactant concentration, and
non-uniform effects (Liu et al. 2018) caused by the non-uniform capillary forces and
Marangoni stresses; and (2) the soluble part δ2 = Df 2 − Df 1, which is attributed to the
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Figure 9. (a) The steady droplet shapes or the droplet shape after the breakup for Ca = {0.1, 0.2, 0.3} and
λ = 1 in the clean, insoluble and soluble (k = 0.429 and 1) systems. The droplet surface is coloured by the
dimensionless interface surfactant concentration for systems with surfactants. In each graph, the maximum
and minimum values of the interface surfactant concentration are labelled. Note that the droplet eventually
breaks up into two parts in (l). Results are shown for (a) Ca = 0.1, clean; (b) Ca = 0.2, clean; (c) Ca = 0.3,
clean; (d) Ca = 0.1, insoluble; (e) Ca = 0.2, insoluble; ( f ) Ca = 0.3, insoluble; (g) Ca = 0.1, k = 0.429;
(h) Ca = 0.2, k = 0.429; (i) Ca = 0.3, k = 0.429; ( j) Ca = 0.1, k = 1; (k) Ca = 0.2, k = 1; (l) Ca = 0.3,
k = 1.

change of the average interface surfactant concentration and surfactant distribution caused
by the adsorption and desorption at the interface. For the insoluble case, δ1 increases
monotonously with Ca, consistent with the previous results of Liu et al. (2018). For the
soluble case with k = 0.429, δ2 is nearly zero owing to the balance between the surfactant
desorption and adsorption, whereas for k = 1, δ2 is greatly enhanced, because a higher
k favours the adsorption process, leading to a much higher average interface surfactant
concentration.

In figure 10 we present the dimensionless total mass of interface surfactants M∗
s and the

minimum and maximum values of interface surfactant concentration (i.e. ψ∗
min and ψ∗

max)
in the steady state. It is seen in figure 10(a) that in the insoluble case and the soluble case
with k = 0.429, M∗

s is equal or close to 1, indicating negligible surfactant mass transfer
between the bulk and the interface. As k changes from 0.429 to 1, M∗

s is increased by nearly
50 % due to a dominant adsorption at the interface, leading to the greatly enhanced Df in
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Figure 10. (a) The dimensionless total mass of interface surfactants M∗
s , and (b) the minimum and maximum

values of interface surfactant concentration (ψ∗
min and ψ∗

max) for various Ca in the insoluble and soluble
(k = 0.429 and 1) systems at λ = 1.

figure 8(b). In addition, we note that M∗
s increases with Ca, since the dilution of interface

surfactants at large Ca favours the surfactant adsorption and suppresses the desorption at
the interface. In figure 10(b) it is observed that as surfactants change from the insoluble
case to the soluble case with k = 0.429, the minimum interface surfactant concentration
ψ∗

min increases but the maximum interface surfactant concentration ψ∗
max decreases; while

as k increases from 0.429 to 1, both ψ∗
min and ψ∗

max increase. From these three cases, the
non-uniform effects, represented by ψ∗

max − ψ∗
min, is the highest in the insoluble case, and

it changes little as k changes from 0.429 to 1.
In figures 11 and 12 we plot Df , M∗

s , ψ∗
min and ψ∗

max as functions of Ca for the viscosity
ratios of 0.3 and 5. In figure 11 the predictions from the MMSH model at λ = 0.3 and
5 are also shown for comparison, and it is seen that the simulated Df values in the clean
case match perfectly with the MMSH predictions. As shown in figure 11(a), at λ = 0.3,
the droplet deformation is higher in the insoluble system (Df 1) than in the soluble system
with k = 0.429 (Df 2). The increment caused by the solubility δ2 = Df 2 − Df 1 < 0 and |δ2|
increases with Ca. This is because although M∗

s is larger in the soluble system with k =
0.429, non-uniform effects are more pronounced in the insoluble system (figure 12a,b),
which dominate the droplet deformation, thereby resulting in a negative δ2; and as Ca
increases, non-uniform effects increase rapidly in the insoluble system (figure 12b),
leading to the increase of |δ2| with Ca. In the soluble system with k = 1, M∗

s is much
larger than in the other two systems, and thus, Df is higher. In figure 11(b) we find that
at λ = 5 the Df values obtained in the insoluble system and in the soluble system with
k = 0.429 are nearly the same for all Ca, which is attributed to their similar M∗

s and the
relatively weak non-uniform effects, as shown in figure 12(c,d); while in the soluble system
with k = 1, Df becomes much higher due to the remarkably enhanced M∗

s .
Figure 13 presents the steady droplet shapes in the clean, insoluble and soluble (k =

0.429 and 1) systems for λ = {0.3, 1, 5}. As shown in this figure, as λ changes from 1
to 0.3, the steady droplet shape and Df change slightly, but non-uniform effects become
more pronounced for all the cases investigated (see figures 10b and 12b). Specifically,
in the insoluble system the droplet deformation is larger at λ = 0.3 than at λ = 1 due
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Figure 11. Plots of Df vs Ca in the clean, insoluble and soluble (k = 0.429 and 1) systems for (a) λ = 0.3
and (b) λ = 5, where the predictions from the MMSH model are also shown for comparison. In (a,b) an inset
is included to show the increment of Df caused by the insoluble surfactant (denoted as δ1) and the increment
caused by the solubility (denoted as δ2) under various Ca.

to the enhanced non-uniform effects. In the soluble system, non-uniform effects are still
more pronounced at λ = 0.3, but the corresponding M∗

s is lower (see figures 10a and 12a);
under the combined influence of non-uniform effects and M∗

s , at λ = 0.3, we find a slightly
smaller Df for k = 0.429 but a slightly larger Df for k = 1. Note that an exception occurs in
the case of Ca = 0.3, k = 1 and λ = 1 where the droplet cannot reach a steady deformation
but eventually break into two daughter droplets, and this will be discussed in the next
subsection. In addition, it can be observed in figures 10, 12 and 13 that compared with the
results at λ = 1 and λ = 0.3, at λ = 5, Df , M∗

s and non-uniform effects are overall smaller
or weaker, and these values increase slowly with the increase of Ca, which leads to very
small Df for the whole range of Ca.

To sum up, in the insoluble system, as the viscosity ratio λ increases, non-uniform
effects weaken, leading to a monotonic decrease of Df , unlike a droplet in the clean system
where Df first increases slightly and then decreases with λ (Maffettone & Minale 1998;
Vananroye et al. 2007). On the other hand, in the soluble system, under the combined
action of M∗

s and non-uniform effects, with the increase of λ, Df first increases slightly
and then decreases for k = 0.429, but decreases monotonously for k = 1.

To predict the deformation parameter Df in the shear system with soluble surfactants,
a simple way is to replace the capillary number Ca with the effective capillary number
Cae in the MMSH model, where the effective capillary number is defined as Cae =
Ca/[1 + E0 ln(1 − xinMs)]. The prediction model obtained in such a way is called the
modified MMSH model and, clearly, the modified MMSH model has taken into account
the influence of Ms that mainly affects the effective interfacial tension. Figure 14 shows
the comparison between the simulated deformation parameters (Df ) and those predicted
from the modified MMSH model (Df ,M) for three different viscosity ratios. It is seen
that for λ = 0.3, the difference between Df and Df ,M is the largest, which is followed
by λ = 1, and when λ is increased to 5, Df ,m agrees well with the simulated Df with
a maximum relative error of 4.71 %. This suggests that the modified MMSH model is
only suitable for predicting droplet deformation at high viscosity ratios, which is easily
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Figure 12. (a) The dimensionless total mass of interface surfactants and (b) the minimum and maximum
values of interface surfactant concentration (ψ∗

min and ψ∗
max) versus Ca in the insoluble and soluble (k = 0.429

and 1) systems for λ = 0.3; (c) M∗
s and (d) ψ∗

min and ψ∗
max vs Ca in the insoluble and soluble (k = 0.429 and

1) systems for λ = 5.

understandable because the modified MMSH model has not incorporated the influence of
non-uniform effects and non-uniform effects can be ignored only at high viscosity ratios
(see figure 12b,d). To predict the droplet deformation at low and moderate viscosity ratios,
non-uniform effects should be properly quantified, which we would like to do in future
work.

4.2. Droplet breakup
As Ca increases above a critical value, the droplet no longer reaches a steady deformation
but breaks up, and the critical value is called the critical capillary number of droplet
breakup, denoted as Cacr. In simple shear flow, Cacr is often quantified as the function of
the viscosity ratio and confinement ratio (Janssen et al. 2010). Liu et al. (2018) showed that
the presence of insoluble surfactants tends to reduce Cacr. Complementing the previous
works, we study the influence of soluble surfactants on Cacr under various viscosity ratios
and Reynolds numbers. In the simulations the height of the computational domain is set as
H = 4R with R = 25 so that the confinement ratio is 2R/H = 0.5, and the domain length
and width are set as 10R and 6R, respectively. As previously done in Liu et al. (2018),
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Figure 13. The final droplet shapes for Ca = {0.1, 0.2, 0.3} in the clean, insoluble and soluble (k = 0.429 and
1) systems at λ = {0.3, 1, 5}, in which the red solid lines, the blue dashed lines and the green dash-dotted lines
represent the droplet interfaces at λ = 1, λ = 0.3 and λ = 5, respectively. Results are shown for (a) Ca = 0.1,
clean; (b) Ca = 0.2, clean; (c) Ca = 0.3, clean; (d) Ca = 0.1, insoluble; (e) Ca = 0.2, insoluble; ( f ) Ca = 0.3,
insoluble; (g) Ca = 0.1, k = 0.429; (h) Ca = 0.2, k = 0.429; (i) Ca = 0.3, k = 0.429; ( j) Ca = 0.1, k = 1;
(k) Ca = 0.2, k = 1; (l) Ca = 0.3, k = 1.

we increase Ca by 0.01 at a time, and the lowest Ca at which the droplet breaks up is
considered as Cacr.

Figure 15 presents Cacr for different viscosity ratios λ in the clean, insoluble and soluble
(k = 0.429 and 1) systems, where insets are included to show snapshots of the droplet
shapes just before and after breakup. It is seen that in each case, Cacr first decreases and
then increases as λ increases. The addition of surfactants always promotes the droplet
breakup and for a fixed λ, Cacr is slightly smaller in the soluble case with k = 0.429
than in the insoluble case, which is because in the soluble case the interface surfactant
concentration in the necking region is increased, accelerating the necking process (see the
ψ∗ distributions at the droplet surface before breakup in figure 15). In addition, increasing
k from 0.429 to 1 favours the droplet breakup, consistent with the droplet deformation
trend shown previously in § 4.1.
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Figure 14. The steady-state deformation parameter as a function of Cae in the insoluble and soluble (k = 0.429
and 1) systems for (a) λ = 0.3, (b) λ = 1 and (c) λ = 5. The filled symbols represent the simulation results (Df )
while the hollow symbols represent the predictions from the modified MMSH model (Df ,M).
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Figure 15. Plot of Cacr for different viscosity ratios in the clean, insoluble and soluble (k = 0.429 and 1)
systems. The insets are included to show the droplet shapes immediately before and after droplet breakup, and
the droplet surface is coloured by ψ∗ in both insoluble and soluble systems.

In figure 16 we plot the snapshots of the droplet breakup process in the clean, insoluble
and soluble (k = 0.429 and 1) systems for λ = 1, and for the surfactant cases, we present
the distributions of the dimensionless interface surfactant concentration ψ∗ along the arc
length in the x–z mid-plane at different dimensionless time τ in figure 17. As shown
in figure 16, we can see that the droplet experiences the stretching and necking stages
before breakup. For insoluble surfactants, we can see in figure 17(a) that in the initial
stretching stage (τ ≤ 10), ψ∗

max occurs near the droplet poles while ψ∗
min at the equator of

the droplet; the maximum interface surfactant concentration ψ∗
max first increases to 2.056

then decreases slightly to 2.017, and the minimum interface surfactant concentration ψ∗
min

decreases. After the stretching stage, ψ∗
min starts to migrate from the equator towards the

poles at τ = 19, and a neck gradually forms in the middle of the droplet, where a local
maximum interface surfactant concentration ψ∗

neck appears, which promotes the thinning
of the neck. At the same time, ψ∗

max decreases severely from 2.017 at τ = 19 to 1.508 at
τ = 54.4 (with a decrease of about 25 %) while ψ∗

min almost keeps at 0.45, exhibiting a
severe dilution of the interface surfactants. The necking stage almost ends at τ = 54.4,
when ψ∗

neck increases to 0.917; finally, the droplet breaks up into two daughter droplets
at τ = 55. For the soluble surfactants with k = 0.429 (figure 17b), in the stretching stage
(τ ≤ 10), ψ∗

max increases to 1.621, and ψ∗
min decreases to around 0.59; ψ∗

max is lower than
in the insoluble case, but ψ∗

min is higher, which is caused by the surfactant adsorption and
desorption at the interface. In the necking stage, ψ∗

max decreases from 1.621 to 1.473, with
a decrease of about 10 %, which is much smaller than that in the insoluble case, while ψ∗

min
holds almost constant. This means that in the soluble case an increased M∗

s and a reduced
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Figure 16. The snapshots of droplet breakup for λ = 1 in (a) the clean system with Cacr = 0.392, (b) the
insoluble system with Cacr = 0.34, (c) the soluble system (k = 0.429) with Cacr = 0.33 and (d) the soluble
system (k = 1) with Cacr = 0.3. Note that in (b–d) the droplet surface is coloured by the dimensionless
interface surfactant concentration ψ∗.

non-uniformity of surfactants are observed compared with the insoluble case. In addition,
before the droplet breaks up, ψ∗

neck increases to 1.127 at τ = 62.4, much higher than in the
insoluble case. Therefore, the surfactant dilution is effectively supplemented by the bulk
surfactants, and the increase of ψ∗

neck reduces the interfacial tension in the neck region,
which both contribute to the droplet breakup. As k increases to 1 (see figure 17c), ψ∗

max
increases to 2.108 andψ∗

min holds at around 0.9 in the stretching stage. In the necking stage,
ψ∗

max decreases with a decrement within 10 % while ψ∗
min remains roughly a constant, and

ψ∗
neck increases to 1.524, much higher than the other two cases. Thus, with the higher

average interface surfactant concentration and ψ∗
neck, Cacr decreases to 0.3.

In figure 18 we present the distributions ofψ∗ along the arc length s at the x–z mid-plane
in the insoluble and soluble (k = 0.429 and 1) systems for λ = 0.3 and λ = 5. At λ =
0.3, the breakup process is similar to that at λ = 1, both experiencing the stretching and
necking stages, but the necking stage lasts for a shorter period; the surfactant distributions
are also similar to those at λ = 1 for each case, but non-uniform effects are generally more
pronounced than at λ = 1, which hinders the increase of ψ∗

neck, and thus, increases Cacr
for each case.

At λ = 5, the droplet breakup exhibits a significant difference. We take the soluble case
with k = 1, λ = 5 and Cacr = 0.58 as an example, and the corresponding snapshots of
the droplet shape and Df evolution are shown in figure 19. As seen in this figure, Df first
increases rapidly to around 0.5 and then increases at a much lower speed until the breakup
occurs, and the necking stage lasts very long since the droplet is exposed to weak shear
flow due to a low inclination angle in this case. In figure 18(b) we can clearly observe
that non-uniform effects are relatively weak at Cacr for all cases. Specifically, in the
insoluble case the non-uniformity of interface surfactants is small, with ψ∗

max − ψ∗
min =

0.88 at τ = 5, and decreases significantly in the necking stage (e.g. ψ∗
max − ψ∗

min = 0.33
at τ = 50); when approaching the end of the necking stage (τ = 80.75), ψ∗

max − ψ∗
min

reduces to around 0.27 under the effect of dilution, and ψ∗
neck is close to ψ∗

min, much lower
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Figure 17. The distributions of the dimensionless interface surfactant concentration ψ∗ along the arc length
s in the x–z mid-plane at different dimensionless time τ in (a) the insoluble case, (b) the soluble case with
k = 0.429 and (c) the soluble case with k = 1. The viscosity ratios are all taken as λ = 1, and the critical
capillary numbers are exactly the same as those in figure 16(b–d). Note that the pink and blue filled circles are
to highlight the droplet tips and the necking regions, respectively.

than ψ∗
neck at λ = 1 and 0.3. In the soluble case with k = 0.429, ψ∗

max − ψ∗
min is almost the

same as that in the insoluble case before breakup, but due to the surfactant adsorption from
the bulk phase, the average interface surfactant concentration ψ∗ is higher, quickening the
breakup process. Upon increasing k to 1, a similar distribution of ψ∗ is also observed,
but the average interface surfactant concentration is higher and the surfactants become
more non-uniform before droplet breakup. As a result, the droplet breakup is promoted,
corresponding to a lower Cacr.

Another important dimensionless parameter governing droplet breakup is the Reynolds
number, and its influence on Cacr is investigated in the clean, insoluble and soluble
(k = 0.429 and 1) systems for the viscosity ratio of 1, and the results are displayed in
figure 20. It is seen that in each of the systems considered, as Re increases, the critical
capillary number Cacr decreases monotonically, and the droplet breakup undergoes the
transition from binary breakup (Re ≤ 4) to ternary breakup (Re = 10). In addition, we
observe that regardless of the value of Re, the presence of surfactants always reduces
Cacr, and the greater the solubility of surfactants, the more the reduction of Cacr. As Re
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Figure 18. The distributions of the dimensionless interface surfactant concentration ψ∗ along the arc length
in the x–z mid-plane at different dimensionless time τ for (a) λ = 0.3 and (b) λ = 5. Note that the pink and
blue filled circles are to highlight the droplet tips and the necking regions, respectively.
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Figure 19. (a) Snapshots of the droplet shape and (b) the time evolution of deformation parameter Df in the
soluble case with k = 1 at λ = 5 and Cacr = 0.58.

increases, especially when increasing from 4 to 10, we interestingly find that the influence
of solubility on Cacr weakens since inertia gradually dominates the breakup mechanism,
and the influence of surfactants also shows a weakening trend.

5. Conclusions

In this work a hybrid LB-FD method is used to simulate the droplet deformation and
breakup in simple shear flow with soluble surfactants. First, we investigate the influence
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Figure 20. Critical capillary number of droplet breakup as a function of Reynolds number in the clean,
insoluble and soluble (k = 0.429 and 1) systems for λ = 1. Binary breakup and ternary breakup are represented
by the discrete symbols without ‘+’ and the discrete symbols with ‘+’, respectively. Each inset plots the droplet
shapes before and after breakup.

of the bulk surfactant parameters on the droplet deformation in 2-D shear flow. Results
show that the droplet deformation is influenced by the change of the dimensionless total
mass of interface surfactants M∗

s and the variation of non-uniform effects, quantified by
the dimensionless source term j∗, but the change of M∗

s plays a dominant role. In addition,
the droplet deformation first increases and then decreases with the Biot number, increases
significantly with the adsorption number k and decreases with either the adsorption depth
or the bulk Péclet number. Among the four bulk surfactant parameters, k is the most
influential one.

Then, we focus on 3-D shear flow and study the role of surfactants on the droplet
deformation and breakup for various capillary numbers (Ca) and viscosity ratios (λ) in
the clean, insoluble and soluble (k = 0.429 and 1) systems. Due to the balance between
the surfactant adsorption and desorption, leading to negligible mass exchange between
the interface and the bulk, Df in the soluble case with k = 0.429 is nearly the same as
that in the insoluble case; but as k increases to 1, M∗

s is greatly enhanced because of
the dominant adsorption of surfactants, which causes the significant increase in Df . In
the insoluble case, as λ increases, non-uniform effects weaken, leading to a decrease of
Df , different from a droplet in the clean case where Df first increases slightly and then
decreases with λ; in the soluble case, under the combined action of M∗

s and non-uniform
effects, with the increase of λ, Df first increases slightly and then decreases for k = 0.429,
but monotonically decreases for k = 1. By incorporating the effect of M∗

s , a modified
MMSH model is developed for the prediction of droplet deformation at high viscosity
ratios.

988 A41-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

46
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.463


Effect of soluble surfactant on drop deformation and breakup

Next, by quantifying the critical capillary number Cacr of droplet breakup in the
clean, insoluble and soluble (k = 0.429 and 1) cases, we show that the addition of
surfactants always promotes the droplet breakup; as λ increases, Cacr first decreases
and then increases in each case. To identify the influence of the surfactant type on Cacr
under different viscosity ratios, we track the distributions of the dimensionless interface
surfactant concentration along the arc length, and find that a local maximum dimensionless
interface surfactant concentration ψ∗

neck appears at the neck during the necking stage,
which promotes the thinning of the neck. In the insoluble case, a severe dilution of the
surfactants is observed, leading to a decrease of ψ∗

neck during the whole stretching and
necking stages. In the soluble case with k = 0.429, the dilution is reduced by the mass
transfer of surfactants, enhancing the average interface surfactant concentration and ψ∗

neck,
and thus, the droplet breaks up at a lower Cacr; for k = 1, the average interface surfactant
concentration and ψ∗

neck are further enhanced and Cacr is further reduced. In addition, it is
found that increasing Re not only decreases Cacr but may also change the mode of droplet
breakup.

Finally, we discuss the limitations of the present work and give some suggestions
for future work. Although a modified MMSH model is developed to predict droplet
deformation in this work, it is only limited to two-phase systems with high viscosity
ratio, in which non-uniform effects of surfactants can be neglected. For low and moderate
viscosity ratios, non-uniform effects play a non-trivial role and cannot be quantified
by (ψ∗

max − ψ∗
min) alone. Thus, it is necessary to design some new parameters for the

characterization or quantification of non-uniform effects, which we leave for future work.
In addition, the effect of many important parameters such as the wall confinement ratio and
Reynolds number on the droplet deformation has not been explored, and even though some
parameters like viscosity ratio have been investigated, their variation ranges are rather
limited. In future work we will conduct comprehensive and in-depth research on various
influencing factors within a wider parameter range, making up for the shortcomings of the
present work.
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