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Abstract

A full-information version of the secretary problem in which the objective is to maximize
the time of possession of a relatively best object is considered both in the case in which
only the most recently observed object may be chosen and in the case in which any of the
previously observed objects may be chosen. The main purpose of this paper is to obtain,
under an optimal rule, both the asymptotic proportional durations when the number of
objects tends to infinity, and the expected durations when the number of objects remains
finite. The integral expressions for these asymptotic values are derived in both cases: the
approximate numerical values are 0.435 in the former (no-recall) case and 0.449 in the
latter (recall) case, indicating a surprisingly small difference. The expected values of the
optimal stopping times are also obtained from the planar Poisson process analysis.
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1. Introduction and summary

A known number of objects, n, appear sequentially in random order, and one of them must
be chosen. An object that has been rejected cannot be recalled later. In the classical best-
choice problem, sometimes referred to as the secretary problem, the objective is to maximize
the probability of choosing the best object. At each time, we observe only the relative rank
of the current object with respect to its predecessors. It is well known that the asymptotic
value, as n → ∞, of the optimal rule is e−1 = 0.3678 · · · , and that the optimal rule is easily
described. Moreover, as the e−1-law (Bruss (1984)) shows, e−1 is the precise lower bound for
the value even in the continuous-time model for unknown n, if all n objects have independent,
identically distributed arrival times. In contrast to the above no-information version of the
problem, the informed version is the problem in which the observations are the true values of
the objects, assumed to be independent, identically distributed random variables from a known
continuous distribution that is taken, without loss of generality, to be the uniform distribution
on the interval [0, 1]. This is often called the full-information version of the problem. In
this setting, the asymptotic value (i.e. the probability of choosing the largest of these random
variables) increases to 0.5802 · · · (see Gilbert and Mosteller (1966, p. 56)). The classical best-
choice problem was generalized to admit stochastically successful procurement of previously
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88 V. V. MAZALOV AND M. TAMAKI

rejected objects by Yang (1974) in the no-information version, and by Petruccelli (1982) in the
full-information version. Other models of recall with finite memory were considered by Smith
and Deely (1975), Rocha (1993), and Tamaki (1986).

Ferguson et al. (1992) extensively considered, as a variation of the secretary problem, the
duration problem, where the payoff is the length of time we are in possession of a relatively
best object. Thus, the objective of this problem is to find an optimal stopping rule that
maximizes the expected duration of owning a relatively best object, or, equivalently, the expected
proportional duration (which is defined as (expected duration)/n), to make the solution more
easily comparable to other problems. In considering the full-information version of the duration
problem, Ferguson et al. (1992) were mainly concerned with finding the optimal stopping rule,
and left unsolved the problem of obtaining the value attained under an optimal rule. In this
paper, we thus attempt to derive the explicit forms of the optimal expected duration for finite
n and the asymptotic value of the (optimal expected) proportional duration, both in the case in
which only the most recently observed object may be chosen (i.e. the no-recall case), and in
the case in which any of the previously observed objects may be chosen (i.e. the recall case).

In Section 2.1, we show that if c1 = 2.1198 · · · is a solution to (2.3), then the asymptotic
proportional duration in the no-recall case is given by

v∗
1 =

∫ 1

0
e−c1/u

[∫ u

0

(
ec1v/u − 1

v
+ ec1v/u

1 − v

)
dv − 1

]
du ≈ 0.435 17. (1.1)

Similarly, if c2 = 1.3450 · · · is a solution to (2.20), the asymptotic value in the recall case is
given, in Section 2.2, by

v∗
2 =

∫ 1

0

∫ u

0

e−c2(1−v)/u

1 − v
dv du ≈ 0.449 25. (1.2)

Remember that the corresponding values in the no-information version are 2e−2 ≈ 0.2707
in the no-recall case and e−1 ≈ 0.3679 in the recall case (see Section 2.2 of Ferguson et al.
(1992)).

Although the values in (1.1) and (1.2) are obtained as the limiting values of the finite problems
in Section 2, they are also derived from the planar Poisson process (PPP) analysis in Section 3,
which greatly facilitates the derivation of the asymptotic value for some full-information models
(see Gnedin (1996) and Samuels (2004)). The expected values of the optimal stopping times
are also obtained.

Interestingly, the value v∗
1 in (1.1) has multiple meanings. The full-information Gilbert–

Mosteller problem was modified in different ways by Porosiński (1987) and Petruccelli (1980);
Porosiński replaced a fixed n by a random N uniform on {1, 2, . . . , n} and independent of the
observations, while Petruccelli kept n fixed but allowed the observation of only the sequence
of ranges (maximum minus minimum), as well as of whether the current observation is the
largest so far. Porosiński (2002) found that these two quite different best-choice problems have
identical optimal rules and a common asymptotic value v∗

1 . Motivated by Porosiński (2002)
and a talk by the second author (given at a conference in Bedlewo, Poland, in July 2002), who
reported on the formula (1.1), Samuels (2004) put forward yet another best-choice problem
having the same asymptotic value v∗

1 , and attempted to explain, using a PPP model, why these
extraordinary coincidences occur. Gnedin (2004), inspired by Samuels (2004), considered
a more general class of PPPs and gave a resolution to the ‘Petruccelli–Porosiński–Samuels
paradox’ on the coincidence of the asymptotic values.
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Optimal gain in the full-information problem 89

Let N again be a random variable uniformly distributed on {1, 2, . . . , n}. The equivalence
between the best-choice problem with N objects and the duration problem without recall, but
with a fixed number, n, of objects, can be observed not only in the full-information version
but also in the no-information version (see Presman and Sonin (1972) for the no-information
version of the Porosiński (1987) problem). Although various explanations of this equivalence
were given in Samuels (1991), (2004) and Gnedin (2004), it was Gnedin (2005) who established
and extended this equivalence in greater generality.

2. Full-information duration problems

Let X1, X2, . . . , Xn be independent, identically distributed random variables uniformly
distributed on [0, 1], where Xj , 1 ≤ j ≤ n, denotes the (true) value of the object at the
j th stage from last. An object is relatively best if it has the largest value observed so far. We are
to select a relatively best object with the view of maximizing the time it stays relatively best.
The chosen object is not required to be the best overall. Two cases are distinguished: in the
no-recall case, we can choose an object only when a new relatively best object appears, and, in
the recall case, we can solicit the current relatively best object wherever it may be. Since Xn is
observed at time 1, Xn−1 at time 2, and so on,

Lk = max(Xn, Xn−1, . . . , Xk), 1 ≤ k ≤ n,

represents the largest value to be observed by time n−k +1. We denote the state of the process
after having observed Xn, Xn−1, . . . , Xk by a triplet (x, k, m), if Lk = Xm = x, k ≤ m ≤ n.
For a fixed k, a serious decision of choice (acceptance or rejection) occurs in state (x, k, k) in
the no-recall case, and in state (x, k, m), for all m, in the recall case.

Let Tk(x) be the time elapsed, conditional on Lk = x, from time n − k + 1 until a new
relatively best object appears. If no such object appears, let Tk(x) = k. Then we have

P{Tk(x) = j} = (1 − x)xj−1, 1 ≤ j ≤ k − 1,

P{Tk(x) = k} = xk−1,

and the expected payoff, when we choose a current relatively best object in state (x, k, k) in
the no-recall case, or in state (x, k, m) in the recall case, is defined as

w(x, k) = E(Tk(x)) = 1 + x + x2 + · · · + xk−1 = 1 − xk

1 − x
.

Note that, in the recall case, we do not obtain the whole duration as payoff, but only the portion
of the duration initiated at the moment of selection. See Section 3.1 of Ferguson et al. (1992)
for more details of the problem considered here.

2.1. Sampling without recall

Let v(x, k) denote the optimal expected return attained by leaving state (x, k + 1, k + 1)

and continuing in an optimal manner thereafter. Then the v(x, k) are defined inductively by

v(x, k) = xv(x, k − 1) +
∫ 1

x

max(w(t, k), v(t, k − 1)) dt, 1 ≤ k ≤ n, v(x, 0) = 0,

and the optimal expected duration v∗
1(n) is defined as v(0, n).
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After leaving state (x, k, k), if we choose the next relatively best object, if any, we can expect
to receive the payoff

u(x, k) =
k−1∑
j=1

xj−1
∫ 1

x

w(t, k − j) dt

=
k−1∑
j=1

xj−1
k−j∑
i=1

1 − xi

i
. (2.1)

Ferguson et al. (1992) showed that there exists a decision number bk such that the optimal
decision in state (x, k, k) is to choose the relatively best object of value Xk = x if x ≥ bk .
They also showed that b1 = 0 and that, for k > 1, bk is increasing in k and is calculated as the
unique root x ∈ [0, 1] of the equation

w(x, k) = u(x, k). (2.2)

They also showed that if bk is written as bk = 1 − zk/k, then zk converges, as k → ∞, to the
constant c1 = 2.1198 · · · that satisfies the equation∫ 1

0
e−c1v

[
1 −

∫ 1−v

0

1 − e−c1u

u
du

]
dv = 0. (2.3)

Other expressions for (2.2) and (2.3) can be given (see the following lemma) if we introduce
the notation a0 = 0 and ak = ∑k

j=1 1/j, k ≥ 1, and the exponential-integral functions

I (c) =
∫ ∞

1

e−cu

u
du, J (c) =

∫ 1

0

ecv − 1

v
dv =

∞∑
j=1

cj

jj ! .

Lemma 2.1. (i) The decision number bk, k > 1, is a solution of the equation

k−1∑
i=0

(ak−1−i − ai − 1)xi = 0. (2.4)

(ii) The constant c1 satisfies the equation

1 + J (−c1) = e−c1 [1 − J (c1)]. (2.5)

Proof. (i) Equation (2.4) is immediate from (2.2), since u(x, k) in (2.1) can be written as

u(x, k) =
k−1∑
i=1

k−i∑
j=1

xi−1

j
−

k−1∑
i=1

k−i∑
j=1

xj+i−1

j

=
k−1∑
i=0

ak−1−ix
i −

k−1∑
i=0

aix
i . (2.6)

(ii) Equation (2.5) holds because the left-hand side of (2.3) can be written as follows:∫ 1

0
e−c1v dv −

∫ 1

0

{∫ 1−u

0
e−c1v dv

}
1 − e−c1u

u
du

= 1

c1
(1 − e−c1) − 1

c1

∫ 1

0
{1 − e−c1(1−u)}1 − e−c1u

u
du

= 1

c1
[1 − e−c1 + J (−c1) + e−c1J (c1)].
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The asymptotic proportional duration is defined as v∗
1 = limn→∞ v∗

1(n)/n. Explicit expres-
sions for v∗

1(n) and v∗
1 can be given as follows.

Theorem 2.1. (i) For n ≥ 1,

v∗
1(n) = an +

n∑
k=1

k−1∑
i=0

1

n − i
(ai − ak−1−i − 1)bn−i

k . (2.7)

(ii) The asymptotic proportional duration v∗
1 is given as in (1.1) or, equivalently, as

v∗
1 = (ec1 − 1)I (c1) + {e−c1 − c1I (c1)}J (c1). (2.8)

Proof. (i) Let K be the time at which the maximum value observed so far initially exceeds
the decision number, i.e. K = min{k : Ln+1−k ≥ bn+1−k}. Also, let E(Dn) denote the expected
duration under an optimal rule. Since we now know the form of the optimal rule, we can obtain
v∗

1(n) = E(Dn) by conditioning on (K, Ln+1−K, Ln+2−K). That is,

E(Dn) = E(E(Dn | K, Ln+1−K, Ln+2−K))

=
n∑

k=1

∫∫
y≤x

E(Dn | K = k, Ln+1−K = x, Ln+2−K = y)

× p(K = k, Ln+1−K = x, Ln+2−K = y) dx dy, (2.9)

where p(K = k, Ln+1−K = x, Ln+2−K = y) is the joint probability density of

(K, Ln+1−K, Ln+2−K),

and the term corresponding to k = 1 in the above summation must be interpreted as∫ 1

0
E(Dn | K = 1, Ln = x)p(K = 1, Ln = x) dx,

because no reference value Ln+1 is available at time 1.
It is easy to see that

E(Dn | K = k, Ln+1−K = x, Ln+2−K = y) =
{

u(x, n + 1 − k) if y = x,

w(x, n + 1 − k) if y < x,
(2.10)

and that, for k ≥ 2,

p(K = k, Ln+1−K = x, Ln+2−K = y)

=

⎧⎪⎨
⎪⎩

(k − 1)xk−1 if y = x and bn+1−k ≤ x ≤ bn+2−k,

(k − 1)yk−2 if y < x and bn+1−k ≤ x, y ≤ bn+2−k,

0 otherwise,

(2.11)

with E(Dn | K = 1, Ln = x) = w(x, n) and

p(K = 1, Ln = x) =
{

1 if bn ≤ x,

0 if bn > x.
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It is a simple matter to check that, for each n,

∫ 1

0
p(K = 1, Ln = x) dx +

n∑
k=2

∫∫
y≤x

p(K = k, Ln+1−K = x, Ln+2−K = y) dx dy ≡ 1.

Substituting (2.10) and (2.11) into (2.9) yields

E(Dn) =
∫ 1

bn

w(x, n) dx +
n∑

k=2

∫ bn+2−k

bn+1−k

u(x, n + 1 − k)(k − 1)xk−1 dx

+
n∑

k=2

{∫ bn+2−k

bn+1−k

∫ x

0
+

∫ 1

bn+2−k

∫ bn+2−k

0

}
w(x, n + 1 − k)(k − 1)yk−2 dy dx.

(2.12)

The first term of (2.12) becomes

∫ 1

bn

( n∑
j=1

xj−1
)

dx = an −
n∑

j=1

1

j
b

j
n. (2.13)

The second term of (2.12), when combined with (2.6), can be transformed into

n−1∑
k=1

∫ bk+1

bk

u(x, k)(n − k)xn−k dx

=
n−1∑
k=1

∫ bk+1

bk

{k−1∑
i=0

(ak−1−i − ai)x
i

}
(n − k)xn−k dx

=
n∑

j=2

1

j

n−1∑
k=n−j+1

(n − k)(an−j − ak−1−n+j )(b
j
k+1 − b

j
k )

=
n∑

j=1

1

j

n∑
k=n−j+1

(an−j − ak−1−n+j − 1)b
j
k +

n∑
j=1

1

j
b

j
n+1−j

+
n∑

j=2

n−1∑
k=n−j+1

1

j − n + k
b

j
k+1 −

n−1∑
k=1

akb
n−k
k+1 . (2.14)

The third term of (2.12) can be reduced to

n−1∑
k=1

∫ bk+1

bk

w(x, k)xn−k dx +
n−1∑
k=1

bn−k
k+1

∫ 1

bk+1

w(x, k) dx

=
n∑

j=1

1

j
(b

j
n − b

j
n+1−j ) +

n−1∑
k=1

akb
n−k
k+1 −

n∑
j=2

n−1∑
k=n−j+1

1

j − n + k
b

j
k+1. (2.15)

Substituting (2.13)–(2.15) into (2.12) yields (2.7).
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(ii) See Section 1 of Mazalov and Tamaki (2003) for a derivation of (1.1). To transform (1.1)
into (2.8), write c instead of c1, for simplicity, and rewrite (1.1) as

v∗
1 = Iα + Iβ − Iγ , (2.16)

where

Iα :=
∫ 1

0
e−c/u

[∫ u

0

ecv/u − 1

v
dv

]
du,

Iβ :=
∫ 1

0
e−c/u

[∫ u

0

ecv/u

1 − v
dv

]
du, and Iγ :=

∫ 1

0
e−c/u du.

Let x = 1/u. Then, by integration by parts, Iγ becomes

Iγ =
∫ ∞

1

e−cx

x2 dx = e−c − cI (c). (2.17)

By letting x = v/u, we have

∫ u

0

ecv/u − 1

v
dv =

∫ 1

0

ecx − 1

x
dx = J (c),

and so Iα becomes

Iα =
∫ 1

0
e−c/uJ (c) du = Iγ J (c) = (e−c − cI (c))J (c). (2.18)

Now let t = 1/u and s = (1 − v)/u in Iβ . Then the Jacobian is 1/t3 and, so,

Iβ =
∫ 1

0

{∫ s+1

1

dt

t2

}
1

s
e−cs ds +

∫ ∞

1

{∫ s+1

s

dt

t2

}
1

s
e−cs ds

=
∫ 1

0

e−cs

1 + s
ds +

∫ ∞

1

(
1

s2 − 1

s
+ 1

1 + s

)
e−cs ds

= ec

∫ 2

1

1

x
e−cx dx +

[
(e−c − cI (c)) − I (c) + ec

∫ ∞

2

1

x
e−cx dx

]
= e−c + (ec − c − 1)I (c). (2.19)

Thus, substituting (2.17)–(2.19) into (2.16) yields (2.8).

2.2. Sampling with recall

Ferguson et al. (1992) showed that, in the recall case, there exists a decision number bk

such that the optimal decision in state (x, k, m) is to choose the relatively best object of value
Lk = Xm = x, regardless of m, if x ≥ bk . They also showed that b1 = 0 and that, for k > 1,
bk is increasing in k and is calculated as the unique root x ∈ [0, 1] of the equation

k−1∑
j=1

1

j
(1 − xj ) = 1.
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Obviously, the bk here are different from those defined in Section 2.1. It was also shown that, if
bk is written as bk = 1 − zk/k, then zk converges, as k → ∞, to the constant c2 = 1.3450 · · ·
that satisfies the equation

1 + J (−c2) = 0. (2.20)

Let v∗
2(n) and v∗

2 respectively denote the optimal expected duration for finite n and the asymp-
totic proportional duration. Their explicit forms are given as follows.

Theorem 2.2. (i) For n ≥ 2,

v∗
2(n) = an +

n∑
k=2

k−2∑
i=0

1

n − i
bn−i
k . (2.21)

(ii) The asymptotic proportional duration v∗
2 is given as in (1.2) or, equivalently, as

v∗
2 = e−c2 + (ec2 − c2 − 1)I (c2). (2.22)

Proof. (i) Let v∗
2(n) = E(Dn) denote the expected duration under an optimal rule. Since

the optimal rule in the recall case is of the same threshold type as in the no-recall case, it is easy
to see that (2.9), the formula for E(Dn), is still valid for the recall case if

E(Dn | K = k, Ln+1−K = x, Ln+2−K = y)

in (2.10) is replaced by

E(Dn | K = k, Ln+1−K = x, Ln+2−K = y) = w(x, n + 1 − k), y ≤ x;
that is to say, (2.12) holds if, in the second term on its right-hand side, u(x, n+1−k) is replaced
by w(x, n + 1 − k). Now,

n∑
k=2

∫ bn+2−k

bn+1−k

w(x, n + 1 − k)(k − 1)xk−1 dx

=
n−1∑
k=1

∫ bk+1

bk

( k∑
j=1

xj−1
)

(n − k)xn−k dx

=
n−1∑
k=1

k−1∑
i=0

(
n − k

n − i

)
(bn−i

k+1 − bn−i
k )

=
n∑

k=2

k−2∑
i=0

1

n − i
bn−i
k +

n∑
j=1

1

j
b

j
n+1−j −

n−1∑
k=1

bn−k
k+1; (2.23)

applying (2.13), (2.23), and (2.15) to (2.12) yields

v∗
2 = an +

n∑
k=2

k−2∑
i=0

1

n − i
bn−i
k +

n−1∑
k=1

(ak − 1)bn−k
k+1 −

n∑
j=2

n−1∑
k=n−j+1

1

j − n + k
b

j
k+1. (2.24)

Moreover, from the definition of bk+1, we have

n∑
j=2

n−1∑
k=n−j+1

1

j − n + k
b

j
k+1 =

n−1∑
k=1

( k∑
j=1

1

j
b

j
k+1

)
bn−k
k+1 =

n−1∑
k=1

(ak − 1)bn−k
k+1 ,

which when combined with (2.24) proves (2.21).
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(ii) Equation (1.2) is a direct consequence of (2.21) because, by setting bk = 1− zk/k and then
letting n → ∞, we obtain

v∗
2(n)

n
= an

n
+ 1

n

n∑
k=2

k−2∑
i=0

1

n − i

(
1 − zk

k

)n−i

−→ 0 +
∫ 1

0

∫ u

0

1

1 − v
(e−c2)(1−v)/u dv du.

The transformation of (1.2) into (2.22) follows by analogy with (2.19).

3. The PPP approach

As Samuels (2004) and Gnedin (1996), (2004) have shown, the PPP approach turns out to be a
powerful tool for studying the limiting behaviors of the full-information models. In this section,
we derive by PPP analysis not only the proportional durations given by (2.8) and (2.22), but also
the expected values of the optimal stopping times. Following Samuels (2004) (see his Section 9),
we employ a planar Poisson process with unit rate on the semi-infinite strip [0, 1] × [0, ∞).
This setting inverts the problem, making the ‘best’ become the ‘smallest’. We scan the process
from left to right along the strip; the best arrival, second best arrival, etc., have values that are
sums of independent, identically distributed mean-1 exponential random variables, and arrive
at independent, identically distributed uniform(0,1) times that are independent of these values.

3.1. Sampling without recall

Samuels (2004) was mainly concerned with the full-information best-choice problems, but
studied the duration problem also and derived (3.7), below, in connection with the Porosiński
problem. In the remainder of the paper, we use an argument adapted from his Section 13.2. Let
E(D(t, y)) denote the expected duration if we choose the point (t, y) in the PPP, i.e. we stop at
time t with a relatively best object of value y. Then, from the properties of the PPP, we have

E(D(t, y)) =
∫ 1−t

0
P{D(t, y) > r} dr =

∫ 1−t

0
e−yr dr = 1 − e−(1−t)y

y
. (3.1)

If we do not choose this point, but instead choose the point related to the next relatively best
object, if any, then, since its value is uniformly distributed on (0, y), we can expect to receive
a payoff

q(t, y) =
∫ 1−t

0

{∫ y

0
p(t + r, x)

1

y
dx

}
ye−yr dr

=
∫ y

0

dx

x

[
1 − e−(1−t)y

y
− 1

y − x
{e−(1−t)x − e−(1−t)y}

]
, (3.2)

where we have written p(s, x) for E(D(s, x)). We now write p(t, y) = q(t, y) using (3.1) and
(3.2), which yield

1 − e−(1−t)y =
∫ y

0

dx

x

[
1 − e−(1−t)y − y

y − x
{e−(1−t)x − e−(1−t)y}

]

or, equivalently,

1 − e−c =
∫ 1

0

dv

v

[
1 − e−c − 1

1 − v
(e−cv − e−c)

]
, (3.3)

where c = (1 − t)y.
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Since the right-hand side of (3.3) can be expressed as∫ 1

0
dv

[
1 − e−c

v
−

(
1

v
+ 1

1 − v

)
(e−cv − e−c)

]

= −
∫ 1

0

e−cv − 1

v
dv − e−c

∫ 1

0

ec(1−v) − 1

1 − v
dv

= −[J (−c) + e−cJ (c)],
having p(t, y) = q(t, y) is equivalent to having

1 + J (−c) = e−c[1 − J (c)]. (3.4)

It follows from (2.5) that c = c1 satisfies (3.4). Moreover, since p(t, y) ≥ q(t, y) implies that
p(t ′, y′) ≥ q(t ′, y′) for t ′ > t and y′ < y, we conclude that the optimal rule stops with the first
relatively best object, if any, that lies under the curve y = c1/(1 − t).

The following argument, referred to as the ‘forward-looking argument’ in Samuels (2004),
leads to the calculation of the duration E(Dc) expected under the optimal stopping rule specified
by the threshold curve y = c/(1 − t).

Let

T = the arrival time of the first (left-most) point that lies below the curve y = c/(1 − t).

S = the time at which the value of the best (lowest) above-threshold arrival
is equal to the threshold.

Then S and T are independent random variables, and have the following respective densities:

fS(s) = cs

(1 − s)c+2 e−cs/(1−s) and fT (t) = c(1 − t)c−1. (3.5)

Samuels (2004) gave the result

E(Dc) =
∫ 1

0

∫ t

0
p

(
s,

c

1 − s

)
fS(s)fT (t) ds dt

+
∫ 1

0

∫ s

0

[
1 − t

c

∫ c/(1−t)

0
p(t, y) dy

]
fT (t)fS(s) dt ds,

and showed that this simplifies to

E(Dc) = e−c − 1 − J (−c) + {(c + 1)(ec − 1) + cecJ (−c)}I (c). (3.6)

Theorem 3.1. (i) The optimal expected duration becomes

E(Dc1) = (ec1 − 1)I (c1) + {e−c1 − c1I (c1)}J (c1), (3.7)

which coincides with v∗
1 in (2.9).

(ii) Let τ1 denote the optimal stopping time. Its expected value is given by

E(τ1) = e−c1 + (ec1 − c1 − 1)I (c1) ≈ 0.336. (3.8)

Moreover, the probability, say P{τ1 = 1}, that the optimal stopping rule comes to a dead end
without choosing an object is given by

P{τ1 = 1} = e−c1 − c1I (c1) ≈ 0.032. (3.9)

Proof. (i) Equation (3.7) is immediate from (3.6) because c = c1 satisfies (3.4).
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(ii) For c = c1, let S be defined as before and let T ′ be defined as a random variable, depending
on S, that denotes the arrival time of the first (left-most) point that lies below the curve

y = min

(
c

1 − t
,

c

1 − S

)
,

if such a point exists, and which equals 1 otherwise. Since the number of points in any region
of the PPP is Poisson with parameter equal to the region’s area, the density of T ′ conditional
on S is given by

fT ′ | S(t) = − d

dt
P{T ′ > t | S}

= − d

dt
exp

(
−

∫ t

0
min

(
c

1 − r
,

c

1 − S

)
dr

)

=
{

c(1 − t)c−1 if t ≤ S,

c(1 − S)c−1e−c(t−S)/(1−S) if t > S.
(3.10)

Moreover, the conditional probability that no object is chosen until the end becomes

P{T ′ = 1 | S} = exp

(
−

[∫ S

0

c

1 − t
dt +

∫ 1

S

c

1 − S
dt

])
= e−c(1 − S)c. (3.11)

Straightforward calculations using (3.10) and (3.11) yield the conditional expectation of T ′
given S to be

E(T ′ | S) =
∫ 1

0
P{T ′ > t | S} dt

= 1

c + 1
+ 1 − (c + 1)e−c

c(c + 1)
(1 − S)c+1. (3.12)

Since τ1 is distributed as is T ′, from (3.12) and (3.5) we have

E(τ1) = E(E(T ′ | S))

=
∫ 1

0

[
1

c + 1
+ 1 − (c + 1)e−c

c(c + 1)
(1 − s)c+1

]
cs

(1 − s)c+2 e−cs/(1−s) ds

= 1

c + 1
+ ec − c − 1

c + 1

∫ 1

0

s

1 − s
e−c/(1−s) ds

= 1

c + 1
+ ec − c − 1

c + 1

∫ ∞

1

(
1

u
− 1

u2

)
e−cu du

(
where u = 1

1 − s

)

= 1

c + 1
+ ec − c − 1

c + 1
[I (c) − {e−c − cI (c)}] (from (2.17))

= e−c + (ec − c − 1)I (c),

which proves (3.8). Equation (3.9) can be obtained from
∫ 1

0 P{T ′ = 1 | S}fS(s) ds.

Remark 3.1. It is easy to see that, for any c > 0, (3.8) and (3.9) hold if τ1 is replaced by the
stopping rule which chooses the first relatively best object that lies under the curve y = c/(1−t).
Moreover, the probability of such a rule making the best choice can be shown to be given by the
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right-hand side of (3.7) (see Samuels (1991) or Section 10.3 of Samuels (2004)). The optimal
rule for the Gilbert–Mosteller best-choice problem is of this form with c = c3 = 0.8043 · · · ,
which is the solution to J (c) = 1. For this value of c, (3.7) and (3.8) are identical, with common
value 0.5801 · · · , while (3.9) becomes 0.1995 · · · , as obtained by Gnedin (1996).

3.2. Sampling with recall

Denote by (t, y) the state in which the relatively best object observed up to time t has
value y. If we choose the relatively best in this state, then the expected duration is p(t, y) =
{1 − e−(1−t)y}/y, as given in Section 3.1, while, if we continue for a small additional time �t

and then stop (i.e. stop with the new relatively best object, if one appears, and otherwise solicit
the current such object), then the expected duration is given by

q(t, y, �t) = y�t

∫ y

0
p(t + �t, x)

1

y
dx + (1 − y�t)p(t + �t, y) + o(�t),

because y�t is the probability that a new relatively best object appears during the interval
(t, t + �t). Thus, if

p(t, y) ≥ q(t, y, �t), (3.13)

stopping immediately at time t is at least as good as waiting an additional small time �t and
then stopping. Since

p(t + �t, y) = p(t, y) − e−(1−t)y�t + o(�t),

(3.13) can be written as

p(t, y) ≥ �t

∫ y

0
p(t + �t, x) dx + p(t, y) − {yp(t, y) + e−(1−t)y}�t + o(�t)

or, equivalently,

0 ≥
[∫ y

0
p(t + �t, x) dx − yp(t, y) − e−(1−t)y

]
�t + o(�t)

or

0 ≥
∫ y

0
p(t, x) dx − yp(t, y) − e−(1−t)y, (3.14)

by dividing both sides by �t and then letting �t → 0. If we set c = (1 − t)y, (3.14) reduces
to ∫ 1

0

1 − e−cx

x
dx ≤ 1

or, equivalently,

−J (−c) ≤ 1. (3.15)

The set of states (t, y) that satisfy (3.15) can be regarded as an ‘infinitesimal look-ahead stopping
region’. Since (3.15) shows that the problem is monotone, the infinitesimal look-ahead stopping
region turns out to be an optimal stopping region (see Ross (1971)).
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Theorem 3.2. (i) The optimal expected duration becomes

E(Dc2) = e−c2 + (ec2 − c2 − 1)I (c2), (3.16)

which coincides with v∗
2 in (2.22).

(ii) Let τ2 denote the optimal stopping time. Its expected value is given by

E(τ2) = 1 − c2ec2I (c2) ≈ 0.348.

Proof. (i) It is easy to see that the locus of points (t, y) that satisfy (3.15) with equality
constitutes the curve y = c2/(1 − t), by (2.20). Thus, (3.16) follows from (3.6).

(ii) For c = c2, let S be defined as before and let T ′′ be defined as a random variable, depending
on S, that denotes the arrival time of the first (left-most) point that lies below the curve y =
c/(1 − t), if such a point appears before S, and which equals S otherwise.

As in the proof of part (ii) of Theorem 3.1, we have

fT ′′ | S(t) = c(1 − t)c−1, t < S,

P{T ′′ = S | S} = exp

(
−

∫ S

0

c

1 − t
dt

)
= (1 − S)c.

Hence, the conditional expectation is given by

E(T ′′ | S) =
∫ S

0
tfT ′′ | S(t) dt + S P{T ′′ = S | S}

= 1

c + 1
[1 − (1 − S)c+1]. (3.17)

Since τ2 is distributed as is T ′′, from (3.17) and (3.5) we have

E(τ2) = E(E(T ′′ | S))

= 1

c + 1

∫ 1

0
[1 − (1 − s)c+1] cs

(1 − s)c+2 e−cs/(1−s) ds

= 1

c + 1
[1 − cec{(1 + c)I (c) − e−c}]

= 1 − cecI (c),

which completes the proof.

Remark 3.2. It is interesting to note that the value c3 appears in a problem considered by Bruss
and Delbaen (2001), namely that of sequentially selecting a monotone subsequence of maximal
expected length in the case in which a sequence of independent, identically distributed random
variables appear, over a given horizon t , according to a Poisson process with unit rate. They
showed that, for small t , i.e. t ≤ c3, the optimal rule selects the relatively best observation
successively (see their Lemma 2.3 and Remark 2.1). This is not a pure coincidence, because
interrecord times in a Poisson process and record frequencies are strongly related, but we have
not studied this in more detail. The authors thank a referee for pointing out this coincidence.
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Remark 3.3. Define, as a function of c, K(c) := e−c +(ec −c−1)I (c). This function appears
occasionally in this paper, and represents different quantities of interest depending on the value
of c. These are summarized as follows.

• K(c1) is the expected value of the optimal stopping time for the full-information duration
problem without recall.

• K(c2) is the optimal expected duration for the full-information duration problem with
recall.

• K(c3) has two meanings in the full-information best-choice problem: on the one hand
it is the optimal probability of choosing the best value, and on the other hand it is the
expected value of the optimal stopping time. See also Gnedin and Sakaguchi (1992).
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