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WEAK CONVERGENCE OF TENSOR PRODUCTS OF VECTOR
MEASURES WITH VALUES IN NUCLEAR SPACES

JUN KAWABE

We study weak convergence of tensor products of vector measures with values in
nuclear spaces, such as the space of all rapidly decreasing, infinitely differentiable
functions, the space of all test functions, and the strong duals of those spaces. It
is shown that the weak convergence of a net of tensor products of vector measures
follows from that of the corresponding net of real product measures.

1. INTRODUCTION

The notion of tensor product of vector measures was introduced by Duchon and
Kluvanek [4] in 1967: Let X and Y be real locally convex Hausdorff spaces. Let \x be a
vector measure on a measurable space (O,A) with values in X and v a vector measure on
a measurable space (F, B) with values in Y. Then there exists a unique vector measure
H <8> v '• A x B —»• X ®CY, which is called a tensor product of \i and i/, such that the
relation

H ® v{A x B) = n{A) ® v(B), AeA,B£B

holds, where X ®eY denotes the completion of the tensor product of X and Y under the
e-topology.

On the other hand, Dekiert [2] recently introduced the notion of weak convergence
of vector measures with values in a Banach space, which is a natural generalisation of
the weak convergence of real measures, and studied its properties (see also Marz and
Shortt [11]).

In this paper, we study weak convergence of tensor products of vector measures
with values in nuclear spaces, such as the space <S of all rapidly decreasing, infinitely
differentiable functions, the space T> of all test functions, and the strong duals of those
spaces. After preparing necessary notation and results, in Section 3 we study uniform
boundedness of a set of tensor products of vector measures. In Section 4, using the results
of Section 3, we show that the weak convergence of a net of tensor products of vector
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measures with values in nuclear spaces follows from that of the corresponding net of real
product measures.

All the topological spaces and topological linear spaces in this paper are Hausdorff,
and the scalar fields of topological linear spaces are taken to be the field R of real numbers.

2. NOTATION AND PRELIMINARIES

Let (E, F) be a dual system over R with the canonical bilinear form (x,y) £ ExF >-t
(x,y), and r a locally convex topology on E which is consistent with this duality, that
is, the dual of (E,T) is identical with F. The weak (respectively, strong) topology on E
means the a(E, F) (respectively (3(E, F))-topology on E, and ET, Ea and Ep denote the
space E with the topologies r , a{E, F) and 0(E,F), respectively. If y 6 F and p is a
seminorm on E, we write y ^ p whenever |(x, y) | ^ p(x) for all x € E.

Let (f2, A) be a measurable space and \i : A —> E be a finitely additive set function.
We say that fi is a vector measure if it is (T-additive, that is, for any disjoint sequence

oo oo

{Ajt}^! in A with A = \J Ak, we have ^ fi(Ak) = fi(A) for the topology r on E.
it=l i=l

Denote by Ai(O; E) the set of all vector measures \i : A —>• E. When E = R, we write
M.{fi) instead of M(i7;K). If/x is a vector measure, then (yn)(A) = (^( / l ) ,y) , A £ A,
is a real measure for each y € F. Conversely, a theorem of Orlicz and Pettis ensures that
a finitely additive set function fi : A —t E is a-additive if yfj, is a-additive for each y € F.

Let fj. : A —> E be a finitely additive set function and p be a seminorm on E. Then
the p-semivariation of fi is the set function | | / j | | p : A —> [0,oo] defined by

MP(A) = sup M(>1), AeA,

where |y/x|(-) is the total variation of the real measure y\i. See Diestel and Uhr [3] and
Lewis [10] for some properties of semi variations.

Let V C M(Q\ E). We say that V is uniformly bounded if sup ||^||p(/?) < oo for each

r-continuous seminorm p on E. Put R(V) = {fJ.(A) : A e A, fi G V} C E. Then, we
have a number of alternative characterisations of uniform boundedness.

PROPOSITION 1 . Let V C M(O; E). Then the following conditions (a)-(d) are

equivalent:

(a) V is uniformly bounded.

(b) For each y € F, we have sup \y/j.\(n) < oo.

(c) R{V) is bounded for a(E, F).

(d) R{V) is bounded for r .

PROOF: (a)=S>(b)=>(c) are easy, and (c)«.(d) follows from [12, IV.3.3]. (a)<S>(d) can
be proved by the following inequality

\\P(A) ^ 2 • s
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Consequently, by (4)-(7), we have

and the proof is complete. D

We now consider tensor products of vector measures with values in dual spaces.
Since Xp is nuclear (see [7, Corollary 13 of I.7.B] and [14, Propositions 50.1 and 50.6]),
for \x 6 M(O;Xp) and v £ M(F;Yp), there exists a tensor product /i ® v E M(O x
r;X%®nYj) such that the relation (1) holds (see [4, Corollary 1]). For V C M{Q;X'p)
and W C M(r- Y$), we put V <g> W = {n ® v : /i € V, v <E W} C M(ii x T; ̂  ®. y,').
Then we have the following

PROPOSITION 4 . IfV C M{Q\X'p) and W C M{r-,Yp
m) are uniformly bounded,

then soisV®W CM(H x T; X'p ®* Yp').

PROOF: Since Xp is nuclear, the TT and e topologies coincide on Xp ® Yp', and thus
the result follows from Proposition 2. 0

EXAMPLE 1. (1) Let 5(Rm) and S(Rn) be the spaces of all rapidly decreasing, infinitely
differentiable functions on Euclidean spaces Rm and Rn respectively. These are examples
of nuclear Frechet spaces. The strong dual spaces <S*(Rm) and 5*(Kn) are called the
spaces of all slowly increasing distributions. We have the canonical isomorphisms (see [14,
Theorem 51.6 and its Corollary]):

S(Rm) ®^ S(Rn) = 5(Rm + n) and 5*(R m )§^5 ' (R n ) = S'(Rm + n) .

Consequently, for y. € A4(j?;S(Rm)) and v € M(r-,S(Rn)), the tensor product ^ ® u
exists and takes values in <S(Rm+n). When fj. € M{Q\S'{Rm)) and v € M(r-,S"{Rn)),
then n®v also exists and takes values in <S*(Rm+n).
(2) Let U C Rm and V C Rn be open sets. Denote by V{U), V{V) and V(U x V)
the spaces of all test functions on U, V and U x V, respectively. These are examples
of locally convex Hausdorff spaces whose type is a strict inductive limit of an increasing
sequence of nuclear Frechet spaces. The strong dual spaces V'(U), V*(V), and V'(U xV)
are called the spaces of all distributions. We have the canonical isomorphisms (see [14,
Theorem 51.7] and Grothendieck [6, Chapter II, Section 3, n°3, p.84]):

V{U)®V(V) = V(U xV) and V'{U x V) = V{U)»WV(V).

Consequently, for fi £ M(n-,V(U)) and v G M(r-,V(V)), the tensor product fj. ® u
exists and takes values in V(U x V). When n 6 M{Q\V"{U)) and v € M(r-,T>'(V)),
then n ® v also exists and takes values in V(U x V).
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4. W E A K CONVERGENCE OF TENSOR PRODUCT

In this section, we first introduce the notion of weak convergence of vector measures
with values in a sequentially complete lcHs. Let X be a sequentially complete lcHs with
a topology r . Let 5 be a completely regular space and B(S) the <r-field of all Borel
subsets of 5 . Denote by C(S) the Banach space of all bounded, continuous, real valued
functions on S with the norm | |/ | | = sup | / (s ) | . Let {na} be a net in M(S;X) and

s€S

H £ A4(S;X). The following definition of the weak convergence of vector measures is a
natural generalisation of the weak convergence of real measures, and it is reduced to that
of [15] in case that X = K and is reduced to that of [2] in case that X is a Banach space.
We say that {/iQ} converges weakly to \i for r if, for each / £ C(S), we have

lim / / d/j,a = f dfi for the topology r on X.
a Js Js

See Lewis [10] for definition and basic properties of the integral above. We remark that
every bounded, measurable, real valued functions on an arbitrary measurable space is
integrable with respect to any vector measure with values in a sequentially complete
lcHs.

In the rest of this paper, as in Section 3, we assume that X is a strict inductive limit
of an increasing sequence {Xn} of nuclear Frechet spaces, Y is a strict inductive limit of
an increasing sequence {Yn} of Frechet spaces, and Z = X ® Y is a strict inductive limit
of the increasing sequence {Xn (g)n Yn} of the completion of the tensor product of Xn and
Yn under the projective topology (see Section 3 for topological linear properties of these
spaces).

In the following, let 5 and T be completely regular spaces which satisfy B(S xT) =
B(S) x B(T) (this condition is satisfied, for instance, both 5 and T are (1) separable
metric spaces and (2) Suslin spaces; see Schwartz [13, p.105]). The following theorem
shows that the weak convergence of a net of tensor products of vector measures with values
in nuclear spaces follows from that of the corresponding net of real product measures.
We recall that for fj, £ M.(S\ X) and u £ M(T; Y), the tensor product /J. <g) v exists and
takes values in Z = X ® Y, and Zp can be identified with Xp ®, V '̂ as a topological
linear space.

THEOREM 5 . Let {fia} c M(S; X) and {i/a} C M{T\ Y) be uniformly bounded
nets. Let p € M{S; X) and v £ M(T\ Y). Assume that, for each x* 6 X' and y" € Y~,
the net {x'ixa x y~va} of real product measures converges weakly to the real product
measure x'\i x yV. Then {fia <g> va} C M(S x T; Z) converges weakly to \i <g> i/ 6
M(S x T; Z) for a(Z,Z"). Further, if Y is nuclear, it also converges weakly for the
inductive limit topology on Z.

We first show Theorem 5 in the case that X and Y are Frechet spaces and X is
nuclear.
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THEOREM 6 . Let X be a nuclear Frechet space and Y a Frechet space. Let

{A*o} C M(S; X) and {va} C M{T\Y) be uniformly bounded nets. Let fj. 6 M(S;X)

and v 6 M(T; Y). Assume that, for each x* € X' and y* £ Y*, {x'(ia x t /V o } converges

weakly to x'n x y'u. Then {pQ ® ua} C M(S x T; X ®n Y) converges weakly to n®v €

M(S x T; X <§„. V) for o(X ®* Y, (X ®n Y)'). Further, if Y is nuclear, it also converges

weakly for the projective topology on X ®T Y.

PROOF: Since X is nuclear, X®*Y = X®CY (see [14, Theorem 50.1]), and hence

by Proposition 2 and uniform boundedness of {^Q} and {va}, we have that {fia <g> i/a] C

A4(S x T\X ®T, Y) is uniformly bounded. Therefore, we can easily show that the set

= \\if hd(fia®va)- [ hd(p
V USxT JSxT

is bounded in X ®w Y.

Fix e > 0, z' e {X ®n Y)', and h G C{S x T) with \\h\\ ^ 1. For each a, we put

= I hd([Ma®va)- /
JSxT JSISxT JSxT

and put

V. = iz* € (X%,Y)* : sup|(2,2->| < e l .
I zew )

Then, Vc is a neighbourhood of 0 for the strong topology on (X ®* Y)*. Since (X ®T Y)p

can be identified with Xp ®T Yp by [14, Proposition 50.7], there exists an element ZQ —

Y,x'k®y"k (x'k 6 X% y'keY") such that z' - z'o £ Ve. Then, we have
A : = l

(8) sup\(zo,z'-z'0)\ ^sup\(z,z'-z'0)\ <-e,

since za € W for all a. On the other hand, by assumption, for each k = 1 ,2 , . . . ,m, we

have

(z a , x'k ®y'k)= h d{x'klia x y'kua) - / h d{x'kfi x y'ku) -> 0.
JSxT JSxT

Consequently, by (8) and the above, we have

limsup ( / hd(iia®i/a)— I hd(fi ® v),z* \
o \\JsxT JSxT / I

^ limsup|(2Q,2* — ZQ)| + limsup|(za,Zo)|
a a

m
< e + ^2l\ms\ip\(za,x'k®y'k)\ = e,

k=i

and this implies that {fia ® i/a} converges weakly to fx ® i/ for the weak topology on
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Assume that Y is nuclear. Then X ®n Y is a nuclear Frechet space, and hence it is a
Montel space. Since {za} is contained in the bounded subset W of X <%>„ Y, noticing that
the weak topology and the original topology coincide on bounded subsets of a Montel
space (see [8, p.229]), {za} converges to 0 for the projective topology on X ®nY. D

PROOF OF THEOREM 5: By Proposition 1, [14, Proposition 14.6] and uniform
boundedness of {/J.a} and {i/a}, we can find no € N such that /xa,/i 6 AA(S;Xno)
and ua,u 6 M(T;Yn(1), and {/J.a} and {i/a} are uniformly bounded in M(S; Xno) and
A4(T;Yno), respectively. On the other hand, it is obvious that for each xj € X*o and
Vo e 1̂*0' ixof1a xyo^a} converges weakly to xj/i xy^w. Therefore, by Theorem 6, {fJ.Q®va}
converges weakly to y. ® v for cr(Xno ®n Vno, (Xno ®n Vno)*). Since the weak topology on
A'n0 ®* Yno is the topology induced on X^ ®T Yno by the weak topology a{Z, Z"), we can
show that {fj,a ® va] converges weakly to fi ® u for a(Z, Z*). The weak convergence for
the inductive limit topology on Z is shown in the same way as in Theorem 6. D

Next we study weak convergence of tensor products of vector measures with values
in dual spaces. We recall that the strong dual of Z = X ® Y can be identified with
Xp (&n Yp as a topological linear space.

THEOREM 7. Let {/J.O} C M(S;X'p) and {va} C M{T;Y^) be uniformly
bounded nets. Let fi £ M.(S\ Xp) and u E M(T; Yp). Assume that, for each x € X and
y 6 Y, {xna x yi/a} converges weakly to xfj. x yu. Then {/zQ ® ua} C M(S x T\Z'p)
converges weakly to fj, <g> v 6 M{S x T; Zp) for cr(Z", Z). Further, if Y is nuclear, it also
converges weakly for @(Z*,Z).

PROOF: From Proposition 4 and uniform boundedness of {/iQ} and {fo} it follows
that {/io <g) uo} C M(S x T; Zp) is uniformly bounded. Therefore, we can easily show
that the set

H = \ \ f [ h d ( f i a ® v a ) - [ h d { t i ® v ) : \ \ h \ \ ^ l , h £ C ( S x T ) \
o UsxT JSxT )

is weakly bounded in Z'. Since Z is barrelled, H is an equicontinuous subset of Z'.

Fix e > 0, z € Z and h G C(S x T) with \\h\\ < 1. Then z is contained in some
Xno®i,Yna. Since H is equicontinuous, there exists a neighbourhood W of 0 for the
inductive limit topology on Z such that z G W implies

(9) \(z,z')\^e for all z ' 6 ff,

and then W fl {Xno®lrYn<s) is a neighbourhood of 0 for the projective topology on
Xno®7!Yrio. Since X-^ <g> V^ is dense in Xno ®nYno, we can find an element z0 —
m

J2 xk ® Vk {xk £ Xno, yk G K J such that z - zQ 6 W.
k=\

For each a, we put

= / h d([io ® va) — I hd(fj.®u).
JSxT JSxT
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Then z* £ H for all a. On the other hand, for each k = 1,2,... , m, we have ( i t ®
yk,z"a) -» 0 by assumption. Consequently, by (9) and the above, we have

/ f LM ~ ^ f( z , / n a ( / i a <8»i/Q) — I
\ JSxT JSx

^ limsup|(z - z0, z*)| + limsup|(z0, z*)|

and this implies that {/j.a ® i/a] converges weakly to n ® v for <r(Z', Z).

Assume that Y is nuclear. Then Z is a Montel space. Since {z '} is contained in
the bounded subset H of Z*, noticing that the weak topology and the strong topology
coincide on bounded subsets of the dual of a Montel space (see [14, Proposition 34.6]),
we see that {z'a} converges to 0 for /3(Z", Z). 0

A subset M of M(S) is said to be uniformly tight if for each e > 0, there exists a
compact subset K€ of S such that \m\(S — Kc) < t for all m € M. By the definition of
uniform tightness and the Stone-Weierstrass theorem, it is readily seen that if {ma} C
M(S) and {na} C M(T) are uniformly bounded and uniformly tight nets, and if {ma}
and {na} converge weakly to m e M(S) and n £ M{T) respectively, then {ma x na}
converges weakly to m x n. By this fact and Theorems 5 and 7, we have

COROLLORY 8 . Let {fj.a} C M{S;X) and {va} C M(T;Y) be uniformly
bounded nets. Let fi £ M(S;X) and u G M{T\Y). Assume the following two con-
ditions:

(a) For each x* 6 X' and y' 6 Y", {x"/j.a} and {y'ua} are uniformly tight.

(b) For each x" £ X" and y' £ Y', {x'fia} and {yVo} converge weakly to x'fi

and y"i/, respectively.

Then, {/uo ® fQ} converges weakly to /x <g) i/ for cr(Z, Z'). Further, ifY is nuclear, it also
converges weakly for the inductive limit topology on Z.

COROLLORY 9 . Let {//Q} C M{S\X'0) and {i/a} C M{T\Y^) be uniformly
bounded nets. Let fi € M(S;Xp) and u £ M(T\Yp). Assume the following two condi-
tions:

(a) For each x £ X and y £Y, {x/iQ} 3Jid {t/fQ} are uniformly tight.

(b) For each x £ X and y £ Y, {x/xo} and {yva} converge weakly to xp and

yu, respectively.

Then, {na ® ua} converges weakly to n®i> for a(Z', Z). Further, ifY is nuclear, it also
converges weakly for j3(Z',Z).

REMARK 1. By Dalecky and Fomin [1, Theorem HI.2.2], every weakly convergent se-
quence of real Radon measures on an R-space is uniformly tight. Hence, if we assume
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that both 5 and T are /?-spaces, then Corollaries 8 and 9 hold for the sequences {//„}
and {fn} without the assumption (a) of uniform tightness. See III.2.2-2.4 of [1] for the
definition and examples of an /2-space. We note here that every a-compact space and
complete metric space is an fl-space.
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