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Differential equations
in Banach spaces

E.S. Noussair

Let S b e a fixed Hilbert space and B{H, H) be the Banach

space of bounded linear operators from H to H with the

uniform operator topology. Oscillation criteria

are obtained for the operator differential equation

° ' * £ ° '
where the coefficients A, C are l inear operators from B{H, H)

to B(H, H) , for each t > 0 . A solution Y : Ft+ -<• B(H, H)

i s said to be oscil latory i f there exists a sequence of points

t. € B , so that t'•*•<*> as i ->•«>, and ?[t.) fa i l s to have
If if If

a bounded inverse. The main theorem states that a solution X

is oscillatory if an associated scalar differential equation is

oscillatory.

1. Introduction

In this paper we study those aspects of the qualitative behaviour of

solutions of second order differential equations in Banach spaces involving

the notions of oscillation and non-oscillation. The basic tool in the

analysis is a generalization of Picone's identity [7] , [8] .

Some other papers pertinent to the subject under consideration here

are [4] , [5] , [6] .

Let H be a fixed Hilbert space and B(ff, H) be the Banach space of
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bounded linear operators from H to H with the uniform operator

topology. Consider the differential equation

for t € if = it : t > 0} . Solutions X(t) are functions from i? into

B{H, H) . We assume that C(t, X) is a linear map from B(H, H) to

B(H, H) , for each t € i?+ , and further, that i4(t), C(t, X) are

continuous in the uniform operator topology as functions from if to

B(H, H) , and from if+ x B{H, H) to B{H, H) respectively. We also

assume for each t > 0 and each X € S(ff, H) that C(t, 7) is self-

adjoint [C = C*) , and i4(t) is positive definite, that i s ,

[A{t)e, e) > 0 for al l t > 0 and for al l 0 t e Z H , where ( , ) is

the inner product in # .

Derivatives of Y(t) are computed in the uniform operator topology,

that i s ,

= 0 .
6-K)

Under the above assumptions the in i t ia l value problem:

TX = 0 t € i?+ ,

X[t ) = X , 4- X[t ) = X , t €i?+

has a unique solution [4], Motivated by the finite dimensional case we

introduce the following definitions.

DEFINITION. A solution X{t) is said to be nonaingular at tQ if

X[tQ) has a bounded inverse. X(t) is said to be oscillatory if there

exists a sequence {t.} € R such that t^ •*• °° as i •*• °° , and each t^

is a singular point of X . This definition is a natural extension of the

finite dimensional case, where it is customary to say that matrix solutions

of (l) are nonsingular at tQ if the determinant of ^(*Q] is not zero.

DEFINITION. A solution Y{t) of equation (l) is said to be prepared
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i f :

(1) Y*(t)A(t) jfc j^Y{t)\*A[t)Y{t) for all t 2 0 ;

(2) there exists a common nonzero vector e which belongs to

the ranges of the operators {Y(t) : t is a nonsingular point} .

This definition ensures, as pointed out by Noussair and Swanson [6],

for example, that every solution of the scalar equation Y" + Y = 0 is

oscillatory, as is well known [3]. However, the nonprepared matrix

solution

[cost -s int

sint cost_

is obviously non-oscillatory. Accordingly, the prepared hypothesis on Y

is needed in order that an analog of the classical theory of oscillation

\H = i? j can be developed for operator equations.

Condition (2) above is satisfied in the finite dimensional case since

a nonsingular operator is onto. We could replace condition (2) by

requiring that Y(t) has a bounded inverse defined on the whole space for

every nonsingular point t . However, this will restr ict the class of

oscillatory solutions as the following example shows.

EXAMPLE 1. Let H = 1 the Hilbert space of square-summable

sequences x = {x.J._n . Let A be the right shift operator on I , that

is A{x^, X2, x , . . . ) = (0, x±, x2, x , . . . ) . In (l) take

A(t) = C(t, Y) = I , the identity operator, ^(0) = 0 and -j£ Y(0) = A .

Then the solution to (l) is Y{t) = (sint)A . Now if sint is not zero

then Y{t) has a bounded inverse. But the range of Y(t) is a proper
2

closed subspace of I . However, Y(t) is a prepared solution according

to the definition above, as can be easily verified.

2. Oscillation theorems

Let I be the closed interval [t , t ] , and let IL denote the
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se t of a l l vector functions u (. U~(I) , with range in H such that

THEOREM 1. If

(1) Y(t) is a prepared solution of Y*TX 5 0 , and e € H is

in the range of Y(t) for all t i l ; and

(2) there exists a nontrivial function 4>(i) € Cr(I) such that

\[A(t), e, e)M|j - [C(t, Y)e,| \[ ) | j [ ) 5 0 ,

then

(a) 2{t) has a singular point in I ; and

(b) either Y(t) has a singular point in the open interval

[tQ, tJ , or 4>(t)e = Y(t)e on I for some constant

vector c t 0 .

Proof. If ¥(t) has no singular point in I , there exists a unique

vector u € D satisfying <$>{t)e = Y(t)u(t) identically in I . The

following identity, a generalization of Picone's identity [£], can be

easily verified by differentiation:

(2) - ^ ( * ) ( ^ ] « , *«>] = -(>»(*)«. « ) ( ^ ] - [C(t, r ) e , e).).2 - (Jr*2Ta>, u)

Since ^ i s a prepared solution of X*TY S 0 and

o)(to) = ^( t - ) = 0 , integrat ion of (2) over I and use of Green's formula

yields

(3)

Since /!(*) i s posi t ive-def in i te , by the assumptions made on the

coefficients of the operator T , inequality (3) and hypothesis (2) imply-

tha t J f = 0 ident ical ly in I , that i s , $(t)e = X{t)u{t) = v ( t ) c
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identically in I , for some constant vector c , with a t 0 since <J>(t)

is nontrivial by the hypothesis (2). Since <j>(t) and Y are continuous

in I and <b[tQ) = <$>[tx) = 0 , the equality J f = 0 implies that tQ, t

are singular points of Y . This proves conclusion (a) of the theorem.
The proof of the "strong conclusion" (b) is similar to the proof in the
finite dimensional case [5].

THEOREM 2. Every prepared solution of Y*TY SO is oscillatory in

B if the scalar equation

(h) lu = -^[{AMe, e)J|j + [c(t, Y)e, e)u = 0

is oscillatory in F for every unit vector e i . l l , and for every

nonaingular operator Y € B(H, H) .

Proof. Let Y{t) be a prepared solution of Y*TY 5 0 . If Y(t) is
not oscillatory then there exists a number r > 0 such that Y(t) has no
singular points for t > r . Since Y is prepared, there exists a vector
e in the range of Y(t) for all t > 0 .

By hypothesis, equation (1*) is oscillatory in [r, °°) . Hence there

exist points r < fcQ < i , a function <J>(t) defined for t < t 5 t

such that 4>(t0J = <f>[t,J = 0 and l<}> = 0 in \t , fcj . Then

(5) f l [A(t)e, e)[j£] - [C(t, Y)e, e)fdt = 0 .

Theorem 2 is therefore a consequence of Theorem 1.

Theorem 2 extends all oscillation criteria for ordinary differential
equations to equation ( l ) .

COROLLARY 3. Every prepared solution of equation (l) is oscillatory
in [a, °°) if, for every unit vector e (. H and for all operators Y
such that Y(t) has a bounded inverse for sufficiently large t , one of
the following criteria is satisfied:
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(2) (X(t)e, e) IK , [c[t, Y(t))e, e) > 0 for large t , and

lim sup t [C[t, Y{t))e, e)dt > 1 ,
£-**> ' t

( 3 ) [A(t)e, e) 5 K , kt2[c[t, Y{t))e, e) > [A(t)e, e) for

sufficiently large t 3 ard

t\{c[t3 YU))e, e) -P \[ ) )
0 ' ht2

dt =

Proof. The proof follows from Theorem 2 by applying known oscillation

cr i te r ia , [2] , [3], [5], for the ordinary equation (It).

A recent result of Hayden and Howard, [ / ] , is criterion (l) of

Corollary 3 when A(t) = I , the identity operator.

When H i s finite dimensional, the following stronger version of

Theorem 2 is valid, and gives a new oscillation theorem for matrix

differential inequalities.

THEOREM 4. Every prepared solution of the matrix differential

inequality Y*TY 5 0 is oscillatory in R if there exists a non-zero

vector e € H such that

U) lu = ^(A(t)e, e ) | | ] + [C(t, Y)e, e) = 0

is oscillatory in R , for every nonsingular matrix Y in B{H, H) .

Proof. If Y(t) is a prepared solution of Y*TY < 0 which has no

singular point for t t r , for some r , then Y(t) has a bounded inverse

defined on the whole space E for t 5 r • In particular e belongs to

the range of Y for a l l t 2 r .

The rest of the proof is identical to the proof of Theorem 2.

We shall give now a simple application of Theorem 1. Consider the

equation

(5) TY = ^ + C(t)YU) = 0 ,
dt

where C(t) is a self-adjoint operator for each t > 0 . Let P and Q

be two bounded operators on H such that P*Q is self-adjoint. Let Y
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be the solution of the i n i t i a l value problem

(6) TY = 0 in i?+ ,

Then

easy

v (-I.'

to see that

bc) ~ p '

= [ft"*

dY , . 1

(*o))^*o

= « . *0

) . But,• B u t ' from equation (5) , i t is

where X is a constant operator. Hence

s o for a i l t > t r

THEOREM 5. J / there exists a nonzero vector e € H such that the

scalar equation

lu = ̂ -£+ [c(t)e, e)u = 0
dt2

is oscillatory in R , then the solution Y of the initial value problem

(6) has the property that there exists a sequence {t.} 3 t . + » , such

that either:

(a) Y{t.) has no bounded inverse* or

(b) the range of Y[t.) is not the whole space.

Proof. If such sequence doesn't ex i s t , then there is a t > 0 such

that Y(t) has a bounded inverse which is defined on the whole space for

t > t± . Hence e € range of Y(t) for a l l t > t± . Since lu i s

oscil latory in [t., <*>) by hypothesis, there exist points t" > t' > t

and a function <(> € C (f , t") such that l<j> = 0 and <{>(*') = <|>(t") = 0 .

Hence hypotheses ( l ) and (2) of Theorem 1 are sa t i s f ied and we obtain the

contradiction that Y(t) has a singular point in [t , <*>) . This

completes the proof.
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