
TPLP 23 (4): 812–831, 2023. c© The Author(s), 2023. Published by Cambridge University Press.

doi:10.1017/S1471068423000303
812

Locksynth: Deriving Synchronization Code for
Concurrent Data Structures with ASP

SARAT CHANDRA VARANASI
General Electric Research, NY, USA

(e-mail: saratchandra.varanasi@ge.com)

NEERAJ MITTAL and GOPAL GUPTA
The University of Texas at Dallas, Richardson, TX 75080, USA

(e-mails: neerajm@utdallas.edu, gupta@utdallas.edu)

submitted 1 June 2023; accepted 12 June 2023

Abstract

We present Locksynth, a tool that automatically derives synchronization needed for destructive
updates to concurrent data structures that involve a constant number of shared heap memory
write operations. Locksynth serves as the implementation of our prior work on deriving abstract
synchronization code. Designing concurrent data structures involves inferring correct synchro-
nization code starting with a prior understanding of the sequential data structure’s operations.
Further, an understanding of shared memory model and the synchronization primitives is also
required. The reasoning involved transforming a sequential data structure into its concurrent
version can be performed using Answer Set Programming, and we mechanized our approach in
previous work. The reasoning involves deduction and abduction that can be succinctly mod-
eled in ASP. We assume that the abstract sequential code of the data structure’s operations
is provided, alongside axioms that describe concurrent behavior. This information is used to
automatically derive concurrent code for that data structure, such as dictionary operations for
linked lists and binary search trees that involve a constant number of destructive update oper-
ations. We also are able to infer the correct set of locks (but not code synthesis) for external
height-balanced binary search trees that involve left/right tree rotations. Locksynth performs
the analyses required to infer correct sets of locks and as a final step, also derives the C++
synchronization code for the synthesized data structures. We also provide a performance anal-
ysis of the C++ code synthesized by Locksynth with the hand-crafted versions available from
the Synchrobench microbenchmark suite. To the best of our knowledge, our tool is the first to
employ ASP as a backend reasoner to perform concurrent data structure synthesis.

KEYWORDS: answer set programming, concurrent data structure synthesis

1 Introduction

We present our tool Locksynth which serves as an implementation and extension of tech-

niques from our prior work on concurrent data structure synthesis (Varanasi et al. 2021).

Given the background data structure theory and the knowledge of sequential data struc-

ture operations, Locksynth infers the correct set of locks for safe concurrent execution

of the same data structure operations while also generating the C++ code, if the data

structure dictionary operation involves a constant number of destructive updates to the

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303
https://orcid.org/0000-0002-4620-4266
mailto:saratchandra.varanasi@ge.com
mailto:neerajm@utdallas.edu
mailto:gupta@utdallas.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068423000303&domain=pdf
https://doi.org/10.1017/S1471068423000303

Locksynth: Deriving synchronization code 813

heap. We extensively utilize Answer Set Programming to perform the back-end rea-

soning that facilitates the concurrency synthesis. We first present the technique behind

Locksynth and then describe C++ synthesis on an External Binary search tree example.

For the C++ versions synthesized, we have also compared their performance against

equivalent hand-crafted versions (if available) from the Synchrobench microbenchmark

suite (Gramoli 2015). It is well known that the design of concurrent programs is noto-

riously difficult; they are also difficult to debug. More often, concurrent programs are

carefully designed and a proof of correctness is provided manually (Vafeiadis et al. 2006;

Herlihy et al. 2020). Bounded model checking is another technique used to find error

traces in concurrent programs (Emerson and Kahlon 2000; Vechev and Yahav 2008),

and few works have also verified concurrent data structures in a semi-automated fash-

ion (Vechev et al. 2010). Compositional program verification approaches for concurrency

perform Rely-Guarantee reasoning (Vafeiadis et al. 2006) and have also mechanized their

proof procedure by specifying abstract domains of linked lists represented in separation

logic (Distefano et al. 2006; Vafeiadis 2008). Our approach using Locksynth relies entirely

on encoding the knowledge and reasoning performed by a concurrency expert into ASP

and making that knowledge executable. We do not take generated concurrent code and

verify its correctness, rather use a lot of domain knowledge about the data structure -

its background theory, knowledge of data structure precondition, and destructive pointer

linkage operations - perform reasoning to infer the right set of locks to acquire in a safe

concurrent execution. Locksynth employs deductive and abductive reasoning approaches

that are widely used in several Artificial Intelligence and Knowledge Representation &

Reasoning problems and domains. Moreover, the effects of destructive updates are mod-

eled in ASP similar to how many action languages in AI are encoded in ASP (Gelfond

and Kahl 2014). We assume familiarity with Answer Set Programming; a comprehensive

background on ASP can be found elsewhere (Gelfond and Kahl 2014). Locksynth itself

is implemented in SWI-Prolog and its backend reasoning engine uses the Clingo ASP

solver (Gebser et al. 2018). Our main contributions are the following:

1. Development of the Locksynth tool implemented completely in SWI-Prolog that

uses ASP paradigm for its backend reasoning engine.

2. Ability to generate the C++ synchronization code based on the locks inferred by

Locksynth when given the correctly annotated traversal code.

3. Benchmarking of the synthesized code versions with the hand-crafted versions from

the Synchrobench microbenchmark suite.

The rest of the paper is organized as follows: Section 2 describes the problem state-

ment for concurrency synthesis performed in this paper and the system model assumed

for concurrent execution. Section 3 motivates the general idea of using AI to perform con-

currency synthesis and concludes with a general procedure for lock synthesis. Section 4

describes in detail the input to Locksynth and the details of its reasoning procedure while

using Linked Lists as a running example. Section 5 describes the actual C++ synthesis

after inferring the correct set of locks and the assumptions involved. Section 5 uses the

External Binary Search tree insert operation as its running example. Section 6 performs

a comparison of the synthesized code versus the hand-crafted concurrent versions from

the Synchrobench microbenchmark suite. Section 7 describes related work done in the

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

814 S.C. Varanasi et al.

field of concurrent data structure synthesis followed by conclusion and future work in

Section 8.

2 Problem statement and system model

Our goal is to derive a safe concurrent algorithm when given a set of sequential pro-

grams, along with their appropriate preconditions and postconditions. The sequential

programs are expressed in an abstract imperative language containing only destructive

update steps and if conditional checks. Each destructive update step modifies the con-

tents of a heap cell atomically. The heap cell represents a node structure common in

languages such as C and Java. Heap cells are part of shared memory, which allows con-

current accesses and modifications. The shared memory itself is sequentially consistent.

Sequential consistency implies that any atomic destructive update step performed on the

heap is immediately visible to every other thread in the system accessing the heap. We

assume that if conditional checks may be performed non-atomically. The expressions

within the conditional checks are written in a simple assertion language and allow for

only conjunctions of assertions. Each assertion borrows its semantics (truth value) from

the background theory of the data structure. Any disjunctions present in the precondi-

tions can be broken up into multiple cases. Every data structure operation is essentially

a straight-line program performing destructive updates on a fragment of the data struc-

ture, residing in shared memory. Restriction of straight-line program does not affect the

synthesis for the data structures considered; however, it limits the kinds of operations

that Locksynth can synthesize. For example, linked list reversal involves modification of

heap cells proportional to the length of the list and is not supported. Hence, the num-

ber of destructive updates is constant. However, for other non-trivial operations such as

left/right rotations for balanced binary trees, our approach is sufficient. Note that the

background theory is manually provided as input by the user.

Assumptions on Concurrent Execution: We assume that the concurrent threads

destructively updating the heap interleave in a certain order. The only synchronization

primitive available is the lock statement. Locks can be acquired on the heap cells.

Requirements of a Correct Concurrent Algorithm: We impose certain require-

ments on a correct concurrent algorithm. Our technique synthesizes only algorithms sat-

isfying these requirements. A correct concurrent algorithm that modifies a heap (shared

memory) should satisfy the following requirements:

R1 Every thread must acquire locks on the heap cells it is going to modify.

R2 Every thread must validate its precondition after lock acquisitions and before per-

forming destructive update step. If the validation fails post lock acquisition, the

respective thread should relinquish its locks without performing its destructive up-

dates.

R3 Every thread must acquire locks on the heap cells present in the precondition of

its data structure operation.

R4 Every thread shall acquire and release locks in a uniform order on the heap cells

Requirement R1 refers to each thread performing destructive updates in isolation. Re-

quirement R2 is necessary for fine-grained concurrent data structures. Because lock ac-

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

Locksynth: Deriving synchronization code 815

quisition itself is not an atomic step, a data structure may be modified during the time

it takes to acquire the requisite locks. Hence, a post lock-acquisition validation is neces-

sary. Requirement R3 is not immediately obvious but is relevant in the context of con-

current data structures described in this paper. Requirement R4 is needed for deadlock

avoidance.

3 Motivation and general idea

Human experts, when designing concurrent data structures, have a firm understanding

of the data structure representation and the sequential behavior of the dictionary opera-

tions supporting the data structure. To transform a given data structure that comprises

of sequential dictionary operations, the human expert deduces how the operations inter-

act concurrently. The expert checks the concurrent interaction on some sample instances

of the data structure. The sample instances are selected to allow maximum concurrent

interaction of the data structure operations. In the presence of maximum possible con-

current interaction, the expert deduces the right set of locks to be acquired for each

data structure operation. They know that the locks acquired are adequate by giving a

lock adequacy argument. Our tool executes and realizes this reasoning done by a human

expert in ASP. We next describe our general technique.

We only consider data structure operations that destructively modify a given data

structure. That is, we completely ignore the part of the data structure operations that

involves traversal. In order to perform actual code synthesis, we also assume that the

traversal code is given to us. It is assumed that the data structure’s destructive up-

date operations contain of a sequence of atomic write steps. Let the data structure D

be supported by dictionary operations {σ1, σ2, . . . , σn}. The only changes that can be

made to the data structure are attributes of nodes on the heap. Let l(σi) denote the

number of write steps involved in σi. Then, each σi is a sequence of atomic write steps:

(s1σi
, s2σi

, . . . , s
l(σi)
σi). Let pre(σi) denote the precondition for σi. Let locks(pre(σi))

denote the set of locks guessed based on the given precondition pre(σi).

The set of locks guessed can be based upon any heuristic that a reasoner thinks is ade-

quate in the presence of concurrent interactions. Because locks are acquired on individual

nodes of the data structure, every lock in locks(pre(σi)) is associated with a node. By

a slight abuse of notation, let δ ∈ D mean that δ is some instance of the data structure

D. We call some δm ∈ D as maximally applicable if each pre(σi) is applicable to δ. In-

tuitively, maximally applicable instances capture all possible interactions of σ1, . . . , σn.

For the data structures discussed in this paper, we are able to find data structure in-

stances satisfying all the preconditions for σ1 through σn. Further, we require that all

the preconditions to be applicable on the instance. This is important because, after lock

acquisition, we want to check if the application of the data structure operations indeed

satisfy invariants associated with the data structure, without which we cannot guarantee

that the application of the operations leaves the data structure in a consistent state.

To illustrate, consider LinkedList supported by {insert, delete}. Every instance of

LinkedList has two sentinel nodes h and t at the beginning and at the end, respectively.

Every other node sits between h and t. Let the target node (key) to be inserted (deleted)

from the list be denoted by τ . The relation edge(x, y) signifies the node y is the next

pointer of node x. The notation kx, ky is used to denote the key values of nodes x, y,

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

816 S.C. Varanasi et al.

respectively. The relation reach(x) signifies that the node x is reachable from head of

the list. With these notions, preconditions pre(insert) and pre(delete) are defined as

follows:

pre(insert(τ)) ≡ ∃τ, x, y ¬reach(τ) ∧ reach(x) ∧ edge(x, y) ∧ kx < kτ < ky
pre(delete(τ)) ≡ ∃τ, x, y reach(τ) ∧ reach(x) ∧ edge(x, τ) ∧ edge(τ, y)

A sample Linked List is δ = {edge(h, t)} with {kh < kt}. However, δ is not maximally ap-

plicable as the delete operation is not applicable. But the list δ′ = {edge(h, x), edge(x, t)}
with kh < kx < kt is maximally applicable as both insert and delete are applicable. The

program specification in Hoare-triples style and its equivalent concurrent version for

Linked List Insert and Delete operation can be found in our prior work (Varanasi et al.

2021). Note that, the sentinel node approach to linked list definition subsumes the corner

cases of inserting or deleting an element at the beginning or end of the list. However, in

an alternative encoding of linked lists that does not take sentinel nodes into account, sep-

arate preconditions and program steps for the corner cases must be specified. The steps

involved to generate synchronization code for σi are outlined in the following algorithm.

By a coarse-grained locking scheme, we mean a naive locking algorithm that associates

a single lock for the whole data structure. A coarse-grained locking scheme is inefficient

when compared to a fine-grained locking scheme that associates locks with individual

heap cells of the data structure. Note that, this synchronization code is combined with

data structure traversal code as shown in Section 5 when performing actual C++ code

synthesis.

Algorithm 1 Algorithm to Generate Synchronization Code for Operation σi

procedure GenerateSynchronizationCode(σi)

Guess set of locks, represented by locks(pre(σi))

Check if, any of σ1, σ2, . . . , σn, when applied on maximal instance δm, falsifies

pre(σi)

if pre(σi) is not violated due to interference by σ1, σ2, . . . , σn then

Use fined grained-locking by acquiring locks on every node in locks(pre(σi))

else

locks(pre(σi)) is inadequate

Use Coarse-grained locking

end if

end procedure

If the locks guessed for σi are adequate, the concurrent code generated would look as

shown in Listing 1. In the generated concurrent code, {x1, x2, . . . , xk} constitute the set

of nodes guessed as part of locks(pre(σi)), to be locked for a safe concurrent execution.

Note that the extra validation step is necessary as the data structure might have changed

by the time the correct locks were acquired. This is exactly the kind of programs we

mentioned in Requirement R2. If the validation step fails, then the locks are relinquished

without any modification. If Locksynth cannot find the correct set of fine-grained locks, it

uses a simple coarse-grained locking scheme. Further, the lock x1, x2, . . . , xk are acquired

and released in a uniform order. For the tree-based data structures considered in this

paper, locks on nodes that appear earlier in the preorder traversal of the tree from the

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

Locksynth: Deriving synchronization code 817

lock(x1); lock(x2); ...; lock(xk);
if(validate(pre(σi)){

s1σi
; s2σi

; ...; s
l(σi)
σi

;

}
unlock(x1); unlock(x2); ...; unlock(xk)

Listing 1: Synchronization code generated for operation σi.

% Representation of List
list :- edge(h, X), key(h, KH), key(X, KX), KH < KX, suffix(X).
suffix(X) :- edge(X, Y), key(X, KX), key(Y, KY), KX < KY, suffix(Y).
suffix(t).
% Abstractions in Linked List Theory
reach(h). reach(X) :- edge(Y, X), reach(Y).
present(K) :- reach(X), key(X, K).
% Invariants and Fluents
invariant(list). fluent(list). fluent(reach). fluent(edge).
fluent(suffix). fluent(present).

Listing 2: Sample Background Data Structure Theory.

root are acquired and released before the locks on nodes that appear later in the same

preorder traversal of the same tree from the root.

We mentioned that the set locks(pre(σi)) is based upon some heuristic. Currently,

the heuristic is based upon locking every node cited in the precondition. We designate

this heuristic as precondition locking strategy. This strategy works for the data structures

considered in this paper which are Linked Lists, External BSTs, and External Balanced

BSTs. This is exactly as stated in Requirement R3 in our assumptions. In general, a

guessed set of locks can fail the lock adequacy check. For instance consider locking only

node x in pre(insert(τ)) for a linked list. In such a case, before an insert operation is

performed in the window {x, y}, the node y may be removed if it is not locked. This

results in an incorrect insertion of the target node τ . Note that R3 works in conjunction

with maximal instance definition used in this paper. Relaxing R3 will require stronger

restrictions on maximal instance construction, which is outside the scope of this paper.

We next describe how Locksynth is used to transform a sequential data structure into

a concurrent one using several reasoning tasks. They are detailed in the subsequent

sections. We first start with the input that Locksynth takes.

4 Input to Locksynth and its reasoning procedure

1. The first component is background theory of the data structure. The background

theory contains the data structure definition and the invariants associated with

the data structure. It also identifies the properties of the data structure that are

time-dependent (fluents). The background theory is encoded in ASP. A sample

background theory for Linked Lists is presented in Listing 2.

2. The second component is the sequential data structure knowledge. The sequential

data structure knowledge consists of the dictionary operations along with the pre-

conditions under which they can be executed. The sequence of atomic write steps

involved in each of the dictionary operations are also listed. (Listing 3). The se-

quential data structure knowledge is written in Prolog and translated into ASP

code when performing appropriate reasoning tasks by Locksynth.

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

818 S.C. Varanasi et al.

operation(insert). operation(delete). % Operations: insert, delete
atomic_step(link). % assigning pointers is the only atomic step
modifies(link(x,y), x). % Similar to x.next := y where x is modified
causes(link(x,y), edge(x,y)). % Causal meaning of x.next := y; link operation creates an edge

% Precondition, program steps and post condition for insert
precondition(insert, [reach(x),edge(x,y),not(reach(target)), lt(kx, ktarget), lt(ktarget, ky]).
% lt is the numerical less than relation
program_steps(insert, case1, [link(x, target), link(target, y)]).
postcondition(insert, [reach(target)]).

% Precondition, program steps and post condition for delete
precondition(delete, [reach(x), edge(x, target), edge(target, y)]).
program_steps(delete, [link(x, y)]).
postcondition(delete, [not(reach(target))]).

Listing 3: Sample Sequential Data Structure Knowledge.

Program Fragment to Check if edge(h,x). edge(x,t) is maximally applicable:

edge(h,x). edge(x,t). key(h,kh). key(x,kx). key(t,kt). lt(kh, kx). lt(kx, kt).
lt(kh, kt).
:- not precondition_insert. :- not precondition_delete.
Output model (SAT): edge(h,x). edge(x,t). key(h, kh). key(x,kx). key(t,kt). lt(kh,kx). lt(kx, kt).
lt(kh,kt). precondition_insert. precondition_delete.

Listing 4: Maximally Applicable instance viewed as Constraint Satisfaction.

The Locksynth procedure uses the input provided by the user and performs the req-

uisite reasoning in ASP. The top-level procedure called synth concurrent code, imple-

mented in Prolog, is shown in Table 1. The input provided by the user - sequential data

structure knowledge and background theories - is processed by another Prolog procedure

that prepares it for use by the synth concurrent code procedure. The procedure for

preparing data and generate final code text (generate code) is not shown here but can

be found in Locksynth’s GitHub repository.1 Procedure synth concurrent code con-

cretizes Algorithm 1; each of its steps uses the relevant pieces of knowledge from the

input. Each step either generates code, transforms code, or checks that the generated

code satisfies some condition. These steps are explained next.

Automatically Selecting Maximally Applicable Instance: Selecting a maximally

applicable instance is a constraint satisfaction problem. Locksynth generates candidate

lists (trees) to check if they are maximally applicable. For example, given an instance

{edge(h, x), edge(x, t)} for linked list, the ASP program to check maximally applicable

instance is found in Listing 4.

Concurrent Interaction Modeled in ASP: Concurrent interaction of operations is

succinctly modeled in ASP. We state that an operation may happen or not happen.

This generates 2c possible worlds in which c different operations may occur or not occur.

Note that c is constant w.r.t a data structure and is usually small. This concurrent

interaction is modeled by the use of abductive reasoning in ASP. Locksynth abduces

whether interference from an operation may or may not happen.

Further, Locksynth also combines rules from background theory and sequential data

structure knowledge to generate an ASP program. This ASP program is used to infer the

1 https://github.com/sarat-chandra-varanasi/locksynth/blob/main/lsynth.zip.

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://github.com/sarat-chandra-varanasi/locksynth/blob/main/lsynth.zip
https://doi.org/10.1017/S1471068423000303

Locksynth: Deriving synchronization code 819

Table 1: Synthesis procedure (left) & Prolog bindings for linked list insert (right)

synth_concurrent_code(Op, Code) :-
%% ASP Reasoning: Listing 4
pick_maximal_instance(Instance),
precondition(Op, Pre),
program_steps(Op, Steps),
%% ASP Reasoning: Listing 5
generate_interference_rules(Rules),
guess_locks(Pre, Locks),
findall(Inv, invariant(Inv), Invariants),
%% ASP Reasoning: :Listing 7
check_program_order(Instance, Steps,

Invariants, Order),
%% ASP Reasoning: Listing refcode:locking
check_locks_adequate(Instance, Locks),

generate_code(Rules,Locks,Pre,Order,Code).

Bindings for Linked List Insert Operation
--
Op = insert
Pre = [reach(x),edge(x,y),kx<ktarget,

ktarget<ky]
Instance = [edge(h,x),edge(x,t)]
Rules = <List of rules as per Listing 5>
Invariants = [:- not list]
Steps = [link(x,target), link(target,y)]
Order = [link(target, y), link(x, target)]
Code = [lock(x),lock(y),

if(validate(Pre)),
link(target,y),
link(x,target),

unlock(x), unlock(y)]

Program Fragment to model concurrent interaction:
--
% interfere(insert) may or may not happen
interfere(insert(X,Target,Y), T) :-
precondition_insert(X,Target,Y,T),not neg_interfere(insert(X,Target,Y),T)).

neg_interfere(insert(X,Target,Y),T) :-
precondition_insert(X,Target,Y,T), not interfere(insert(X,Target,Y,T)).

% interfere(delete) may or may not happen
interfere(delete(X, Target,Y), T) :-
precondition_delete(X,Target,Y,T),not neg_interfere(delete(X,Target,Y),T)).

neg_interfere(delete(X,Target,Y),T) :-
precondition_delete(X,Target,Y,T),not interfere(delete(X,Target,Y),T)).
Output Model: 2^c possibilities of interfere insert and interfere delete

Listing 5: Rules that consider all possible concurrent interactions.

effects of concurrent interactions on the maximal instance. The maximal instance itself is

added to the ASP program as a set of facts. The ASP program modeling concurrent inter-

actions should not only take into account interference but also consider the invariants as-

sociated with the data structure and evolution of state of the heap. Invariants are directly

mapped to ASP constraints, fluents are reified into temporal domain, and any potential

concurrent interference by each operation is modeled by an interfere predicate. The no-

tions of fluents, commonsense law of inertia are standard idioms used in the Planning do-

main by the AI community (Gelfond and Kahl 2014). For example, in case of linked lists,

interfere by insert or delete operation is modeled by rules in Listing 5. Even loops over

negation (ELON) capture abduction in ASP (Gelfond and Kahl 2014). The predicates

interfere(insert(X,Target,Y)) and interfere(delete(X,Target,Y)) are part of

even loops over negation.

The rewrite of fluents and invariants using time argument, along with maximal instance

added as facts. is shown in Listing 6. Time domain ranges from 0 to a maximum value. Fi-

nally, Locksynth also uses sequential data structure knowledge to generate consequences

of interfere insert and interfere delete. All the above rules shown in Listings 5

and 6 enable Locksynth to make judgments by the several ways the data structure oper-

ations can concurrently interfere.

Program Order Reasoning in ASP: Corresponds to check program order in

Locksynth procedure. Order of the program steps is important in a concurrent execution

as an incorrect order can break an invariant. For instance, if the program steps of linked

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

820 S.C. Varanasi et al.

% Background theory fluents reified into time
list(T) :- time(T), edge(h,X,T), key(h,KH), key(X,KX), KH < KX, suffix(X,T).
suffix(X, T) :- time(T),edge(X,Y,T),key(X,KX),key(Y,KX), KX < KY,suffix(Y,T).
suffix(t, T) :- time(T).
reach(h, T) :- time(T). reach(X, T) :- time(T), edge(Y, X, T), reach(Y, T).
present(K, T) :- time(T), reach(X, T), key(X, K).
% Invariant mapped to constraint
:- time(T), not list(T).
% Maximal instance added as facts
edge(h, x, 0). edge(x, t, 0). key(h, kh). key(x, kx).
key(y, ky). <(kh, kx). <(kx, ky).
% Consequences of interference
edge(X,Target,T+1) :- interfere(insert(X,Target,Y), T).
edge(Target,Y,T+1) :- interfere(insert(X,Target,Y), T).
edge(X,Y,T+1) :- interfere(delete(X,Target,Y), T).

Listing 6: Background theory projected into temporal domain.

Program Fragment that checks for correct order of insert operation steps:
--

time(0..2) % |l(insert) = 2|
precondition_insert(X,Target,Y,0) :- reach(X,0),edge(X,Y, 0),key(X,KX),key(Target,Ktarget),

key(Y, KY), KX < KTarget, KTarget < KY.
link(x, target, 0). % Incorrect order
link(target, y, 1). % Incorrect order
% rule for edge creation
edge(X,Y,T+1) :- link(X,Y,T), not modified(X,T).
modified(X,T) :- link(X,Y,T).
:- time(T), not list(T). % Check for invariant violation
Output Model (UNSAT) : False % Correct order is: link(Target, Y, 0). link(X, Target, 1)

Listing 7: Program Order Checking.

list insert are executed in the order:link(x,target), followed by link(target,y),

then, the invariant list would be broken. However, by changing the order of execu-

tion to: link(y, target), followed by link(x, target), would not break the invariant.

Locksynth permutes the order of the program steps and finds the right sequence of the

data structure program steps that does not break invariants. If no such program order

exists, then Locksynth falls-back to a coarse-grained locking scheme. Locksynth allows

a maximum of l(σi) + 1 time steps to check for any invariant violation from time 0 to

l(σi). The rules for Linked List are shown in Listing 7. To perform this task, Locksynth

combines Listings 6 and 7 and checks for satisfiability. If the union of two programs is

unsatisfiable, then that permutation must be rejected. If their union is satisfiable, then

selected order is adequate and can be accepted. The pointer link operations have their

effects captured as transition rules common in Action languages ASP encoding with com-

monsense rules of inertia. The permutation of program order is given by Locksynth and

fed as facts to ASP. However, they can be modeled directly in ASP using even loops,

but the corresponding ASP solving would take more time and require more executability

conditions.

Lock Adequacy Reasoning in ASP: Corresponds to check locks adequate in

Locksynth procedure. Checking Lock Adequacy involves looking for any precondition vio-

lation in the presence of interference and locking heuristic. Lock Adequacy check uses the

same interference model (on maximal instance), but ensures that interference too obeys

rules of locking. That is, the same assumptions that interference may or may not occur

are asserted as before. However, now, the consequences of interference are preempted if

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

Locksynth: Deriving synchronization code 821

Program Fragment that checks for lock adequacy

edge(X,Target,T+1):- interfere(insert(X,Target,Y),T),not locked(X),not locked(Y).
edge(Target,Y,T+1):-interfere(insert(X,Target,Y),T),not locked(X),not locked(Y).
edge(X,Y,T+1):-interfere(delete(X,Target,Y),T),not locked(X),not locked(Target).
locked(X) :- precondition_insert(X, Target, Y).
locked(Y) :- precondition_insert(X, Target, Y).
falsify :- precondition_insert(X,Target,Y,T), not precondition_insert(X,Target,Y,T+1).
:- not falsify
Output Model : False (UNSAT) %% Unsat implies locks are adequate!

Listing 8: Checking lock adequacy.

there is a lock involved. For instance, a pointer from x to y cannot be changed unless the

operation acquires a lock on x. Therefore, the consequences of interference from Listing 6

are rewritten, to account for locking, shown in Listing 8. Consider Listing 8, where we

are trying to check if there is any trace behavior of concurrent operations that can break

the precondition for a particular insert operation. We acquire the locks for based on the

insert operation corresponding to precondition insert. We now check if there is any

interference via insert or delete that can break precondition insert. We should not ar-

bitrarily modify the data structure and break precondition insert, rather allow only

interference on nodes that are unlocked. If the window of modification of an interference

operation intersects with the window corresponding to precondition insert, and the

nodes involved in the window are locked (according to the locking heuristic), then the

interference operation should be preempted. If the window intersects and the nodes are

left unlocked, then the interference operation can destructively update the data struc-

ture. This destructive modification essentially captures another operation getting ahead

of the current insert operation (corresponding to precondition insert) in a concurrent

execution that could potentially break invariants or preconditions and would leave the

data structure in an inconsistent state. Note that Listing 8, captures Locksynth perform-

ing lock adequacy reasoning at a particular time instance in the concurrency behavior

modeling, where locks are acquired and any interference that can potential wreak havoc

is allowed to modify the data structure. This procedure will be repeated till the maxi-

mum time of the number of interference operations applicable on the maximal instance

based upon different key orderings of target keys.

To check lock adequacy for given operation, Locksynth combines Listings 5, 6

and 8 and checks for falsifiability of precondition insert. If precondition insert

is falsified, then the locks are inadequate. If precondition insert is not falsi-

fied at any point in the trace, then the locks are adequate and internally, call to

check locks adequate(insert, , ,) would succeed. Note that the predicate falsify

represents the notion whether precondition insert is falsified. If the program is satisfiable

(produces a model), then falsify is necessarily present in the model (due to constraint

:- not falsify). That is, the guessed locks are inadequate. However, if the program is

unsatisfiable, then no concurrent operation can break the precondition for insert (falsify

cannot be in any model). That is, the guessed locks are adequate.

To illustrate a case where an inadequate number of locks being acquired will result in

a lock adequacy failure, consider the delete operation where a lock is only acquired on

the predecessor to the target node. Assume the instance is {edge(x, τ), edge(τ, y)} and

only lock on {x} is acquired. Then, a concurrent interference by an insert operation can

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

822 S.C. Varanasi et al.

change the heap to {edge(x, τ), edge(τ, τ ′), edge(τ ′, y)}, where τ ′ is the target node for

a concurrent insert operation whose window is {τ, y}. This interference now falsifies the

precondition required for the delete operation. If the delete operation had acquired lock

on {x, τ}, the concurrent insert could have been preempted.

5 Performing C++ code synthesis

A few assumptions necessary for C++ synthesis are stated:

1. The traversal code is assumed to be given to Locksynth

2. The points in which Locksynth synchronization code is to be inserted is clearly

specified.

3. The basic blocks where destructive update operations are to be performed are

clearly annotated, post traversal operations

4. The notation @@<Operation>::<BlockNum> is used to indicate to Locksynth the

basic block where the requisite destructive update (and synchronization) needs to

occur.

5. The beginning and end of destructive update operation (including traversal) is

marked using @@begin-destructive-update and @@end-destructive-update re-

spectively.

Code Synthesis for External Binary Search Trees: External binary search trees

are similar to binary search trees except that the leaf nodes store the data structure keys.

The internal nodes are used for routing purposes. Every internal node should have two

children. For an insert operation, the window of insertion involves the external node that

is visited upon BST traversal and its parent. The precondition uses the following ASP

relations. external(x) : x is an external node, left(x,y) : y is the left child of x (x is par-

ent of y), right(x,y) : y is the right child of y (x is parent of y), key(x,kx) : node x has

kx as its key value, eq(kx,ky) : keys kx and ky are equal, lt(kx,ky) : key kx is less than

ky, reachable(x) : node x is reachable from the root and traversal path(x,target)

: node x is on the BST traversal path for the target node

The traversal code for insert operation contains four basic blocks that capture the

four different ways in which an insert operation might be performed in an External

BST. Because the analysis by Locksynth is successful in generating a fine-grained syn-

chronization algorithm, the code generation can be performed. Locksynth generates the

synchronization code for each of the four blocks and substitutes the block identifiers with

the generated code. The precondition and program steps for the first block encoded in

ASP are shown (Table 2). Note that the entire C++ code template for insert operation

of External BST including the traversal code is captured in the relation code/3 on the

left in Table 2. This relation is essentially an SWI-Prolog fact and will be used as input

by Locksynth during the concurrent code generation process. The precondition and pro-

gram steps for just block1 of External BST insert are shown on the right-hand side of

Table 2. They are also SWI-Prolog facts and contain literals from the background theory

of External BSTs. The synthesized C++ code is shown in Listing 11.

Mapping Variables Used by Traversal to Nodes in Declarative Precondition:

The precondition represented in ASP is declarative, and it is not obvious how the traversal

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

Locksynth: Deriving synchronization code 823

Table 2: Code with annotations (left) and sequential code for External BST (right)

code(external_bst, insert, '
bool insert(int key){

struct node * parent = root;
struct node * curr = root;
while(curr->left != NULL && curr->right != NULL){

parent = curr;
if(curr->key < key)

curr = curr->right;
else

curr = curr->left;
if(parent->left == curr && key < curr->key){

@@insert_ext_tree::block1
}

if(parent->left == curr && key >= curr->key){
@@insert_ext_tree::block2

}
if(parent->right == curr && key < curr->key){

@@insert_ext_tree::block3
}

if(parent->right == curr && key >= curr->key){
@@insert_ext_tree::block4

}
return false;

}}').

pre(external_bst, insert,
block1, [external(y), left(x, y),
traversal_path(y, target),
key(target, ktarget),
lt(ktarget, ky),
not(reachable(target)),
not(reachable(internal),
key(y, ky),
key(internal, kinternal),
eq(kinternal, ky)

]).

program_steps(external_bst, insert,
block1, [

link_left(internal, target),
link_right(internal, y),
link_left(x, internal)

])

mapping(external_bst, insert, block1, parent, y).
mapping(external_bst, insert, block1, curr, x).
mapping_r_value(external_bst, insert, block1, target->key, key).
mapping_r_value(external_bst, insert, block2, target->key, key).
mapping_r_value(external_bst, insert, block3, target->key, key).
mapping_r_value(external_bst, insert, block4, target->key, key).

Listing 9: Mapping of l-values and r-values.

code finds a window that matches a particular precondition. Not all the nodes used in the

precondition map to the variables used by the traversal code. The traversal code above

uses the pointer variables {parent, curr}, whereas the precondition written in ASP uses

the nodes {x, y, target, internal}. In order to facilitate the synthesis, the variables used by

the traversal code are mapped to the nodes used in the ASP precondition. Locksynth will

infer the L-values of other nodes that do not have mapping be inspecting the declarative

precondition. The mapping should be provided by the user as shown (Listing 9).

Memory Allocation: The insert operation for External BST allocates two nodes on

the heap before linking them appropriately. Locksynth allocates memory for each node

that is declared to be not reachable in the precondition.

Initialization of Allocated Memory: By default, Locksynth assigns the C++ NULL

constant to the allocated node properties that represent pointers. If a new node is allo-

cated for a linked list, Locksynth initializes the next property to NULL. For binary trees,

Locksynth initializes both left and right pointers to NULL.

Inferring L-values of Precondition Nodes: The nodes referenced in the declarative

precondition are related to one another through either the left/2 or right/2 relations.

In case of Linked Lists, they are related to one another through the edge/2 relation.

Structurally, left(x, y) signifies that x is the predecessor of y in the heap in the preorder

traversal of the tree. Because the data structures considered in this paper are trees,

this convention of a predecessor node is followed. Similarly, right(x, y) signifies that x is

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

824 S.C. Varanasi et al.

Table 3: Prolog code within Locksynth to infer l-values and r-values

infer_l_value(Op, Block, Node, LValue) :-
ds(DataStructure),
mapping(DS, Op, Block, LValue, Node), !.

infer_l_value(Op,Block,
Node,LValue->Relation) :-

ds(DataStructure),
precondition(DS, Op, Block, Precondition),
immediate_predecessor(Node,

Precondition, Pred, Relation),
infer_l_value(Op, Block,

Predecessor, LValue), !.

immediate_predecessor(Node,Pre,Pred,next) :-
member(edge(Pred,Node),Pre).

immediate_predecessor(Node,Pre,Pred,left) :-
member(left(Pred,Node),Pre).

immediate_predecessor(Node,Pre,Pred,right) :-
member(right(Pred,Node),Pre).

infer_r_value(Op, Block, Node,
Prop, RValue) :-

ds(DataStructure),
precondition(DataStructure,Op,Block,Pre),

infer_l_value(Op, Block, Node, LValue),
mapping_r_value(DataStructure, Op,

Block, LValue,Prop,RValue).

infer_r_value(Op, Block,
Node, Prop, LValue->Prop) :-

ds(DataStructure),
pre(DataStructure, Op, Block, Pre),
infer_l_value(Op,Block,Node, LValue),
LValue \= Node.

the predecessor of y and likewise for edge(x, y). Therefore, if x has already an assigned

L-value (from the traversal code mapping), then y’s L-value can be inferred using this

convention. If left(x, y) is true in the precondition and x is mapped to curr, then y’s

L-value is curr->left. Locksynth uses the L-value of the immediate predecessor. Further,

the L-value of the immediate predecessor is computed recursively. The relation edge/2 is

used for next pointer.

Inferring R-values of Precondition Node Properties that are Newly Allocated:

For already allocated nodes that are part of traversal, R-values need not be inferred.

However, for newly allocated nodes, the R-values of node properties should be inferred.

In the case of external BST insert operation, the R-value for target node key is the key

that is going to be inserted into the tree. Further, the R-value of internal node key is the

key of the external node in the traversal. Locksynth uses the eq/2 relation to infer that

the R-value of internal node’s key is that of the last external node traversed. Because

the target key value is served as an input to the insert operation, its mapping must be

made explicit as shown (Listing 9, Table 3).

Inferring Correct Locking and Unlocking Order: To avoid deadlocks, every thread

in a concurrent execution should acquire and release locks in a uniform order. Therefore,

Locksynth acquires locks in the order of predecessors of nodes referenced in the declarative

precondition. Locksynth starts by selecting node that does not have a predecessor and

then selects the successors in a breadth-first search. This will be the same order in which

locks on the selected nodes will be acquired and released, which guarantees deadlock

freedom.

Inserting Validation Condition: As stated before, precondition validation logic code

for each block is assumed. The validate/4 fact captures the precise precondition vali-

dation for a given data structure’s operation and block. An example for External BST is

provided in Listing 10.

Performing Read-Copy-Update (RCU) Synthesis for Internal Binary Search

Trees: In order to perform RCU synchronization, the beginning and end of

traversal code need to be clearly marked by the user using @@begin-traversal and

@@end-traversal. These annotations will be, respectively, replaced by rcu read lock()

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

Locksynth: Deriving synchronization code 825

validate(external_bst, insert, block1, 'reachable(parent)
&& parent->left == curr && curr->left == NULL && curr->right == NULL').
validate(external_bst, insert, block2, 'reachable(parent)
&& parent->left == curr && curr->left == NULL && curr->right == NULL').
validate(external_bst, insert, block3, 'reachable(parent)
&& parent->right == curr && curr->left == NULL && curr->right == NULL').
validate(external_bst, insert, block4, 'reachable(parent)
&& parent->right == curr && curr->left == NULL && curr->right == NULL').

Listing 10: Preconditon validation logic captured as validate/4 facts.

//Allocation of unreachable nodes
struct node * internal = (struct node *) malloc(sizeof(struct node));
struct node * target = (struct node *) malloc(sizeof(struct node));
//Initializing pointers to NULL values for allocated nodes
internal->left = NULL; internal->right = NULL; target->left = NULL; target->right = NULL;
//Setting inferred R-Values for Keys
internal->key = curr->key; target->key = key;
//Lock order in the order of predecessors
parent->mtx.lock(); target->mtx.lock(); internal->mtx.lock(); curr->mtx.lock();
//Validation logic for Optimistic Synchronization
if(!(reachable(parent) && parent->left == curr && curr->left == NULL && curr->right == NULL)){
//Locks released in the same order of lock acquisition
parent->mtx.unlock(); target->mtx.unlock(); internal->mtx.unlock();
curr->mtx.unlock();
continue; // Note that insert operation will retry
}
// Destructive update steps re-ordered and L-Values inferred by Locksynth
internal->left = target; internal->right = curr; parent->left = internal;
//Same as unlocks statements before
parent->mtx.unlock(); target->mtx.unlock(); internal->mtx.unlock();
curr->mtx.unlock();

Listing 11: Generated Code for an Insert Operation Basic Block.

and rcu read unlock() statements. Further, just before performing destructive update

steps, Locksynth inserts the rcu synchronize() statement. The RCU-Synchronize state-

ment blocks until all traversals are done and then synchronizes the destructive updates

back to the tree atomically (McKenney et al. 2013).

6 Performance comparison of synthesized code with hand-crafted code

The Synchrobench microbenchmark compares the performance of several concurrent

algorithms from literature (Gramoli 2015). The benchmark consists of C/C++ and Java

implementations of Linked Lists, Binary Search Trees, and Balanced Trees. Because

Locksynth can only generate the synchronization code for insert and delete operations

for Linked Lists, External BSTs, and Internal BSTs, their equivalent hand-crafted coun-

terparts from the benchmark are compared. The data structures are tested for key size

ranges starting from 100 till 10 million multiplying by a factor of 10 at each range. The

initial size of the dictionary is set to 50% of the key range. Further, the workloads con-

sidered are read-dominated workloads (100% reads and 0% updates), write-dominated

workloads (100% writes split evenly between insert and delete and 0% reads), and mixed

workloads (70% reads, 30% updates split evenly between insert and delete). All exper-

iments were run on an Intel(R) Xeon(R) Gold 5220R processor @ 2.20 GHz with 48

logical cores and 247 GB RAM. All the programs were compiled using g++ compiler

with level 3 optimization. For hand-crafted linked lists, we use the C++ version of the

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

826 S.C. Varanasi et al.

Fig. 1. Comparison of effective update ratios of synthesized data structures under mixed
(MW) and write-dominated (WD) workloads for different key space sizes.

lazy marking algorithm (Herlihy et al. 2020). We did not find a lock-based external BST

implementation in the benchmark. Therefore, we used Natarajan and Mittal’s lock-free

external binary search tree. Natarajan and Mittal’s tree locks edges in the tree and per-

forms some book keeping to manage concurrent deletes (Natarajan and Mittal 2014). For

internal BST, the hand-crafted version is the Citrus RCU tree (Arbel and Attiya 2014).

The effective update rate is the percentage of update operations that actually made

changes to the data structure among all submitted operations. The effective update ra-

tios of Locksynth version to the hand-crafted versions are also presented in Figure 1. A

ratio greater than 1 for throughput indicates Locksynth outperformed the hand-crafted

version. Likewise, a higher update rate ratio that the algorithm performs more destructive

updates in the presence of contention. Because optimistic algorithms are better for read-

dominated workloads, the effective update rate generally is poor. The Locksynth Linked

List outperforms the hand-crafted lazy list when comparing the effective update ratio

for all workloads. However, the write throughput is 7 times worse (not shown) when the

key sizes increase. The Locksynth External BST performs very well for read-dominated

workloads, when considering the fact the hand-crafted External BST is a lock-free ver-

sion. As the key ranges increase, the throughput slightly degrades to a factor less than

one-third of the lock-free version. For write-dominated workloads and mixed workloads,

the throughput of Locksynth is roughly 0.25 times the throughput of lock-free version.

This is due to high contention at the external nodes of the External BST and lock-based

versions are expected to perform poorly. The effective update rate is surprisingly high

for key range of 100. Then, the update ratio goes to 0.3 till 100,000 keys. From a million

onwards, the update ratio again increases and is greater than 1 (about 8-9 times greater)

for 10 million than the lock-free version. This behavior is same for both mixed and write-

dominated workloads. This might be due to additional memory reclamation logic that the

lock-free BST performs. The throughput and effective update rate behavior for the mixed

workload remains very similar to the write-dominated workload. The Locksynth Internal

BST performs better than the hand-crafted Citrus tree for read-dominated workloads.

This can be explained by the fact that there is a lot of book keeping done by Citrus

tree that aids write-dominated and mixed workloads. For write-dominated workloads,

the throughput for Locksynth BST is very good. However, the update rate drops to near

zero relative to what Citrus tree does. This indicates that Internal BST is extremely slow

at making changes when there is high contention and most of the update operations fail

to make any changes to the data structure. This is where the hand-crafted Citrus tree

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

Locksynth: Deriving synchronization code 827

and in general any algorithm that is designed with a lot of book-keeping can perform

better. The performance behavior for mixed workload is similar to the write-dominated

workload.

7 Related work

One of the first works in concurrency synthesis is the seminal work of Amir Pnueli et al.

towards synthesis of synchronization skeletons (Clarke and Emerson 1981). They use

branching time temporal logic, on the state space of programs, to model mutual exclusion

of critical sections and starvation freedom. Essentially model checking on CTL formulas

is performed through clear identification of critical sections. There are several works that

have performed verification of concurrent data structures by varied assumptions. Then,

Vafeiadis et al. established Rely-Guarantee (RG) reasoning for fine-grained concurrent

data structures (Vafeiadis et al. 2006). Their proof method is an extension of Owicki

Gries (Owicki and Gries 1975) reasoning originally formulated to reason about parallel

programs.

The rely-guarantee reasoning by Vafeaidis et al. relies on identification of linearization

points to reason about correctness. Our method does not rely on explicit identification

of linearization points. Further, Vafeaidis et al. combined Rely-Guarantee with well-

known Separation Logic (SL) into a new logic called RGSep (Vafeiadis and Parkinson

2007). RGSep can perform verification of lock coupling and lock-free concurrent lists.

A key step in the proof relies on stabilizing the post conditions of each thread without

which Rely-guarantee proof cannot be completed. To stabilize the post conditions of a

thread, the proof technique should infer valid frames in the heap that are not touched

by every thread. However, the technique does not perform additional reasoning on the

heap unlike our knowledge-guided approach. For instance, that RCU is required on the

Tree-based structure due to missed traversals cannot be inferred using RGSep, where

the proof of correctness would simply report an error or fail to terminate. RGSep has

been mechanized and due to relatively low involvement of arithmetic operations, the

tool has achieved considerable success. However, our approach based on ASP can easily

express arithmetic constraints (CLP(Q)) such as height balancing of trees and precisely

compute whether a set of locks are adequate. Vechev et al. (2010) have used bounded

model checkers to (semi-)automatically generate lazy list synchronization algorithms.

Their technique too relies on identification of linearization points. They have to provide

additional meta-data in order to generate more sophisticated algorithms. This is similar

to using knowledge-based approaches to synthesis of synchronization.

Very recently, Occualizer framework (Shanny and Morrison 2022) generates optimisitic

RCU- based synchronization code for tree data structures from a given sequential input

version. Occualizer work makes certain assumptions about the input tree data structure,

and the assumptions are manually checked by source code inspection. This approach can

be automated. Occualizer can handle more complex trees such as External Red-Black

trees, B+ trees, and Radix trees that Locksynth cannot. This is because Locksynth cannot

handle the book-keeping logic involved in performing a variable number balancing opera-

tions that might terminate at the root node of a tree in general. Nonetheless, Occualizer

can only generate an RCU algorithm even for a Linked List and External Binary Search

Tree based on sequential source code inspection. However, Locksynth can generate the

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

828 S.C. Varanasi et al.

Table 4. Locksynth results on linked lists and (external) binary search trees

Data Lock Program Synthesized Code
structure Operations adequacy order algorithm gen

Linked List insert, delete Yes Yes Fine grained Yes
External BST insert, delete Yes Yes Fine grained Yes
Internal BST insert, delete Yes No RCU Yes
External AVL add,remove, left/right

rotate
Yes No Coarse grained/RCU No

External RB add, remove,
red-red-conflict,
left/right rotate

Yes No Coarse grained/RCU No

Chromatic
Search tree

add, remove, single/
double rotation,
adjust weights,
rotate-adjust-weight

Yes No Coarse grained/RCU No

optimistic version while acquiring the precises number of locks sufficient to perform the

concurrent updates. Also, as part of future work, due to the Knowledge representation

and reasoning approach taken by Locksynth, it can incorporate the reasoning involved

in Occualizer.

8 Conclusion and future work

Locksynth synthesizes concurrent code for Linked Lists, External BSTs, Internal BSTs,

and External Balanced Search Trees. It can synthesize concurrent versions of insert, delete

for Linked Lists and External BSTs. Locksynth can also recommend RCU framework for

Internal BSTs due to key movement missed by an asynchronous observer. For further

illustration, use of Locksynth on External Red-Black trees is shown in Appendix A.

Table 4 gives a summary of data structures, and their operations for which Locksynth

can automatically synthesize concurrent code. Locksynth can check lock adequacy for

tasks such as left/right rotations for height-balanced trees, but cannot yet generate full

code as the insert and delete operations require a composition of the smaller tasks such

as rotations and weight adjustments. It is part of our future work.

Currently, the usability of Locksynth involves a steep learning curve to achieve syn-

thesis. Similar learning curves exist with using model checkers for concurrent programs

(Kroening and Tautschnig 2014) and theorem-prover tools based on concurrent sepa-

ration logic (Brookes and W O’Hearn 2016; Mulder et al. 2022; Krebbers et al. 2017).

Nonetheless, the formal method toolchains mentioned are mature enough and much eas-

ier to use than Locksynth in its current state. All the theorem-prover tools assume an

abstract representation of concurrent code and prove correctness over the abstract repre-

sentation. Whereas, we start with an abstract representation of data structure knowledge

and perform actual code generation. The code generated by Locksynth can be used in

conjunction with other model checkers and concurrent separation logic theorem provers

to provide an independent path of verification for the generated code. Improving the

usability of our tool and integrating our abstract representations of sequential code with

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000303

Locksynth: Deriving synchronization code 829

Dafny notations (Rustan and Leino 2010) is part of our future work. Further, the advan-

tage of using such abstract representations can make Locksynth generate concurrent Java

programs. While performing these translations, some caution should be exercised when

considering the memory model guarantees offered by the language run-time specification

(Manson et al. 2005; Boehm and Adve 2008). We again leave all this for future work.

Locksynth represents the first step towards commonsense reasoning approaches to de-

rive concurrent data structures. More work needs to be done to be able to perform data

structure traversal synthesis and complete the synthesis for insert and delete operation

for external height-balanced trees considered in this paper. More knowledge can be pro-

vided to enable the derivation of much faster concurrent algorithms. Relevant work by

Occualizer hints at making some assumptions on the data structure needed to match per-

formance of hand-crafted versions stronger (Shanny and Morrison 2022). We also aim to

support more sophisticated atomic instructions Compare-and-Swap (Valois 1995), Fetch-

and-Add (Heidelberger et al. 1990), offered by modern multi-processors. Towards that

end, more concurrency expert knowledge needs to be captured to facilitate the deriva-

tion of lock-free data structures. Finally, goal-directed ASP using s(CASP) (Arias et al.

2018) can be used to perform the backend reasoning instead of Clingo. However, s(CASP)

still requires effective dynamic consistency checking of constraints (Arias et al. 2022) and

tabling (Arias 2019) to be performant on dynamic domains, although some relevant work

has been done using the event calculus formalism (Arias et al. 2022; Varanasi et al. 2022).

Acknowledgments

We thank the anonymous reviewers for their insightful comments.

References

Arbel, M. and Attiya, H. 2014. Concurrent updates with rcu: Search tree as an example. In
Proceedings of The 2014 ACM Symposium on Principles of Distributed Computing, 196–205.

Arias, J. 2019. Advanced Evaluation Techniques for (Non)-Monotonic Reasoning Using Rules
with Constraints. Ph.D. thesis, Technical University of Madrid, Spain. URL: https://oa.
upm.es/58189/.

Arias, J., Carro, M., Chen, Z. and Gupta, G. 2022. Modeling and rea- soning in event
calculus using goal-directed constraint answer set programming. Theory and Practice of Logic
Programming 22, 1, 51–80.

Arias, J., Carro, M. and Gupta, G. 2022. Towards dynamic consistency checking in goal-
directed predicate answer set programming. In Practical Aspects of Declarative Languages:
24th International Symposium, PADL 2022, Philadelphia, PA, USA, January 17–18, 2022,
Proceedings, 117–134.

Arias, J., Carro, M., Salazar, E., Marple, K. and Gupta, G. 2018. Constraint answer
set programming without grounding. Theory and Practice of Logic Programming 18, 3–4,
337–354.

Boehm, H.-J. and Adve, S. V. 2008. Foundations of the C++ concurrency memory model.
ACM SIGPLAN Notices 43, 6, 68–78.

Brookes, S. and O’Hearn, P. W. 2016. Concurrent separation logic. ACM SIGLOG News 3,
3, 47–65.

Clarke, E. M. and Emerson, E. A. 1981. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logic of Programs, Springer, 52–71.

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

https://oa.upm.es/58189/
https://oa.upm.es/58189/
https://doi.org/10.1017/S1471068423000303

830 S.C. Varanasi et al.

Distefano, D., O’Hearn, P.W. and Yang, H. 2006. A local shape analysis based on separa-
tion logic. In Proc. TACAS, H. Hermanns and J. Palsberg, Eds. LNCS, vol. 3920, Springer,
287–302.

Emerson, E. A. and Kahlon, V. 2000. Reducing model checking of the many to the
few. In International Conference on Automated Deduction, Springer, 236–254. doi:10.1007/
10721959 19.

Gebser, M., Kaminski, R., Kaufmann, B., Lühne, P., Obermeier, P., Ostrowski, M.,

Romero, J., Schaub, T., Schellhorn, S. and Wanko, P. 2018. The potsdam answer set
solving collection 5.0. KI-Künstliche Intelligenz 32, 181–182.

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation, Reasoning, and the Design
of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press.
doi:10.1017/CBO9781139342124.

Gramoli, V. 2015. More than you ever wanted to know about synchronization: Synchrobench,
measuring the impact of the synchronization on concurrent algo- rithms. In Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 1–10.

Heidelberger, P., Norton, A. and Robinson, J. T. 1990. Parallel quicksort using fetch-
and-add. IEEE Transactions on Computers 39, 1, 133–138. doi:10.1109/12.46289.

Herlihy, M., Shavit, N., Luchangco, V. and Spear, M. 2020. The Art of Multiprocessor
Programming. Newnes.

Krebbers, R., Timany, A. and Birkedal, L. 2017. Interactive proofs in higher-order concur-
rent separation logic. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, 205–217.

Kroening, D. and Tautschnig, M. 2014. CBMC-C bounded model checker: (Competition
Contribution). In Tools and Algorithms for the Construction and Analysis of Systems: 20th
International Conference, TACAS 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5–13, 2014. Proceed-
ings 20, Springer, 389–391.

Manson, J., Pugh, W. and Adve, S. V. 2005. The Java memory model. ACM SIGPLAN
Notices 40, 1, 378–391.

McKenney, P. E., Boyd-Wickizer, S. and Walpole, J. 2013. RCU usage in the Linux
kernel: one decade later. Technical report.

Mulder, I., Krebbers, R. and Geuvers, H. 2022. Diaframe: Automated ver- ification of fine-
grained concurrent programs in Iris. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, 809–824.

Natarajan, A. and Mittal, N. 2014. Fast concurrent lock-free binary search trees. In Proc.
19th PPoPP, 317–328.

Owicki, S. S. and Gries, D. 1975. Proving properties of parallel programs: An axiomatic
approach. Tech. rep. Cornell University.

Rustan, K. and Leino, M. 2010. Dafny: An automatic program verifier for functional cor-
rectness. In Logic for Programming, Artificial Intelligence, and Reasoning: 16th International
Conference, LPAR-16, Dakar, Senegal, April 25–May 1, 2010, Revised Selected Papers 16,
Springer, 348–370.

Shanny, T. and Morrison, A. 2022. Occualizer: Optimistic concurrent search trees from se-
quential code. In 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), 321–337.

Vafeiadis, V. 2008.Modular Fine-Grained Concurrency Verification. Ph.D. thesis. University of
Cambridge, UK. URL: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221.

Vafeiadis, V., Herlihy, M., Hoare, T. and Shapiro, M. 2006. Proving correctness of highly-
concurrent linearisable objects. In Proceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 129–136.

Vafeiadis, V. and Parkinson, M. 2007. A marriage of rely/guarantee and separation logic.
In Int. Conf. on Conc. Theory, Springer, 256–271.

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

10.1017/CBO9781139342124
10.1109/12.46289
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
https://doi.org/10.1017/S1471068423000303

Locksynth: Deriving synchronization code 831

Valois, J. D. 1995. Lock-free linked lists using compare-and-swap. In Proceedings of the Four-
teenth Annual ACM Symposium on Principles of Distributed Computing, 214–222. doi:10.
1145/224964.224988.

Varanasi, S. C., Arias, J., Salazar, E., Li, F., Basu, K. and Gupta, G. 2022. Modeling
and verification of real-time systems with event calculus and s(CASP). In Proc. 24th PADL,
Springer, 181–190.

Varanasi, S. C., Mittal, N. and Gupta, G. 2021. Generating concurrent programs from
sequential data structure knowledge using answer set programming. In Proc. 37th ICLP (Tech.
Comm), vol. 345. EPTCS, 219–233.

Vechev, M. and Yahav, E. 2008. Deriving linearizable fine-grained concurrent objects. In
Proc. 29th PLDI, 125–135. doi:10.1145/1379022.1375598.

Vechev, M., Yahav, E. and Yorsh, G. 2010. Abstraction-guided synthesis of synchronization.
In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 327–338.

https://doi.org/10.1017/S1471068423000303 Published online by Cambridge University Press

10.1145/224964.224988
10.1145/224964.224988
10.1145/1379022.1375598
https://doi.org/10.1017/S1471068423000303

	Introduction
	Problem statement and system model
	Motivation and general idea
	Input to Locksynth and its reasoning procedure
	Performing C++ code synthesis
	Performance comparison of synthesized code with hand-crafted code
	Related work
	Conclusion and future work
	References

