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ABSTRACT. Under idealized conditions, when pressurized water has access to all
low-pressure arcas at the glacier bed, a sliding instability exists at a critical pressure, pe,
well below the overburden pressure, py. The critical pressure is given by p. = py — s
where [ is the wavelength and a is the amplitude of a sinusoidal bedrock, and 7 is the basal
shear stress. When the subglacial water pressure, py, approaches this critical value, the
area of ice—bed contact, Al, becomes very small and the pressure on the contact area
becomes very large. This pressure is calculated from a force balance and the correspond-
ing rate of compression is obtained using Glen’s flow law for ice. On the assumption that
compression in the vicinity of the contact arca occurs over a distance of the order of the
size of this area, Al, a deformational velocity is estimated. The resultant sliding velocity
shows the expected instability at the critical water pressure. The dependency on other
parameters, such as wavelength [ and roughness a /1, was found to be the same as for slid-

ing without bed separation.

uy, o PN (1)

LIST OF SYMBOLS subject of great interest and has been treated extensively
(Lliboutry, 1968; Iken, 1981; Kamb, 1987). Lliboutry (1979)

o Amplitude of the bedrock undulations and Fowler (1986) have derived sliding laws allowing for

A ;“1”“"la“' parameter bed separation. They have provided graphical solutions for

d Exponent in sliding law (Equation (1)) sliding over periodic beds.

[ Wavelength of the bedrock undulations Budd and others (1979) and Bindschadler (1983) origin-

Al Iee-bedrock contact area ally proposed a sliding law of the form

m Exponent in sliding law (Equation (1))

N Effective pressure (py — py)

n Exponent in Glen’s flow law

o Critical pressure at which a sliding instability

occurs (Equation (2))

to fit observations. Budd’s interpretation has been discussed

Po Overburden pressure by Lliboutry (1987). Similar laws were found theoretically
Pw Water pressure in the cavities by Lliboutry (1978) and Fowler (1987). Here, uy, is the sliding
5 Bed-separation parameter velocity, 7is the basal shear stress, V is the elTective pressure
5" Dimensionless contact area {overburden pressure minus water pressure), the exponent
tij Stress-lensor components m is often set equal to the exponent n in Glen’s flow law (in
151 Deviatoric stress-tensor components the absence of regelation) and d is an empirical positive
up, Basal velocity number,

U Velocity perpendicular to the stoss faces at the This sliding law incoporates an instability as N

contact arca

approaches zero, i.e. the water pressure approaches the ice-

L Direction along mean bed overburden pressure.

% Direction along steepest tangent to the bed However, the sliding law in Equation (1) does not allow

z Direction perpendicular upward to the mean bed for an instability at a critical pressure, p., that is lower than

2 Direction perpendicular upward to 2/ the overburden pressure pg. Tken (1981) has shown the exis-

Q Inclination of mean hed tence of such an instability at a pressure

/6] Maximum angle between the mean bed and the

stoss faces T -

€ij Strain-rate components i tan 3 ()

T Basal shear stress

Teft Effective stress where 3 is the maximum angle between the mean bed and
stoss faces. The obvious contradiction between the existence

INTRODUCTION of this critical pressure and the sliding law in Equation (1)

Sliding over hard bedrock with cavity formation has been a
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was our motivation to derive a different sliding law that in-
corporates this instability.
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SLIDING VELOCITY NEAR THE CRITICAL
PRESSURE

Assumptions

To carry out the calculations described below, we need to
make the following simplifying assumptions:
(i) We consider a sinusoidal bed of small roughness and
large wavelengths (so that regelation is negligible).

(i1) Plane strain is assumed.

(iii) The ice is separated from the bedrock by a thin
water film, i.e. the interface supports no shear stresses.

(iv) All cavities contain water at the same pressure.

(v) The water pressure is close to the critical pressure.

We will make the point that assumption (v) means that the
contact area between ice and bedrock is very small and is
centered around the point of inflection on the stoss faces of
the bed undulations. This is not immediately clear, since
Gudmundsson (1994) has shown that for a sinusoidal bed
(amplitude @ and wavelength [) the pressure maxima are
to be found at values of & which solves
A e

1 z*o([ﬂs) 3)

(his equation 4.38). The pressure maxima are at the inflec-

271" a

tion points for small roughness only. However, Equation (3)
was derived for a bed without bed separation. We deal with a
situation of extensive bed separation. This affects the stress
distribution considerably. In the case of almost complete
bed separation, the contact point has to be exactly at the in-
flection point, because otherwise the instability would
occur at a pressure that is even lower than the critical pres-
sure. This can be seen by inspecting the balance of forces on
the segment of basal ice shown in Figure la. If the contact
area was located at a point different from the inflection
point, a new Equation (2) could be derived by a similar
analysis. In this new equation, the angle 3 would be re-
placed by an angle 3" < 3, 3' being the angle between the
mean bed and the tangent at the supposed point of contact.
This would lead to an even lower critical pressure. In the
same way, one can show that the length of the contact zone
must become very small as the water pressure approaches
the eritical value. Here, we bear in mind that the pressure
on a contact area is, by definition, greater than the water
pressure.

Stresses at the ice—bedrock contact area

The analysis is based on a force balance acting on an ele-
ment of basal ice shown in Figure la. This element extends
over one wavelength, [, in the z direction, and has a unit
thickness in the y direction. The mean stresses along the
upper boundary, AB, of the clement are the macroscopic
stresses py and 7. The lower boundary does not support any
shear stress (assumption (iii) above). The normal stress is py
on the roof of the cavity and there is a mean normal stress of
t. at the contact area. The contact area is defined as that
part of the bed where the pressure on the bed is larger than
the water pressure in the cavity. It is indicated in Figure Ih
by a bold line of length Al
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Fig. 1. Scheme of the glacier base: large, water-filled cavities
between ice and sinusoidal bed, which is shown by a hatched
line. (a) Element of basal ice (stippled area), to which the
force balance refers. The upper boundary of the element, AB.
is parallel to the mean bed and extends over one wavelength .
The lower boundary is the glacier sole between A and B; T
and py are the mean stresses on the upper boundary. They are
equal lo the macroscopic stresses. (b) Coordinate systems. The
& axis is chosen along the mean bed of slope cv, while the g
axis is along the steepest langent to the bedrock. 3 is the angle
between the two axes. The area of contact between ice and bed,
AL, is marked by a bold line. The shapes of the cavities are not
exactly known bul they arve irrelevant for the analysis.

A force balance in the 2 direction yields the stress com-
ponent t.., the mean normal stress on the contact area:

tuws*'l = —7lsin 3 — polcos 3+ py(1 — s")lcos 3. (4)

/3 is again the largest angle between the mean bed and the
actual bed. §* = Al/l is a dimensionless number for the size
of the contact area. The first term on the righthand side re-
presents the contribution of the shear stress, the second the
contribution of the overburden and the third the contribu-
tion of the water pressure to the force balance. The signs in
the above equation reflect the fact that the stresses are com-
pressive (pg and py, are taken to be positive).

The critical pressure (Equation (2)) is obtained by for-
mulating a similar force balance in the 2’ direction and cal-
culating that water pressure, at which all forces in the i
direction balance. This pressure is a limiting value. At high-
er water pressures, an acceleration along ' would result.

The stress calculated in Equation (4) is a principal stress,
since the water film does not support any shear stress. The
second principal stress is taken to be equal to the water pres-
sure py. Thisis correct as long as the contact area is small, as
can be seen by calculating the Airy stress function. The lim-
iting case of an infinitely small region has been treated in
textbooks on elasticity (e.g. Jaeger, 1971, section 36).
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We can thus calculate the deviatoric stress:

1
!
Y R E(t:’:’ - "1’!’)
it ’
— —;(Tsill B+pacosB— ((1 —5")cos B+ s )pw).
S

(5)

po can now be replaced by using Equation (2):

1
= e ($+pr cosB— ((1 —s")cos 3+ s*‘}pw).

(6)
Sliding velocity

Using the above-calculated deviatoric stress and Glen’s flow
law € = A?’(*.'i-f_lifj with 7 given by T(')“ = %(iﬁ%_},f+
7.) = 7, we obtain the strain rate €. This constitutive
law is used somewhat arbitrarily since the magnitude and
transience of the stress field put it outside the realms of “nor-
mal” glacial flow. We now make the additional assumption
that the strain rates are effective over a normal distance
corresponding to the width of the contact area Al This
assumption is justified in a linear theory and approximately
applies here. We can therefore use the stresses at the inter-
face to estimate a deformational velocity perpendicular to
the bed at the contact area.

Al

- 2n(sr)"!

1 L P cosd  pol(l —s*)cosF+s)\"
sin [ T '

u; = |ls"ésy|

(7)

T

Note that Equation (7) was derived without using the
assumption of a sinusoidal bed.

In steady state, the sliding motion is parallel to the mean
bed, so that

(V0

Up = — ; (8
' sing )
Using s* <« 1, we get (1 — s*)cos @ + s* = cos 3. We can
S T I SR oo s 1
th(_n simplify Lquation (7) by using J_TL.(.Oh i
which holds at water pressures close to the critical pressure,

Equation (7) thus becomes

Alr™
27(s*)" (sin B)"

uyy R (9)
This approximate equation is valid for any periodic bed at
high water pressures. 3 is the maximum slope of the stoss
faces of the bed undulations. These undulations do not have
to be sinusoidal. s* is a function of the water pressure with
8" —0 as py—pe.

In the special case of a sinusoidal bed, the function
5"(py) can be found. Equation (16) of Schweizer and Tken
(1992) provides the required relationship:

IT sin(ws) + w(1 — s) cos(ms)

Re=e = - = .
: k ma sin(ws) cos(ws) + 7w(1 — s)

(10)

Their s is the so-called bed-separation parameter and
relates to our s* by s = 1 — 5. They obtained their equation
in a fashion similar to Lliboutry (1968) but they made a
different assumption on the location of the separated zone.
They assumed that the separated zone is centered at the in-
flection point on the lee face of the sinusoidal bump. This
assumption applies during the transient phase of the begin-
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ning of cavity growth and, if the ice is almost fully sepa-
rated, also for fully developed, steady cavities.

5" can now be calculated by using the assumption of a
small contact area (8™ < 1). This allows the expansion of
sine and cosine in Equation (10) using aTaylor series, Carry-
ing this out yields:

Ir | 10 — (ms*)?
I)“. o p“ —t—

ma |20 — 4(ws*)? (1)

For a sinusoidal bed,

2ma

tanf =—. (12)

Thus, as s*—0, the water pressure, py approaches the cri-
tical pressure, p., as required.

From Equation (11), we find:

9 10(p. — pw)

§)° = — - 13
(g ) Trl(.z(p(l = p\\') —Teot ‘1) ( }
Replacing this in Equation (9), we obtain
=1
Al” g’r-+'—2“- B
o A (Pl =20 -
2”(5111 8) l()(pi p— p\\')
Furthermore,
27a
sin B = tanff = % : (15)
This finally gives
_ AlsT ] e e + Po — 2D 7
= omi \ g 10(pe — pw)
n-l
AIT” ] n+l N 3
mo e Y, i)
2w N 10(p. — pw)

DISCUSSION

Equation (16) shows the expected instability as the water
pressure approaches the critical pressure. It also preserves
the 7" dependency of the sliding velocity that is typical of
any sliding law that describes sliding over hard bedrock in
the absence of regelation. A rather appealing fact is that the
sliding  velocity shows the same dependency on  the
roughness a/l as in previously derived sliding laws (Kamb,
1970; Fowler, 1979, Gudmundsson, 1994). This was somewhat
unexpected, because the above-mentioned authors did a
detailed analysis of sliding over bedrock without cavity for-
mation.

Sliding instabilities at pressures below overburden, as
predicted here, have not been observed. The simplifying
assumption of a sinusoidal bed does not explain this, since
the existence of the critical pressure does not depend on that
assumption. Also, it is highly unlikely to find many places
with stoss faces perpendicular to the mean bed (3 = 907),
which would yield p. = pg. Observations of the glacier bed
in front of the present-day terminus of Findelengletscher, for
example, show a somewhat smooth bed (Tken and Bindscha-
dler, 1986). At the few places where the stoss faces are per-
pendicular to the mean bed, a large proportion of the
shear stress should be concentrated once the critical pres-
sure 1s reached and thus accelerated motion should still
occur.

We believe that assumption (iv) (all the cavities are at
the same water pressure) is the major simplification. Follow-
ing a recent paper (lken and Truffer, 1997), we argue that
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there are isolated cavities beneath Findelengletscher that
would prevent such an instability.

CONCLUSION

An approximate sliding law, valid for a sinusoidal bed in the
case of extensive bed separation and other idealized condi-
tions, has been derived from a force budget. An important
feature of this law, not included in other sliding laws, is the
factor (p. — pw)_("_lw. This factor accounts for the in-
stability of sliding that should occur when the subglacial
water pressure, py, approaches the critical value, p.. The de-
pendence of the sliding velocity on bed roughness (ampli-
tude/wavelength), on wavelength and on basal shear stress
is the same as for sliding over a sinusoidal bed without bed
scparation.
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