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ABSTRACT. Unde r ideali zed conditio ns, when pressuri zed water has access to all 
low-pressure a reas at the g lac ier bed, a sliding instability exists a t a criti cal pressure' rfc, 

well below the overburden pressure, Po· The critical pressure is g iven by Pc = Po - 2; , 
where I is the wa\'eleng th and a is the amplitude of a sinuso ida l bedrock, a nd T is the bas~l 
shear stress. \Vhen the subg lacia l water pressure, Pw, approaches thi s critical va lue, the 
a rea of ice- bed contac t, 6.1, becomes very sm a ll a nd the pressure on the conta ct a rea 
becomes vcry large. This pressure is calcul a ted from a force ba la nce and the corrcs pond­
ing rate o f compress ion is obtained using Glen's fl ow law for ice. On the assumptio n that 
compressio n in the \'icinity o f the contact a rea occur over a di sta nce of the orde r o f the 
size of thi s a rea, 6.1, a deforma tiona l \'eloeit y is es timated. The resultant sliding \ "C locity 
shows the ex p ec ted insta bility a t the critical wa ter pressure. The dependency on o ther 
pa ra meters, sLlch as waveleng th I a nd roughness a/ I, was found to be the same as fo r slid­
ing witho ut bed separati o n. 

LIST OF SYMBOLS 

a Amplitude of th e bedrock undul ations 
A Flow-l aw pa ram e ter 
d E xponent in sliding law (Equa ti on (I)) 
1 Wavelength of th e bedrock undul ati o ns 
6l Te e bcdrock contac t a rea 
m Expo nent in sliding law (Eq uati on (I )) 
N Effecti\'e pressu re (Po - Pw ) 
n Exp onent in Glen's fl ow law 
Pc C ritica l press LIre a t which a sliding instabilit y 

oceurs (Equa tion (2)) 
Po O\'erburde n pressure 
Pw \ Va ter pressure in thc ca\' iti es 
s Bed-separati on pa ra meter 
s* Dimensionl ess com ac t a rea 
t ij Stress-tensor components 
t:j D eviatoric stress-tensor components 
Uh Basa l veloc it y 
U-t Veloc ity perpendicul a r to the stass [aces at the 

contact area 
:r: Direction along mea n bed 
:1" Direction along steepest ta nge nt to the bed 
z Direc ti on perpendicular upward to the mean bed 
:i Di rection perpendicul a r upwa rd to x' 
Cl. Inclinat ion of mea n bed 

f3 lVf<lximum a ngle be tween the mea n bed a nd the 
stass faces 

Strain-rate compo nents 
Basa l shea r stress 

Tcff Effecti\'e stress 

INTRODUCTION 

Sliding over h a rd bedrock with ca\'it y forma tio n has been a 

subj ect of g reat interest and h as been treated extensively 
(L1iboutry, 1968; Ikcn, 1981; K a mb, 1987). L1iboutr y (1979) 
a nd Fowler (1986) h3\"(' ri C' ri ved sliding laws a llowing for 
bed separat io n. Th ey haw provided g rap hica l so lutio ns fo r 
sliding O\'er periodi c beds. 

Budd a nd o the rs (1979) a nd Bindschadlcr (1983) o ri gin­
a ll y proposed a sliding law of the fo rm 

(1) 

to fit obsen ·ati o ns. Budd's interpre ta ti on has been discussed 
by L1i boutry (19B7). Simil ar laws we re found theore ti ca lly 
by L1i boutry (1978) a nd Fowler (1987). H ere, Ub is the sliding 
veloc it y, T is the basa l shear stress, N is the effecti\'e pressure 
(Q\ 'erburden press u re minus wa ter pressure), th e expo nent 
m is often se t equa l to the exponent n in Glen's fl ow layv (in 
the absence of regelat ion) a nd d i ' a n empirica l positi \'e 
number. 

This sliding law incopora tes a n instabilit y a s N 
approaches ze ro, i.e. the water pressure approaches the ice­
ove rburden pressure. 

Howe\'e r, the sliding law in Equ a tion (I) does not a ll ow 
fo r a n instability a t a critical pressure, Pc, that is lower tha n 
the Q\'e rburden pressure Po. Iken (19BI) has shown the ex is­
tence of such a n instability a t a pressure 

T 
Pc = Po - -t f3 a n 

(2) 

where f3 is the m ax imum angle be twee n the mean b ed a nd 
stoss faces. The obvious contradic tio n between the ex istence 
of thi s critical press ure a nd the sliding law in Equ a ti o n (I) 
was our motiva ti o n to derive a diffe rent sliding law tha t in­
co rporates this insta bility. 
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SLIDING VELOCITY NEAR THE CRITICAL 
PRESSURE 

Assumptions 

To carry out the calculations descr ibed below, we need to 
make the foll owing simplifying ass umptions: 

(i) We consider a sinusoida l bed of small roughness and 
large wavelengths (so that regela tion is negligible). 

(ii ) Plane strain is assumed. 

(iii ) The ice is separated from the bedrock by a thin 
water film , i.e. the interface supports no shea r stresses. 

(i,') All cavities contain water at the same pressure. 

(v) The wate r pressure is close to the critical pressure. 

' Ve will make the poin t that assumption (v) means tha t the 
contact area between ice and bed rock is very small a nd is 
centercd around the point of inflection on the stoss faces of 
the bed undul a tions. This is not immediately elea r, since 
Gudmundsson (1994) has shown tha t for a sinusoida l bed 
(amplitude a and wa"elength l ) the pressure max ima a re 
to be found at values of x which solves 

27f a ([a] 3) TX=i+ O i (3) 

(his equation 4.38). The pressure m axima are at the inflec­
tion points for small roughness on ly. H owe"er, Equa tion (3) 
was deri"ed for a bed without bed separation. We deal with a 
situation of ex tensi" e bed sepa ration. This affects the stress 
distribution considerably. In the case of almost complete 
bed separation, the contact point has to be exactly at the in­
flection point, because otherwise the instability wou ld 
occur at a pressure that is even lower than the criti cal pres­
sure. This can be seen by inspecting the balance of fo rces on 
the segmenL of basa l ice shown in Figure la. If the contact 
a rea was located at a point different from the infl ection 
point, a new Equation (2) could be derived by a similar 
a nal ysis. In th is new equation, the angle (3 wo uld be re­
placed by an a ngle (J I < (3, (3' being the angle between the 
mean bed and the ta ngent at the supposed point of contact. 
This would lead to an even lower critical pressure. In the 
same way, one can show that the length of the COnLact zone 
must become very small as the water pressure approaches 
the cr itical value. H ere, we bear in mind that the pressure 
on a contact a rea is, by definition, greater than the water 
pressure. 

Stresses at the ice-bedrock contact area 

The analysis is based on a force .ba lance acting on a n ele­
ment of basal ice shown in Figure la. This element extends 
o\'er one wavelength, l, in the x direction, and has a unit 
thickness in the y direction. The mean stresses a long the 
upper boundary, AB, of the element a re the m acroscopic 
stresses Po and T. The 10IVer boundary does not support any 
shea r stress (assumption (iii ) above ). The normal stress is PII' 
on the roof of the cavity and there is a mean norm a l stress of 
t ;! ;! at the contact area. The contact area is defined as that 
part of the bed where the pressure on the bed is larger than 
the water pressure in the cavity. It is indicated in Fig ure lb 
by a bold line oflength ~l. 
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Fig. 1. Scheme cif the glacier base: lmge, water filled cavities 
between ice and sinusoidal bed, which is slzown by a hatched 
line. (a) Element cif basal ice (stip/)led area), to which the 
force balance refers. The upper bOllllda1)1 cif the element, AB, 
is parallel 10 Ihe mean bed and extends over one wavelength l. 
The lower bOlllldmy is the glacier sole between A and B; T 

and Po are the mean stresses 011 the upper boundary. They are 
equal to the macroscopic stresses. (b) Coordinate systems. The 
x axis is chosen along the mean bed cif slope IX, while the x' 
axis is along the steepest tangent to the bedrock. (3 is the angle 
between the two axes. The area cifcontact between ice and bed, 
6ol , is marked by a bold line. The shapes cif the cavities are not 
exact!:y known but they are imlevantJor the analysis. 

x 

A force balance in th e i direction yields the stress com­
ponent t ;!=" the mean normal stress on the contact area: 

i::':! s* l = -Tl sin (3 - Pol cos (3 + p\\ (1 - s*)l eos (3. (4) 

(3 is again the larges t a ngle between the mean bed and the 
actual bed. s* = ~l/ l is a dimensionless number [or the size 
o[ the contact area. The first term on the righthand side re­
presents the contribution of the shear stress, the second the 
contribution of the overburden and the third the contribu­
tion of the water pressu re to the force ba la nce. The signs in 
the above equation reflec t the fact that the stresses a rc com­
pressive (Po and p\\" a re taken to be positive). 

T he cr itical pressure (Equation (2)) is obta ined by for­
mula ting a similar force balance in the x' direction and cal­
culating that waler pressure, al which all forces in the x' 
direction balance. This pressure is a limiting value. At high­
er water pressures, a n accelerat ion along x' would res ult. 

The stress calcu lated in Equation (4) is a principal stress, 
since the water film does not support any shear stress. The 
second principal stress is taken to be eq ua l to the water pres­
sure p\\" This is correct as long as the contact area is small , as 
can be seen by calculating the Airy stress funct ion. The lim­
iting case of an infinite ly small region has been lreated in 
textbooks on elasticity (e.g. J aeger, 1971, section 36). 
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\Ve can thus calcul ate the deyiatoric stress: 

, 1 
t N ="2 (t;;'z' - (,.1.,.,) 

= - ~ (Tsin ,8 + Po cos,8 - ((1 - s*) cos,8 + s*)p",). 
2s* 

(5) 

Po can now be replaced by using Equation (2): 

t'_1 _I = - _1_ ( . T R + Pc cos (3 - (( 1 - s *) cos (3 + s * ) p,,) . 
- - 2s* sIn /J 

(6) 

Sl iding velocity 

Using the above-calculated deviatoric stress and Glen's flow 
I . - A ,,-It' ' ·1 . 1 2 1 (t,2 aw fij - Tcff ij WIt 1 Tcfr g Iven Jy Tcfr = 2 .,.1.,.1+ 
t~~ZI) = t~zl we obtain the strain rate Ez'zl. This constitutive 
law is used somewhat arbitra rily since the magnitude and 
transience of the stress fi eld put it outside the rea lms of "nor­
m al" glacial flow. "Ve now make the additional assumption 
that the strain rates are effective ovcr a normal dista nce 
corresponding to the width of the contact a rea ~l. This 
ass umption isjustified in a linear theory and approxim a tely 
applies here. "Ve can therefore use the stresses at th e inter­
face to estimate a deformational velocity perpendicular to 
the bed at the contact a rea. 

AlT" 
'U-L r::::; Ils*Ez'z' 1 = --~ 

2T1 (s*),, -1 

(
_1_ + Pc cos (3 _ p" (( 1 - s*) cos (3 + s*) ) 11 

mn(3 T T 

(7) 

Note that Equation (7) was derived without using the 
ass umption of a sinuso ida l bed. 

In steady sta te, the sliding motion is pa rallel to the mean 
bed, so that 

'U-L 
Ub =-.-. 

sm,8 
(8) 

Using s* « 1, we get (1 - s*) eos,8 + s* r::::; eos,8. Wc can 
then simplify Equation (7) by using P' ~Pw cos (3 « S iI~ ,J' 
which holds at water pressures close to the critica l pressure. 
Equation (7) thus becomes 

AlT" 
'Ub r::::; 1 ')II( *)"- (.' R)"+I ~ S S 111 /J 

(9) 

This approxima te eq uati on is va l id for any periodic bed at 
high water pressures. (3 is the max imum slope of the stoss 
faces of the bed undu lations. These undulations do not have 
to be sinusoida l. s* is a function of the water pressure with 
s* ~O as PII' ~pc. 

In the special case of a sinusoidal bed, the fun ction 
s*(p".) can be found. Equation (16) of Schweize r a nd Iken 
(1992) prO\'ides the requi red relat ionship: 

IT sin(rrs) + 11"(1 - s) eos(11"s) 
PII' = Po - 11"asin(11"s) eos(11"s) + 11"( 1 _ s) (10) 

Th ei r s is the so-called bed-sep a ration paramete r a nd 
rel a tes to our s* by s* = 1 - s . They obtained their equ at ion 
in a fashion simil a r to L1iboutry (1968) but they made a 
different assumption on the location of the separa ted zone. 
They assumed tha t the separated zon e is centered at the in­
fl ection point on th e lee face of the sinusoidal bump. This 
ass umption applies during the transiem phase of the begin-

ning of cavity growth a nd, if the ice is a lmost fully sepa­
rated, a lso for fully develop ed, steady cavities. 

s' can now be calculated by using the ass umption of a 
small contact a rea (s* « 1). This allows the expansion of 
sine and cosine in Equation (10) using a Taylor series. Carry­
ing thi s out yields: 

IT [10 - (11"S*)2 ] Pw r::::;po--
11"a 20-4(11"s*)2 

For a sinusoidal bed , 

211"a 
tan (3 = - 1- . 

(11) 

(12) 

Thus, as s* ---+0, the wa ter pressure, PI\' approaches the c ri­
tical pressure, Pe, as required. 

From Equation (1 1), we find: 

( *)2 ~ lO (Pc - p,,) 
s ~ 7f2 (2(po - PIV) - T eot,8) 

Replacing this in Equ ati on (9), we obta in 
11-1 

'U ~ AlT" (7f2(pc + Po - 2Pw))' 
b ~ 2/1 (sin (3)"+ 1 lO (Pc - PI\') 

Furtherm ore, 

27fa 
sin ,8 r::::; tan (3 = - [- . 

AlT" (l) "+l ( N ) ,,:;1 
r::::; 2211 +111"2 -; lO (p, _ 71,,) . 

DISCUSSION 

(13) 

(14) 

(15) 

(16) 

Equa ti o n (16) shows the expec ted insta bility as the water 
pre sLll-e a pproaches the critica l pres,' ure. It a lso preserves 
the T" dependency of the sI iding ve loci t y that is typical of 
any sliding law that describes sliding o\'er ha rd bedrock in 
the absence of re gel a tion. A rat her appealing fact is that the 
sliding velocity shows the same dependency on the 
roughness a/I as in previously derived sliding laws (K a mb, 
1970; Fowler, 1979, Gudmundsson, 1994). This was somewha t 
unexpec ted, because the above-mentioned authors did a 
detailed a nalysis of sliding over bedrock without cavity for­
mat io n. 

Sliding instabilities at pressures below overburden, as 
predicted here, have not been observed. The simplifying 
ass umption of a sinusoida l bed does not explain this, since 
the ex istence of the critica l pressure does no t depend on that 
ass umption. Al so, it is highly unlikel y to find many places 
with stoss faces perpendicular to the mean bed ((3 = 90 0

) , 

which would yield Pe = Po· Observations of the glacier bed 
in front of the present-day terminus ofFindelengletscher, for 
example, show a somewhat smooth bed (Iken and Bindsch a­
dler, 1986). At the few places where the stoss faces a re per­
pendicular to the mean bed, a la rge proportion of the 
shear stress should be concentrated once the critical pres­
sure is reached and thus accelerated motion should still 
occ u r. 

\ ,Ve believe that ass umpti on (iv) (a ll the caviti es are a t 
the same water press ure ) is the majo r simplifi cati on. Fo ll ow­
ing a recent pape r (Tke n and Trurrer, 1997), we argue tha t 
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there are isolated cavities beneath Findelengletscher that 
would prevent such an instabili ty. 

CONCLUSION 

An approximate sliding law, valid for a sinusoidal bed in the 
case of extensive bed separation and other idealized condi­
tions, has been derived from a force budget. An important 
feature of thi s law, not included in other sliding laws, is the 
factor (Pc - p,,·r(n-l )/2 This factor accounts for the in­
stability of sliding that should occur when the subglacial 
water pressu re, Pw, approaches the critical value, Pc. The de­
pendence of the sliding velocity on bed roughness (ampli­
tude/wavelength), on wavelength and on basal shear stress 
is the same as for sliding over a sinusoidal bed without bed 
separation. 
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