LINEARIZATION OF THE PRODUCT OF JACOBI POLYNOMIALS. III

RICHARD ASKEY AND GEORGE GASPER

In a series of papers $[\mathbf{1 ; 2 ; 3 ; 4]}$ the operation of linearizing the product of two Jacobi polynomials $P_{n}{ }^{(\alpha, \beta)}(x), \alpha, \beta>-1$, has been investigated and the existence of a natural Banach algebra associated with the linearization coefficients has been proven. This was proven for $\alpha+\beta+1 \geqq 0$ in [3] and for a slightly larger region in [4]. It was shown in [4] that such a Banach algebra does not exist for $-1<\alpha, \beta<-\frac{1}{2}$. The method used in $[\mathbf{1} ; \mathbf{3} ; \mathbf{4}]$ was to prove the non-negativity of the expansion coefficients from which the existence of the Banach algebra easily follows. However, as shown in [4], the coefficients for a subset of $\alpha \geqq-\frac{1}{2}, \alpha+\beta+1<0$ can be negative infinitely often and so a different method must be used for these values of α and β. We now complete the study of the existence of these Banach algebras by considering the remaining cases. For $\alpha>-\frac{1}{2}$ we will show that methods related to those in [2] can be used, and for $\alpha=-\frac{1}{2}$ an explicit formula will be given for the coefficients, and estimates of this formula will be used to prove the existence of the Banach algebra. For $-1<\alpha, \beta<-\frac{1}{2}$ there is a weaker Banach algebra which is easy to obtain (Theorem 2). However, this weaker Banach algebra suffers from the defect of having a maximal ideal space which is larger than the maximal ideal space of the Banach algebras associated with Jacobi polynomials for $\alpha \geqq-\frac{1}{2}$.

We start with the standard type of Banach algebra. For $\alpha, \beta>-1$, the Jacobi polynomial $P_{n}{ }^{(\alpha, \beta)}(x)$ may be defined by

$$
(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[(1-x)^{n+\alpha}(1+x)^{n+\beta}\right]
$$

[7, (4.3.1)]. These polynomials are orthogonal on $[-1,1]$ and

$$
\int_{-1}^{1} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x=\frac{\delta_{n, m}}{h_{n}}
$$

where

$$
h_{n}=h_{n}^{(\alpha, \beta)}=\frac{(2 n+\alpha+\beta+1) \Gamma(n+\alpha+\beta+1) \Gamma(n+1)}{2^{\alpha+\beta+1} \Gamma(n+\alpha+1) \Gamma(n+\beta+1)}
$$

[^0][7, (4.3.3)]. Then with $\xi(k, m, n)$ defined by
(1) $\quad \xi(k, m, n)=\int_{-1}^{1} P_{n}^{(\alpha, \beta)}(x) P_{m}{ }^{(\alpha, \beta)}(x) P_{k}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x$,
we have
$$
P_{n}^{(\alpha, \beta)}(x) P_{m}^{(\alpha, \beta)}(x)=\sum_{k=|n-m|}^{n+m} \xi(k, m, n) h_{k} P_{k}^{(\alpha, \beta)}(x) .
$$

As in $[\mathbf{2} ; \mathbf{4}]$, in order to establish the existence of the Banach algebras for $\alpha \geqq \beta$, it suffices to show, for $n \geqq m \geqq 1$, that

$$
\begin{equation*}
\sum_{k=n-m}^{n+m}|\xi(k, m, n)| h_{k} P_{k}^{(\alpha, \beta)}(1) \leqq C P_{n}^{(\alpha, \beta)}(1) P_{m}^{(\alpha, \beta)}(1) \tag{2}
\end{equation*}
$$

where $C=C^{(\alpha, \beta)}$ is independent of n and m.
For $\alpha \geqq \beta \geqq-\frac{1}{2}$, (2) was proven in [2] and for $\alpha \geqq \beta, \alpha+\beta+1 \geqq 0$ in [3]. Also the results in [4] showed that (2) fails for $\alpha<-\frac{1}{2}$ and for $\alpha<\beta$. Thus, in proving (2) for the remaining (α, β) we may assume that $\alpha>\beta, 0>\alpha \geqq-\frac{1}{2}$, $-\frac{1}{2}>\beta>-1$, since this set contains $\alpha>\beta>-1, \alpha \geqq-\frac{1}{2}, \alpha+\beta+1<0$. From [7, (4.1.1)] and Stirling's formula, it follows that

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n} \sim n^{\alpha} \tag{3}
\end{equation*}
$$

and $h_{k}{ }^{(\alpha, \beta)} \sim k$. Therefore to prove (2) it is sufficient to prove that
(4) $\sum_{k=n-m}^{n+m} k^{1+\alpha} m^{-\alpha} n^{-\alpha}\left|\int_{-1}^{1} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(\alpha, \beta)}(x) P_{k}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x\right| \leqq C$,

$$
n \geqq m \geqq 1,
$$

where, as elsewhere, when $k=0$ it is assumed that k^{α} is replaced by $(k+1)^{\alpha}=1$. For $\alpha>-\frac{1}{2}$ the proof given in [2] works if we only consider \int_{0}^{1}. This is true since the behaviour of $P_{n}{ }^{(\alpha, \beta)}(x)$ for $0 \leqq x \leqq 1$ and $\alpha \geqq-\frac{1}{2}$ is almost completely controlled by the value of α. Thus for $\alpha>-\frac{1}{2}$ we may restrict ourselves to proving (4) with \int_{-1}^{1} replaced by \int_{-1}^{0}. The case $\alpha=-\frac{1}{2}$ will be handled later.

Using $P_{n}{ }^{(\alpha, \beta)}(-x)=(-1)^{n} P_{n}^{(\beta, \alpha)}(x)$ and letting $x=\cos \theta$, we see that we must estimate

$$
\begin{aligned}
& \sum_{k=n-m}^{n+m} k^{1+\alpha} m^{-\alpha} n^{-\alpha} \mid \int_{0}^{\pi / 2} P_{n}^{(\beta, \alpha)}(\cos \theta) P_{m}^{(\beta, \alpha)}(\cos \theta) \\
& \left.\cdot P_{k}^{(\beta, \alpha)}(\cos \theta)\left(\sin \frac{1}{2} \theta\right)^{2 \beta+1}\left(\cos \frac{1}{2} \theta\right)^{2 \alpha+1} d \theta \right\rvert\, .
\end{aligned}
$$

We will use the following properties of $P_{n}^{(\beta, \alpha)}(\cos \theta)$.

$$
\begin{align*}
& \left|P_{n}^{(\beta, \alpha)}(\cos \theta)\right| \leqq A n^{\beta}, \quad 0 \leqq \theta \leqq n^{-1}, \tag{5}\\
& \left|P_{n}^{(\beta, \alpha)}(\cos \theta)\right| \leqq A n^{-\frac{1}{2}} \theta^{-\beta-\frac{1}{2}}, \quad n^{-1} \leqq \theta \leqq \pi / 2, \tag{6}\\
& \left|P_{n}^{(\beta, \alpha)}(\cos \theta)\right| \leqq A n^{-\frac{1}{2}}, \quad 0 \leqq \theta \leqq \pi / 2 \tag{7}
\end{align*}
$$

These inequalities follow from [7, p. 169] since $\beta<-\frac{1}{2}$.
If $m<n / 2$, then $k \sim n$ and using (5) and (7) we have the estimate

$$
\sum_{k=n-m}^{n+m} k^{1+\alpha} m^{-\alpha} n^{-\alpha} \int_{0}^{1 / n} n^{\beta} k^{\beta} m^{-\frac{1}{2}} \theta^{2 \beta+1} d \theta=O\left(n^{-1} m^{\frac{1}{2}-\alpha}\right)=O\left(m^{-\frac{1}{2}-\alpha}\right)=O(1)
$$

since $\alpha>-\frac{1}{2}$. If $n / 2 \leqq m \leqq n$, then we use (5) and (7) again to obtain

$$
\sum_{k=n-m}^{n+m} k^{1+\alpha} m^{-\alpha} n^{-\alpha} \int_{0}^{1 / n} n^{\beta} k^{-\frac{1}{2}} m^{\beta} \theta^{2 \beta+1} d \theta=O\left(n^{-\beta-\frac{3}{2}} m^{\beta-\alpha+1}\right)=O\left((m / n)^{\beta-\alpha+1} n^{-\frac{1}{2}-\alpha}\right)
$$

This term is bounded since the restrictions $\alpha<0$ and $\beta>-1$ imply that $\beta-\alpha+1>0$. Next we integrate from $1 / n$ to $1 / m$ and use (5), (6), and (7) to obtain

$$
\sum_{k=n-m}^{n+m} k^{1+\alpha} m^{-\alpha} n^{-\alpha} \int_{1 / n}^{1 / m} n^{-\frac{1}{2}} m^{\beta} k^{-\frac{1}{2}} \theta^{\beta+\frac{1}{2}} d \theta=O\left(m^{-\frac{1}{2}-\alpha}\right)=O(1)
$$

We next integrate from $1 / m$ to $1 / k$ and use (5) and (6) to obtain

$$
\sum_{k=n-m}^{n+m} k^{1+\alpha} m^{-\alpha} n^{-\alpha} \int_{1 / m}^{1 / k} n^{-\frac{1}{2}} m^{-\frac{1}{2}} k^{\beta} d \theta=O\left(m^{\frac{1}{2}-\alpha} n^{\beta-\frac{1}{2}}\right)=O\left((m / n)^{\frac{1}{2}-\alpha} n^{\beta-\alpha}\right)=O(1)
$$

Observe that we only needed to estimate this integral if $k<m$. We are then left with

$$
\begin{align*}
\sum_{k=n-m}^{n+m} k^{1+\alpha} m^{-\alpha} n^{-\alpha} & \int_{\max (1 / m, 1 / k)}^{\pi / 2} P_{n}^{(\beta, \alpha)}(\cos \theta) \tag{8}\\
& \cdot P_{m}^{(\beta, \alpha)}(\cos \theta) P_{k}^{(\beta, \alpha)}(\cos \theta)\left(\sin \frac{1}{2} \theta\right)^{2 \beta+1}\left(\cos \frac{1}{2} \theta\right)^{2 \alpha+1} d \theta .
\end{align*}
$$

Now we apply an asymptotic formula for $P_{n}{ }^{(\beta, \alpha)}(\cos \theta)$. It suffices to use (9) $\quad\left(\sin \frac{1}{2} \theta\right)^{\beta+\frac{1}{2}}\left(\cos \frac{1}{2} \theta\right)^{\alpha+\frac{1}{2}} P_{n}{ }^{(\beta, \alpha)}(\cos \theta)$

$$
=(\pi n)^{-\frac{1}{2}} \cos (N \theta+\gamma)+O\left(n^{-\frac{3}{2}} \theta^{-1}\right), \quad 1 / n \leqq \theta \leqq \pi / 2,
$$

[7, Theorem 8.21.13] where $N=n+(\alpha+\beta+1) / 2$ and $\gamma=-(\beta+1 / 2) \pi / 2$. Using (9) in (8) leads to the estimation of

$$
\begin{aligned}
\sum_{k=n-m}^{n+m} k^{\alpha+\frac{1}{2}} m^{-\alpha-\frac{1}{2}} n^{-\alpha-\frac{1}{2}} & \int_{\max (1 / m, 1 / k)}^{\pi / 2} \cos (N \theta+\gamma) \\
& \cdot \cos (M \theta+\gamma) \cos (K \theta+\gamma)\left(\sin \frac{1}{2} \theta\right)^{-\beta-\frac{1}{2}}\left(\cos \frac{1}{2} \theta\right)^{-\alpha-\frac{1}{2}} d \theta \\
& \quad+\sum_{k=n-m}^{n+m} k^{\alpha+\frac{1}{2}} m^{-\alpha-\frac{1}{2}} n^{-\alpha-\frac{1}{2}} \int_{\max (1 / m, 1 / k)}^{\pi / 2} \theta^{-\beta-\frac{3}{2}}\left[m^{-1}+k^{-1}\right] d \theta
\end{aligned}
$$

The error terms are bounded by

$$
\sum_{k=n-m}^{n+m} k^{\alpha+\frac{1}{2}} m^{-\alpha-\frac{1}{2}} n^{-\alpha-\frac{1}{2}}\left[m^{-1}+k^{-1}\right]=O\left(m^{-\alpha-\frac{1}{2}}\right)=O(1)
$$

Since $\beta<-\frac{1}{2},\left(\sin \frac{1}{2} \theta\right)^{-\beta-\frac{1}{2}}\left(\cos \frac{1}{2} \theta\right)^{-\alpha-\frac{1}{2}}=g(\theta)$ is a bounded function of bounded variation for $0 \leqq \theta \leqq \pi / 2$. The boundedness allows us to consider $\int_{0}^{\pi / 2}$ (the same argument as for the error terms) and the bounded variation allows us to conclude that

$$
\int_{0}^{\pi / 2} \cos (N \theta+\gamma) \cos (M \theta+\gamma) \cos (K \theta+\gamma) g(\theta) d \theta=O\left(\frac{1}{|N \pm M \pm K|}\right)
$$

This leads to the estimate

$$
\begin{array}{r}
\sum_{k=n-m}^{n+m} k^{\alpha+\frac{1}{2}} m^{-\alpha-\frac{1}{2}} n^{-\alpha-\frac{1}{2}}|N \pm M \pm K|^{-1}=O\left(m^{-\alpha-\frac{1}{2}} \sum_{k=n-m}^{n+m}|N \pm M \pm K|^{-1}\right) \\
=O\left(m^{-\alpha-\frac{1}{2}} \log m\right)=O(1)
\end{array}
$$

which completes the proof of (2) for $\alpha>-\frac{1}{2}, \alpha \geqq \beta$.
For the remaining case $\alpha=-\frac{1}{2},-1<\beta<-\frac{1}{2}$, we use the following formula of Dougall which is given in [7, p. 390, Problem 84] for ultraspherical polynomials $P_{n}{ }^{(\lambda)}(x)$.

$$
\begin{align*}
\int_{-1}^{1} P_{k}^{(\lambda)}(x) P_{m}^{(\lambda)}(x) P_{n}^{(\lambda)}(x) & \left(1-x^{2}\right)^{\lambda-\frac{\lambda}{2}} d x \tag{10}\\
& =\frac{\alpha_{s-k} \alpha_{s-m} \alpha_{s-n}}{\alpha_{s}} \int_{-1}^{1}\left[P_{s}^{(\lambda)}(x)\right]^{2}\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x
\end{align*}
$$

for $\lambda>-\frac{1}{2}, \lambda \neq 0$, provided that $k+m+n=2 s$ is even and a triangle with sides k, m, n exists, i.e., $|n-m| \leqq k \leqq n+m$. Here

$$
\alpha_{k}=\binom{k+\lambda-1}{k}=\frac{(\lambda)_{k}}{k!}=\frac{\Gamma(k+\lambda)}{\Gamma(k+1) \Gamma(\lambda)} .
$$

Using (1), (3), (10), $P_{n}{ }^{(\lambda)}(1)=(2 \lambda)_{n} / n!$, and
$\frac{P_{2 n}{ }^{(\lambda)}(x)}{P_{2 n}{ }^{(\lambda)}(1)}=\frac{P_{2 n}{ }^{(\alpha, \alpha)}(x)}{P_{2 n}{ }^{(\alpha, \alpha)}(1)}=\frac{P_{n}^{\left(\alpha,-\frac{1}{2}\right)}\left(2 x^{2}-1\right)}{P_{n}{ }^{\left(\alpha,-\frac{1}{2}\right)}(1)}$

$$
=(-1)^{n} \frac{P_{n}^{\left(-\frac{1}{2}, \alpha\right)}\left(1-2 x^{2}\right)}{P_{n}^{\left(\alpha,-\frac{1}{2}\right)}(1)}, \lambda=\alpha+\frac{1}{2},
$$

(see [7, pp. 59, 81]) we obtain, for $\alpha=-\frac{1}{2}$,

$$
\begin{gathered}
\xi(k, m, n)=\frac{A(\beta)(-1)^{n+m+k}(2 n)!(2 m)!(2 k)!\Gamma(n+\beta+1)}{\Gamma(2 n+2 \beta+1) \Gamma(2 m+2 \beta+1) \Gamma(2 k+2 \beta+1) n!} \\
\cdot \frac{\Gamma(m+\beta+1) \Gamma(k+\beta+1) \Gamma\left(k+m-n+\beta+\frac{1}{2}\right)}{m!k!(k+m-n)!} \\
. \frac{\Gamma\left(k+n-m+\beta+\frac{1}{2}\right) \Gamma\left(n+m-k+\beta+\frac{1}{2}\right) \Gamma(n+m+k+2 \beta+1)}{(k+n-m)!(n+m-k)!\Gamma\left(n+m+k+\beta+\frac{3}{2}\right)},
\end{gathered}
$$

where $A(\beta)$ is independent of k, m, n. Then using $\Gamma(n+a) / \Gamma(n+b) \sim n^{a-b}$ it is easy to see that

$$
\sum_{k=n-m}^{n+m}|\xi(k, m, n)| h_{k} P_{k}^{\left(-\frac{1}{2}, \beta\right)}(1)\left[P_{n}^{\left(-\frac{1}{2}, \beta\right)}(1) P_{m}^{\left(-\frac{1}{2}, \beta\right)}(1)\right]^{-1}
$$

is bounded by

$$
\begin{aligned}
& m^{\frac{1}{2}-\beta} \sum_{k=n-m}^{n+m} k^{\frac{1}{2}-\beta}[(k+m-n+1)(k+n-m+1)(n+m-k+1)]^{\beta-\frac{1}{2}} \\
&=O\left(m^{\frac{1}{2}-\beta} \sum_{k=n-m}^{n+m}[(k+m-n+1)(n+m-k+1)]^{\beta-\frac{1}{2}}\right) \\
&=O\left(\sum_{k=n-m}^{n}(k+m-n+1)^{\beta-\frac{1}{2}}\right)+O\left(\sum_{k=n}^{n+m}(n+m-k+1)^{\beta-\frac{1}{2}}\right)=O(1)
\end{aligned}
$$

since $\beta<-\frac{1}{2}$. This concludes the proof of (2) for $\alpha \geqq \beta, \alpha \geqq-\frac{1}{2}$, and yields the following best possible result.

Theorem 1. Let $R_{n}{ }^{(\alpha, \beta)}(x)=P_{n}{ }^{(\alpha, \beta)}(x) / P_{n}{ }^{(\alpha, \beta)}(1)$ and

$$
R_{n}{ }^{(\alpha, \beta)}(x) R_{m}{ }^{(\alpha, \beta)}(x)=\sum_{k=|n-m|}^{n+m} \mu(k, m, n) t(k) R_{k}^{(\alpha, \beta)}(x),
$$

where

$$
\begin{aligned}
\mu(k, m, n) & =\int_{-1}^{1} R_{n}^{(\alpha, \beta)}(x) R_{m}^{(\alpha, \beta)}(x) R_{k}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x \\
\frac{1}{t(k)} & =\int_{-1}^{1}\left[R_{k}^{(\alpha, \beta)}(x)\right]^{2}(1-x)^{\alpha}(1+x)^{\beta} d x .
\end{aligned}
$$

When $\alpha \geqq \beta>-1$ and $\alpha \geqq-\frac{1}{2}$, we have

$$
\sum_{k=|n-m|}^{n+m}|\mu(k, m, n)| t(k) \leqq C,
$$

where C is independent of n and m, and if

$$
\begin{gathered}
\|a\|_{1}=\sum_{n=0}^{\infty}|a(n)| t(n)<\infty, \quad\|b\|_{1}=\sum_{n=0}^{\infty}|b(n)| t(n)<\infty, \\
(a * b)(n)=\sum_{m=0}^{\infty} \sum_{k=|n-m|}^{n+m} a(k) b(m) \mu(k, m, n) t(k) t(m),
\end{gathered}
$$

then $*$ is a commutative and associative operation and

$$
\|a * b\|_{1} \leqq C\|a\|_{1}\|b\|_{1}
$$

If $\beta>\alpha>-1$ and $\beta \geqq-\frac{1}{2}$, then we have similar results with $R_{n}{ }^{(\alpha, \beta)}(x)$ replaced by $P_{n}{ }^{(\alpha, \beta)}(x) / P_{n}{ }^{(\alpha, \beta)}(-1)$.

Using the same argument given in [6] for $\alpha \geqq \beta \geqq-\frac{1}{2}$, we see that the maximal ideal space of this Banach algebra is isomorphic to the closed interval
$[-1,1]$. For the Fourier-Gelfand transform of $a(n)$ see [4] and for results which are dual to those above see [5].
As was pointed out in [4], Theorem 1 fails for $-1<\alpha, \beta<-\frac{1}{2}$. However, there is still a Banach algebra which can be defined for these values of α and β. Let $c>1$ be a fixed real number and set

$$
\gamma(k ; m, n)=\frac{\xi(k, m, n) P_{k}^{(\alpha, \beta)}(c)}{P_{n}^{(\alpha, \beta)}(c) P_{m}^{(\alpha, \beta)}(c)} .
$$

Then we will show that

$$
\sum_{k=|n-m|}^{n+m}|\gamma(k ; m, n)| h_{k} \leqq A
$$

for a constant A independent of n and m. Using

$$
\begin{aligned}
P_{n}^{(\alpha, \beta)}(c) \cong(c-1)^{-\alpha / 2}(c+1)^{-\beta / 2}\left[(c+1)^{\frac{1}{2}}+(c-1)^{\frac{1}{2}}\right]^{\alpha+\beta} \\
\cdot(2 \pi n)^{-\frac{1}{2}}\left(c^{2}-1\right)^{-\frac{1}{2}}\left[c+\left(c^{2}-1\right)^{\frac{1}{2}}\right]^{n+\frac{1}{2}}
\end{aligned}
$$

[7, (8.21.9)], and $\left|P_{n}{ }^{(\alpha, \beta)}(x)\right|=O\left(n^{-\frac{1}{2}}\right)$, i.e. (7), we find from (1) that

$$
\gamma(k ; m, n)=O\left(k^{-1} d^{k-n-m}\right), \quad d=c+\left(c^{2}-1\right)^{\frac{1}{2}}>1 ;
$$

and thus

$$
\sum_{k=|n-m|}^{n+m}|\gamma(k ; m, n)| h_{k}=O\left(\sum_{k=|n-m|}^{n+m} d^{k-n-m}\right)=O(1) .
$$

In a standard fashion this leads to the following theorem.
Theorem 2. Let $-1<\alpha, \beta<-\frac{1}{2}$ and define $\|a\|_{1}=\sum_{n=0}^{\infty}|a(n)| h_{n}$. If $\|a\|_{1}<\infty,\|b\|_{1}<\infty$, and

$$
(a \# b)(n)=\sum_{m=0}^{\infty} \sum_{k=|n-m|}^{n+m} a(k) b(m) \gamma(n ; m, k) h_{k} h_{m},
$$

then \# is a commutative and associative operation and

$$
\|a \# b\|_{1} \leqq A\|a\|_{1}\|b\|_{1} .
$$

Also if

$$
\begin{align*}
& f(x)=\sum a(n) h_{n} P_{n}{ }^{(\alpha, \beta)}(x) / P_{n}{ }^{(\alpha, \beta)}(c), \tag{11}\\
& g(x)=\sum b(n) h_{n} P_{n}^{(\alpha, \beta)}(x) / P_{n}^{(\alpha, \beta)}(c), \\
& h(x)=\sum(a \# b)(n) h_{n} P_{n}{ }^{(\alpha, \beta)}(x) / P_{n}{ }^{(\alpha, \beta)}(c),
\end{align*}
$$

then

$$
h(x)=f(x) g(x)
$$

Following the argument in [6] we see that the Fourier-Gelfand transform of $a(n)$ is given by (11) and the maximal ideal space is isomorphic to the set of complex z for which

$$
\left|z+\left(z^{2}-1\right)^{\frac{1}{2}}\right| \leqq c+\left(c^{2}-1\right)^{\frac{1}{2}},
$$

where $\left(z^{2}-1\right)^{\frac{1}{2}}$ is chosen so that $\left|z+\left(z^{2}-1\right)^{\frac{1}{2}}\right| \geqq 1$. This is an ellipse with foci at ± 1 and the ends of its major axis at $z= \pm c$.

References

1. R. Askey, Linearization of the product of orthogonal polynomials, pp. 223-228 in Problems in analysis (Princeton Univ. Press, Princeton, N.J., 1970).
2. R. Askey and S. Wainger, A dual convolution structure for Jacobi polynomials, pp. 25-36 in Orthogonal expansions and their continuous analogues, Proc. Conference, Edwardsville, Illinois, 1967 (Southern Illinois Univ. Press, Carbondale, Illinois, 1968).
3. G. Gasper, Linearization of the product of Jacobi polynomials. I, Can. J. Math. 22 (1970), 171-175.
4. Linearization of the product of Jacobi polynomials. II, Can. J. Math. 22 (1970), 582-593.
5. Positivity and the convolution structure for Jacobi series, Ann. of Math. (to appear).
6. S. Igari and Y. Uno, Banach algebra related to the Jacobi polynomials, Tôhoku Math. J. 21 (1969), 668-673.
7. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23 (Amer. Math. Soc., Providence, R.I., 1967).

Mathematics Centre,
Amsterdam, The Netherlands;
University of Wisconsin,
Madison, Wisconsin;
University of Toronto,
Toronto, Ontario

[^0]: Received July 10, 1970. The research of the first author was supported in part by a fellowship from the John Simon Guggenheim Memorial Foundation, in part by the Office of Naval Research under Contract N00014-67A-0128-0012, and in part by the Mathematisch Centrum, Amsterdam. The research of the second author was partially supported by the National Research Council of Canada under Grant No. A-4048.

