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LINEARIZATION OF THE PRODUCT OF 
JACOBI POLYNOMIALS. Ill 

RICHARD ASKEY AND GEORGE GASPER 

In a series of papers [1; 2; 3; 4] the operation of linearizing the product of 
two Jacobi polynomials Pn

(-a^)(x)1 a, 0 > — 1 , has been investigated and the 
existence of a natural Banach algebra associated with the linearization 
coefficients has been proven. This was proven for a + 13 + 1 ^ 0 in [3] and 
for a slightly larger region in [4]. It was shown in [4] that such a Banach 
algebra does not exist for — 1 < a, £ < — | . The method used in [1 ; 3; 4] was 
to prove the non-negativity of the expansion coefficients from which the 
existence of the Banach algebra easily follows. However, as shown in [4], the 
coefficients for a subset of« ^ — J, a + /3 + 1 < 0 can be negative infinitely 
often and so a different method must be used for these values of a and 0. We 
now complete the study of the existence of these Banach algebras by con
sidering the remaining cases. For a > — \ we will show that methods related 
to those in [2] can be used, and for a = — \ an explicit formula will be given 
for the coefficients, and estimates of this formula will be used to prove the 
existence of the Banach algebra. For — 1 < a, j3 < — | there is a weaker 
Banach algebra which is easy to obtain (Theorem 2). However, this weaker 
Banach algebra suffers from the defect of having a maximal ideal space which 
is larger than the maximal ideal space of the Banach algebras associated with 
Jacobi polynomials for a ^ — J. 

We start with the standard type of Banach algebra. For a, /3 > — 1 , the 
Jacobi polynomial Pn

ia^){x) may be defined by 

(i _ x)«(i + xyPn^\x) = ^^f£i [(i - xf+a{\ + xr+fi] 

[7, (4.3.1)]. These polynomials are orthogonal on [—1, 1] and 

f Pn^\x)Pm
Ca-n(x)(l - x)a(l +xfdx = 5if, 

where 

(ajn (2« + a + fl + l)T(n + a + j8 + l ) r ( » + 1) 
" n 2a+e+1r(n + a+l)r(n +0+1) 
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[7, (4.3.3)]. Then with £(jfe, m, n) denned by 

(1) f (jfe, m, n) = J 1 _ 1 P^^ (x )P w («^>(x )P^^ (x ) (1 - *)«(1 + * ) ' dx, 

we have 

As in [2; 4], in order to establish the existence of the Banach algebras for 
a ^ (3, it suffices to show, for n ^ m ^ 1, that 

n+m 

(2) z ^.«.^lA^-^aj^cp.^wp.^a), 
k=n—m 

where C = C(a,/3) is independent of n and m. 
For a ^ /3 ^ - i (2) was proven in [2] and for a ^ 0, a + 0 + 1 ^ 0 in [3]. 
Also the results in [4] showed that (2) fails for a < — J and for a < f$. Thus, 
in proving (2) for the remaining (a, ft) we may assume that a > / 3 , 0 > a : § : — J, 
— J > 0 > — 1» since this set contains a > (3 > — 1, a ^ — §, a + /3 + 1 < 0. 

From [7, (4.1.1)] and Stirling's formula, it follows that 

(3) P r e <^(l ) = (W + a ) ~ W " 

and Afcte'fl ^ &. Therefore to prove (2) it is sufficient to prove that 

n+m I /*1 

k—n—m !« /— 1 
^ c, 

ff ^ W ^ 1 , 

where, as elsewhere, when & = 0 it is assumed that &a is replaced by 
(k + l ) a = 1. For a > — \ the proof given in [2] works if we only consider JJ. 
This is true since the behaviour of Pn

{a>p)(x) for 0 ^ x ^ 1 and a ^ — \ is 
almost completely controlled by the value of a. Thus for a > - J we may 
restrict ourselves to proving (4) with JLi replaced by j°-i. The case a = — \ 
will be handled later. 

Using Pn^^{ — x) = (—l)wPn
(^'a)(x) and letting x = cos 0, we see that 

we must estimate 

n+m I / W 2 

] £ k1+am-°nra \ \ Pf-a} (cos 6)Pm
w-a) (cosd) 

k=n—m ' «^ 0 

• P / ' a ) ( c o s 0) (sin |0) w ( c o s J0)2a+1 d0 

We will use the following properties of Pw
(/3,a)(cos 0). 

(5) |Pn<*">(cos 0)| ^ 4»^, 0 ^ 0 ^ w-1, 

(6) |P„^^(cos 0)| ^ 4 » - * r*-*, rrl ^6 ^ TT/2, 

(7) |Pw^a>(cos 0)| ^ 4»-*, 0 ^ 0 ^ TT/2. 
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These inequalities follow from [7, p. 169] since P < — %. 
If m < n/2, then k ~ n and using (5) and (7) we have the estimate 

n+m nVn 

£ k1+am-anra nfkfm-io**1 dd = 0{rCxmh-a) = 0(f»-*-") = 0(1) 
k=n-m J 0 

since a > — \. If n/2 ^ m ^ n, then we use (5) and (7) again to obtain 

n+m s*l/n 

£ k1+am-atra nBk-^mBew+1dd = 0(rr^m?-a+1) = 0 ( ( m A O s - a + V ^ a ) . 
k=n—m *J 0 

This term is bounded since the restrictions a < 0 and /3 > — 1 imply that 
(3 — a + 1 > 0. Next we integrate from \/n to 1/m and use (5), (6), and (7) 
to obtain 

n+m s*l/m 

£ k1+am-afTa rrhmBk-¥+hdd = 0{m~l-a) = 0(1) . 
Jc=^n—m *J 1/n 

We next integrate from \/m to 1/k and use (5) and (6) to obtain 

n+m /»!/& 

2 £1+aw~ara"a tT'm-'tfde = OOn*-"»"-*) = O((m/n)i-an0-a) = 0(1) . 
k=n—m *J 1/m 

Observe that we only needed to estimate this integral if k < m. We are then 
left with 

n+m /»TT/2 

(8) É k^nTn-" P„0-a\cose) 
k=ti—m * 'max( l / r a , l / f t ) 

• Pm
W'a\cos 0)P/ ' a ) (cos 6) (sin ^)25+1(cos |0) 2 a + 1 <». 

Now we apply an asymptotic formula for Pw
(^*a)(cos 0). It suffices to use 

(9) (sin \ey+x* (cos \ey^ pn<*-> (cos e) 
= (irn)-1* cos(N6 + 7) + Ofa-**"1), 1/n ^ 6 ^ TT/2, 

[7, Theorem 8.21.13] where iV = n + (a + /3 + 1 ) / 2 and 7 = - (0 + 1/2)TT/2. 

Using (9) in (8) leads to the estimation of 

n+m /»TT/2 

£ r**»*^-*»—* cos(iw + 7) 
k^n—m *Jmax(l/m,l/k) 

• cos (ikf0 + 7) cos(A~0 + 7) (sin ^)"^"*(cos hS)~a~h dd 

n+m p~/2 

+ £ ka+im-a-in-a-i d-^lm-1 + k'1] dd. 
k=n—m «^ m a x ( l / m , l / £ ) 

The error terms are bounded by 

n+m 

£ iT,-W~-*»-a-*[»r1 + r 1 ] = 0(w-a-è) = 0(1). 
k—n—m 
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Since 0 < — J, (sin \6)~^ (cos \6)-a-* = g(6) is a bounded function of 
bounded variation for 0 ^ 6 ^ 7r/2. The boundedness allows us to consider 
jl/2 (the same argument as for the error terms) and the bounded variation 
allows us to conclude that 

JQ ' cos(iV0 + T) COS (MO + T) cos CO + y)g(6) dd = 0 (yf^J^^T^) • 

This leads to the estimate 

n+m I n-Ym \ 

£ ka+hm-a-hn-"-h\N ±M±K\~1 = 0 ( « — * £ \N ± M ± A'p1 ) 
k=n-m \ k=n—m ' 

= O(m~a~èlogm) = 0(1), 

which completes the proof of (2) for a > — \, a ^ 0. 
For the remaining case a = — \, — 1 < / 3 < —J, we use the following 

formula of Dougall which is given in [7, p. 390, Problem 84] for ultraspherical 
polynomials Pre

(X) (x). 

(10) f Pk
(X) (x)Pm

w (x)Pn
w (x) (1 - x2)x-^ dx 

ats-k<Xs 

for X > — | , X ̂ 0 , provided that k -\- m -\- n = 2s is even and a triangle 
with sides k, m, n exists, i.e., \n — m\ 5= k ^ n + m. Here 

= /& + x - i \ = 00*= rflfe + x) 
a* V k J k\ Y{k + i)r(x) " 

Using (1), (3), (10),P,<M(1) = (2X)»/»!, and 

P2„
(X)(x) = P2a

(tt'a)(x) = P„(°'- i)(2x2 - 1) 

s K P „ ( - ^ ) ( l - 2 x 2 ) 

P ^ - i ' C l ) 

(see [7, pp. 59, 81]) we obtain, for a = — | , 

= ( - D " " „(a;-è),^ , x = « + §, 

t r t m ^ = A(0)(-lT+m+k(2n)l(2m)l(2k)\T(n + g + 1) 
U ' ' ' r (2» + 2/3 + l)T(2m + 2/3 + l )r (2* + 2/3 + 1)»! 

_ Vim + j3 + l)r(fe + /3 + l)r(fe + m-n + 0+h) 
m\k\(k -\- m — n)\ 

T(k + « - m + /3 + |)T(w + w - fe + )3 + | )r(w + m + fe + 2/3 + 1) 

(* + w - m)!(w + w - fc)!r(w + m + £ + /3 + f) 
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where A (3) is independent of k, m, n. Then using T(n + a)/T(n + b) ~ na~b 

it is easy to see that 

n+m 

k=n—m 

is bounded by 

n+m 

m*"" Y, kh~\(k + m - n + l)(k + n - m + 1)(« + m - k + 1 ) ] M 

k=n—m 

/ n+m \ 

= oim^ E [(* + »» ~ »+ l)(» + « - * + 1)]M) 
\ k=n—m / 

/ n \ / w+w \ 

= o( X (£ + m-w + i)M) + ol E (» + « - * + i)M) = o(i) 
\k=n—m ' \ A;=n / 

since /3 < — | . This concludes the proof of (2) for a ^ /3, a ^ — | , and yields 
the following best possible result. 

THEOREM 1. LetRn^^{%) = Pn<«'«(*)/P/«'»(1) and 

RfJ»{x)Rff"
n(?c) = E ^k,m,n)t{k)R^\x), 

k=\n—m\ 

where 

n(k,m,n) = J_ i? r e
( Q^(x)i?Ja^(x)i?A

( a^(x)(l - *)«(1 + *)"d*, 

ITOen a ^ /3 > — 1 and a ^ — J, ^£ &azJe 2> 

Y, \jJL(k,ni,n)\t(k) g C, 

where C is independent of n and m, and if 

CO CO 

IWIi = E Hn)\t(n) < oo, ||6||x = E |6(»)|*(») < oo, 
r*=0 n=0 

co w+w 

(a*b)(n) = Y X) a(k)b(m)fjL(ktm,n)t(k)t(m), 
m—0 k=\n—m\ 

then * is a commutative and associative operation and 

| | a * 6 | | i ^ C | | « l l i l H | i . 

If 13 > a > — 1 and /3 ^ — | , ^ew ^e &aẑ  similar results with Rn
(a'^(x) 

replaced by Pn<«-# (x)/Pn<°-® ( - 1 ) . 

Using the same argument given in [6] for a ^ £ ^ — | , we see that the 
maximal ideal space of this Banach algebra is isomorphic to the closed interval 
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y(k;mtn) = ^M) ( . 

[—1, 1]. For the Fourier-Gelfand transform of a(n) see [4] and for results 
which are dual to those above see [5]. 

As was pointed out in [4], Theorem 1 fails for — 1 < a, /3 < —J. However, 
there is still a Banach algebra which can be defined for these values of a and fi. 
Let c > 1 be a fixed real number and set 

j{k,m,n)P^\c) 

Then wre will show that 
n+m 

J^ \y(k;w,n)\hkS A 
k=\n—m\ 

for a constant A independent of n and m. Using 

P„ ( a^(c) 9Ë (c - l)~a/2 (c + l ) -^ / 2 [(c + 1)* + (c - 1 ) * ] ^ 
• (2im)-* (c2 - l ) - i [c + (c2 - 1 )*]»+* 

[7, (8.21.9)], and |Pn<a'0(x)| = 0(»"*), i.e. (7), we find from (1) that 

y(k; m, n) = 0{k~Hk-n-m), d = c + (c2 - 1)* > 1; 

and thus 
n+m / n+m \ 

£ | 7 (*;«,») |A» = 0 ( Z d"-n-m) = 0(1). 

In a standard fashion this leads to the following theorem. 

THEOREM 2. Let — 1 < a,/3 < —\ and define \\a\\i = ^n=o\a(n)\hn. 
If \\a\\i <oo , ||6||i <oo , and 

oo n+m 

(a#b)(n) = S X a(k)b(m)y(n;m,k)hkhm, 
m=-0 A;=]n—m| 

#&ew # is a commutative and associative operation and 

| | a # 6 | | 1 ^ 4 | | a | | i | | ô | | 1 . 

(H) / (*) = E « W A, P» (" '»(*)/P, (-«(c), 

g(x) = E i ( « ) * . P . ( " B W / i ' . ( , * W 1 

A(«) = Z (a # b) (n)hn PJ*-n ( x ) / P > « (c), 
then 

h(x) = f(x) g(x). 

Following the argument in [6] we see that the Fourier-Gelfand transform 
of a(n) is given by (11) and the maximal ideal space is isomorphic to the set 
of complex z for which 

\z + (z2 - 1)*| 5i c + (c2 - 1)*, 

where (z2 — 1)~* is chosen so that \z + (z2 — 1)*| ^ 1. This is an ellipse with 
foci at ± 1 and the ends of its major axis at z = ± c . 
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