
K.-I. Watanabe and K.-I. Yoshida
Nagoya Math. J.
Vol. 162 (2001), 87–110

HILBERT-KUNZ MULTIPLICITY OF

TWO-DIMENSIONAL LOCAL RINGS

KEI-ICHI WATANABE and KEN-ICHI YOSHIDA

Abstract. We study the behavior of Hilbert-Kunz multiplicity for powers of an
ideal, especially the case of stable ideals and ideals in local rings of dimension
2. We can characterize regular local rings by certain equality between Hilbert-
Kunz multiplicity and usual multiplicity.

We show that rings with “minimal” Hilbert-Kunz multiplicity relative to
usual multiplicity are “Veronese subrings” in dimension 2.

Introduction

Throughout this paper, let (A, m, k) be a commutative Noetherian

local ring of characteristic p > 0 with dimension d := dim A ≥ 1. For an

A-module M , the minimal number of generators, the multiplicity and the

length of M is denoted by µA(M), eA(M) and lA(M), respectively.

Now let I be an m-primary ideal of A and M a finite A-module. Then

there exists a positive real constant c such that

lA(M/I [q]M) = cqd + o(qd) for all large q = pe,

where I [q] = (aq | a ∈ I)A. We define

eHK(I,M) := lim
e→∞

lA(M/I [q]M)

qd
, where q = pe.

and we call eHK(I,M) the Hilbert-Kunz multiplicity of M with respect to

I. In particular, we write as eHK(I) := eHK(I,A) and eHK(A) := eHK(m);

see [Mo] for details. Moreover, since Hilbert-Kunz multiplicity does not

change under base field extension, we may assume that A/m is infinite

unless specified.

The notion of Hilbert-Kunz multiplicity has been introduced by [Ku1]

in 1969, and has been studied in detail by Monsky [Mo]. Moreover, in recent
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years, Hochster and Huneke [HH] have pointed out that the tight closure I∗

of I is the unique largest ideal containing I having the same Hilbert-Kunz

multiplicity as I; see also Lemma 1.6.

On the other hand, it is well-known that the integral closure I of I is

the unique largest ideal containing I having the same usual multiplicity as

I; see [Re1]. Since I ⊆ I∗ ⊆ I for any ideal I, the Hilbert-Kunz multiplicity

gives us more information than the usual one. For example, for a Cohen-

Macaulay local ring A with e(A) = 2, it is weakly F-regular (resp. not

F-regular) if and only if eHK(A) < 2 (resp. eHK(A) = 2). Therefore the

Hilbert-Kunz multiplicity seems to be important to study the singularities

of local rings of positive characteristic.

The study of Hilbert-Kunz multiplicity attracted recently the attention

of many researchers, see e.g. [BC], [BCP], [Co], [HM], [Se1], [Se2] and [WY].

The goal of this paper is the investigation of the structure of rings (or

singularities) via the study of the behavior of Hilbert-Kunz multiplicity of

powers of an ideal.

Our first result is the following theorem, which is a generalization of

the fundamental Lemma 1.2.

Theorem 1.1. For any m-primary ideal I of A and for any positive

integer n, we have the following inequalities:

e(In)

d !
≤ eHK(In) ≤

(n+d−1
d

)

nd
e(In),

where e(I) denotes the usual multiplicity of I. In particular,

lim
n→∞

eHK(In)

e(In)
=

1

d !
.

In [WY], the authors noticed that the following conjecture is funda-

mental for the study of Hilbert-Kunz multiplicity.

Conjecture 1. Let I be an m-primary ideal of A.

(1) eHK(I) ≥ lA(A/I∗), where I∗ denotes the tight closure of I.

(2) If A is Cohen-Macaulay, then eHK(I) ≥ lA(A/I).

For example, if A is a regular local ring then eHK(I) = l(A/I) for any

m-primary ideal I of A. Moreover, it is well-known that (2) in Conjecture
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1 is valid if A is a complete intersection; see [Du]. See also [WY] in detail.

However, they seem to be open even if A is a two-dimensional Cohen-

Macaulay local ring.

On the other hand, the authors [WY] have seen that an unmixed local

ring A with eHK(A) = 1 is regular. So as special case of Conjecture 1, we

consider the following one.

Conjecture 2. Suppose that A is Cohen-Macaulay. Then

(1) eHK(mn) ≥ lA(A/m
n) for all n ≥ 1.

(2) If eHK(mn) = lA(A/m
n) for some n ≥ 1, then A is regular.

The first aim of this paper is to prove that Conjecture 2 is true in case

of two-dimensional local rings. In Theorem 2.5, we will show

eHK(mn) ≥
e(A)

2
n2 +

n

2
≥ lA(A/m

n)

for all n ≥ 1. This yields that Conjecture 2 is true in case of two-dimensional

local rings.

In general, since the values of eHK(A) have more variety compared

to the usual multiplicity, sometimes eHK(A) “determines” the ring almost

uniquely. For instance, as described before, eHK(A) = 1 characterizes that

A is regular. Therefore the following question has naturally occurred in the

study of lower bounds for Hilbert-Kunz multiplicity.

Question 3. Let A be a two-dimensional Cohen-Macaulay local ring.

When does the equality eHK(mn) = e(A)
2 n2 + n

2 hold for each n ≥ 1 ?

The second purpose of this paper is to give a complete answer to this

question. It turns out that the ring A which satisfies this condition is almost

uniquely determined for each multiplicity. Namely, in Section 3, we show

the following.

Theorem 3.1. (See also Theorem 2.5.) Let A be a Cohen-Macaulay

local ring of characteristic p > 0 and with dim A = 2. Put e = e(A).

Assume that k = A/m is algebraically closed. Then the following conditions

are equivalent.

(1) eHK(A) = e+1
2 .

(2) eHK(mn) = e
2 n2 + n

2 for all (some) n ≥ 1.
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(3) G := gr
m
(A) ∼= (k[X, Y ])(e), where G is the associated graded ring

with respect to the maximal ideal and (k[X, Y ])(e) is the subring of

k[X, Y ] generated by all forms of degree e.

Now let us explain the organization of this paper. In Section 1, we will

give an upper bound for eHK(In) in terms of eHK(I) for any m-primary

ideal I of a local ring A with arbitrary dimension. Namely, we prove the

following

eHK(In) ≤ e(I)

(
n + d − 2

d

)
+ eHK(I)

(
n + d − 2

d − 1

)
.

We also show that if I is stable then equality holds in the above equation.

As a consequence, one can also see that the Conjecture 2 is true in case of

Cohen-Macaulay local rings with minimal multiplicity (in any dimension);

see Corollary 1.10.

From Section 2 to the end of this paper, we direct our attention to

two-dimensional Cohen-Macaulay local rings.

In Section 2, we give a lower bound for eHK(mn) using Lemma 2.1; see

Theorem 2.5. Using this, we will show that Conjecture 2 is true in case of

two-dimensional local rings.

Section 3 is devoted to proving Theorem 3.1. In our proof we prove a

theorem on Cohen-Macaulay homogeneous algebra with minimal multiplic-

ity (degree) over an algebraically closed field, which may be of some interest

itself (cf. Proposition 3.2). In fact, we will show that if gr
m

(A) is not an

integral domain then eHK(A) > (e(A) + 1)/2.

In Section 4, we present several examples of Hilbert-Kunz multiplicities

of stable ideals.

§1. Asymptotic behavior of Hilbert-Kunz multiplicity

The following theorem shows the relationship between eHK(In) and

e(In) and their asymptotic behavior.

Theorem 1.1. For any m-primary ideal I of A and for any positive

integer n, we have the following inequalities:

e(In)

d !
≤ eHK(In) ≤

(n+d−1
d

)

nd
e(In),(1.1)

where e(I) denotes the usual multiplicity of I. In particular,

lim
n→∞

eHK(In)

e(In)
=

1

d !
.(1.2)
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Proof. The inequality of the left-hand side follows from the following

lemma, which gives a relationship between the Hilbert-Kunz multiplicity

and the usual one.

Lemma 1.2. (cf. [Hu2, Lemma 6.1]) For any m-primary ideal I of A,

we have
e(I)

d!
≤ eHK(I) ≤ e(I).

We notice that the second statement of the theorem follows from the

first one and from limn→∞

(n+d−1
d

)
/nd = 1/d !. Thus in order to com-

plete the proof, it suffices to prove the inequality of the right-hand side

in Eq.(1.1).

Let J be a minimal reduction of I, that is, J is a parameter ideal of A

which is contained in I such that Im+1 = JIm for some non-negative integer

m. Then since In is integral over Jn, we have e(In) = e(Jn) = nd · e(J).

Moreover, since Jn ⊆ In for all n, we have eHK(Jn) ≥ eHK(In). Thus the

proof of the inequality Eq.(1.1) can be reduced to the following lemma.

Lemma 1.3. For any parameter ideal J of A and for any positive

integer n, we have

eHK(Jn) =

(
n + d − 1

d

)
e(J).

In particular, if A is Cohen-Macaulay, then eHK(Jn) = lA(A/Jn) for all

n ≥ 1.

Proof. We may assume that A is complete. Take a system of parameters

a = a1, . . . , ad which is a minimal basis of J . Further, let K be a coefficient

field of A and put B := K[[a1, a2, . . . , ad]]. Then B is a subring of A

and is a complete regular local ring with the unique maximal ideal n =

(a1, a2, . . . , ad)B. Moreover, A is a module-finite extension of B and [Q(A) :

Q(B)] = e(J). Thus [WY, Theorem 2.7] yields that

eHK(Jn) = eHK(nn, B)e(J) = l(B/n
n)e(J) =

(
n + d − 1

d

)
e(J).

Corollary 1.4. For any m-primary ideal I of A, we have

eHK(In) =
e(I)

d !
nd + o(nd).
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From now on, we will give an upper bound for eHK(In) in terms of

eHK(I) for any m-primary ideal I in any Cohen-Macaulay local ring. Before

doing that, we recall the notion of tight closure, weakly F-regular etc., which

were introduced by Hochster and Huneke; see also [HH], [Hu2].

Definition 1.5. ([HH]) Let I be an ideal of A. An element x ∈ A

is said to be in the tight closure of I if there exists an element c ∈ A \⋃
P∈Min(A) P such that for all large q = pe, cxq ∈ I [q]. The tight closure of

I is denoted by I∗. Notice that I ⊆ I∗ ⊆ I , where I denotes the integral

closure of I.

A local ring A in which every ideal (resp. every parameter ideal) is

tightly closed (i.e. I∗ = I) is called weakly F-regular (resp. F-rational).

Any F-rational local ring is normal and if, in addition, it is a homomor-

phic image of a Cohen-Macaulay local ring then it is itself Cohen-Macaulay;

see e.g. [Hu2]. Moreover, A is F-rational if and only if q
∗ = q for some pa-

rameter ideal q of A. See [FW], [HH] and [Hu2] for more details.

As described in the previous section, the notion of tight closure is im-

portant in the study of Hilbert-Kunz multiplicity. Actually, we can illustrate

it with the next lemma.

Lemma 1.6. ([HH, Theorem 8.17], [Hu2]) Let A be a local ring and let

I, J be m-primary ideals with I ⊆ J . Then

(1) If J ⊆ I∗, then eHK(I) = eHK(J).

(2) The converse of (1) is also true, provided that A is analytically unram-

ified (i.e. Â is reduced) and quasi-unmixed (i.e. Â is equi-dimensional).

Before stating our main theorem in this section, we also recall the notion

of stable ideals. Various properties of stable ideals are well-known; see e.g.

[Oo], [Hu1]. Let us summarize some of which we need later.

Proposition 1.7. (cf. [Oo, Theorem 4.3], [Hu1, Theorem 2.1]) For

any m-primary ideal I of a Cohen-Macaulay local ring A, we have

lA(A/In) ≤ e(I)

(
n + d − 2

d

)
+ lA(A/I)

(
n + d − 2

d − 1

)
.(1.3)

Furthermore, the following conditions are equivalent.

(1) I2 = JI for every minimal reduction J of I.
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(2) I2 = JI for some minimal reduction J of I.

(3) For all n ≥ 1, the following equality holds:

lA(A/In) = e(I)

(
n + d − 2

d

)
+ lA(A/I)

(
n + d − 2

d − 1

)
.

(4) e1(I) = e(I)− lA(A/I), where e1(I) is the first Hilbert coefficient of I.

An ideal I is called stable if it satisfies one of the above equivalent

conditions. In this case, the associated graded ring grI(A) := ⊕n≥0I
n/In+1

is Cohen-Macaulay.

The following, which is an analogy of Proposition 1.7 is the main the-

orem of this section and will be frequently used later.

Theorem 1.8. Let A be a Cohen-Macaulay local ring and I an m-

primary ideal in A. Put d := dimA ≥ 2. Then

(1) For any positive integer n, the following inequality holds:

eHK(In) ≤ e(I)

(
n + d − 2

d

)
+ eHK(I)

(
n + d − 2

d − 1

)
.(1.4)

(2) If I is stable, then equality holds in Eq.(1.4).

(3) Suppose that the m-adic completion Â of A is reduced. Then the fol-

lowing conditions are equivalent:

(a) There exists a parameter ideal J such that J ⊆ I ⊆ J∗.

(b) eHK(I) = e(I).

(c) eHK(In) = e(I)
(
n+d−1

d

)
.

(4) Suppose that A is weakly F-regular and Â is reduced. Then I is stable

if and only if equality holds in Eq.(1.4) for some integer n ≥ 2.

Proof. First we recall the proof of Eq.(1.3) for convenience of the

reader. Let J be a minimal reduction of I. Then since J is generated by a

maximal regular sequence, we have lA(Jn−1/Jn−1I) = lA(A/I) · µA(Jn−1).

Thus we get

lA(A/Jn−1I) = lA(A/Jn−1) + lA(Jn−1/Jn−1I)(1.5)

= e(J)

(
n + d − 2

d

)
+ lA(A/I) · µA(Jn−1)

= e(I)

(
n + d − 2

d

)
+ lA(A/I)

(
n + d − 2

d − 1

)
.
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Since J [q] is a minimal reduction of I [q] for all q = pe, utilizing Eq.(1.5),

we get

lA

(
A/(Jn−1I)[q]

)
= lA

(
A/(J [q])n−1I [q]

)

= e
(
I [q]
)(n + d − 2

d

)
+ lA(A/I [q])

(
n + d − 2

d − 1

)

= qd · e (I)

(
n + d − 2

d

)
+ lA(A/I [q])

(
n + d − 2

d − 1

)
.

Dividing this by qd and letting e tend to ∞, we obtain

eHK(Jn−1I) = e(I)

(
n + d − 2

d

)
+ eHK(I)

(
n + d − 2

d − 1

)
.(1.6)

Now we prove (1) and (2). Since In ⊇ Jn−1I, we have eHK(In) ≤
eHK(Jn−1I). Moreover, if I is stable then I2 = JI; hence In = Jn−1I for

all n ≥ 1. Thus (1) and (2) follow from Eq.(1.6).

In order to see (3) and (4), in the rest of the proof, we assume that

Â is reduced. First, (3). (a) ⇐⇒ (b) follows from Lemma 1.3 and Lemma

1.6. Moreover, since I ⊆ J∗ implies In ⊆ ((J∗)n)∗ = (Jn)∗, (a) =⇒ (c) also

follows from Lemma 1.3 and Lemma 1.6. Thus it suffices to show (c) =⇒ (b).

Suppose that eHK(In) = e(I)
(n+d−1

d

)
for some n ≥ 1 and eHK(I) < e(I).

Then by virtue of Eq.(1.4), we have

eHK(In) ≤ e(I)

(
n + d − 2

d

)
+ eHK(I)

(
n + d − 2

d − 1

)

= e(I)

(
n + d − 1

d

)
− [e(I) − eHK(I)]

(
n + d − 2

d − 1

)

< e(I)

(
n + d − 1

d

)
.

This gives a contradiction. Hence we obtain (c) =⇒ (b).

In order to see (4), we further assume that A is weakly F-regular.

Suppose that equality in Eq.(1.4) holds for some m ≥ 2. Then we must

show that I is stable. We have eHK(Im) = eHK(Jm−1I) by Eq.(1.6). Since

Jm−1I ⊆ Im and A is weakly F-regular, we have Im ⊆ (Jm−1I)∗ = Jm−1I.

Then In = Jn−1I for all n ≥ m. For such an integer n, we have by Eq.(1.5),

lA(A/In) = lA(A/Jn−1I)(1.7)

= e(I)

(
n + d − 2

d

)
+ lA(A/I) ·

(
n + d − 2

d − 1

)
.
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On the other hand, since lA(A/In) = PI(n) for large enough n, where PI(n)

denotes the Hilbert-Polynomial of I, we may assume that lA(A/In) = PI(n)

for all n ≥ m. In particular, for such an integer n, we have

lA(A/In) = PI(n) := e0(I)

(
n + d − 1

d

)
− e1(I)

(
n + d − 2

d − 1

)
(1.8)

+ · · · + (−1)ded(I),

where ei(I) ∈ Z is called the ith Hilbert coefficient of I for each i = 0, . . . , d.

Comparing Eq.(1.7) with Eq.(1.8), we get e1(I) = e(I) − lA(A/I). Thus I

is stable by Proposition 1.7.

The following corollary indicates the importance of “eHK(I)−lA(A/I)”.

Corollary 1.9. If I is a stable ideal of a Cohen-Macaulay local ring

A, then for all n ≥ 1, we have

eHK(In) − lA(A/In) = (eHK(I) − lA(A/I))

(
n + d − 2

d − 1

)
.

Proof. It follows from Proposition 1.7 and Theorem 1.8(2).

If A is a Cohen-Macaulay local ring, then e(A) ≥ µA(m) − d + 1. The

ring A is called a Cohen-Macaulay local ring with minimal multiplicity if

equality holds.

Using Theorem 1.8, we show that Conjecture 2 is true in case of Cohen-

Macaulay local rings with minimal multiplicity.

Corollary 1.10. Suppose that A is a Cohen-Macaulay local ring with

minimal multiplicity. Then for all n ≥ 1, we have

eHK(mn) = e(A)

(
n + d − 2

d

)
+ eHK(A)

(
n + d − 2

d − 1

)
.

In particular, eHK(mn) ≥ lA(A/m
n) for all n ≥ 1. Furthermore, the follow-

ing conditions are equivalent.

(1) A is regular.

(2) eHK(mn) = lA(A/m
n) for all n ≥ 1.

(3) eHK(mn) = lA(A/m
n) for some n ≥ 1.
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Proof. Since A is Cohen-Macaulay with minimal multiplicity, m is sta-

ble; see [Sa2]. Thus the first statement follows from Theorem 1.8(2). The

second statement follows from the first one and Proposition 1.7, because

eHK(A) ≥ 1.

In order to complete the proof, it is enough to show (3) =⇒ (1). Suppose

that (3) holds for some n ≥ 1. By virtue of Corollary 1.9, we may assume

that n = 1. Then eHK(A) = 1. Hence A is regular by [WY, Theorem 1.5].

It seems to be useful to find such an asymptotic formula as in Theorem

1.8(2), because sometimes it is easy to compute eHK(I) but not eHK(In)

directly. Moreover, in case of d ≥ 3, In is not necessarily stable in general.

Also, we notice that we need the assumption that A is weakly F-

regular in Theorem 1.8(4). For example, let A = k[[s3, s4, t]] and put

m = (s3, s4, t)A, the unique maximal ideal of A. Then m
3 = (s3, t)m2

and m
2 6= (s3, t)m; thus m is not stable. But equality holds in Eq.(1.4)

because m = (s3, t)∗.

§2. Hilbert-Kunz multiplicity and colength

In this section, let A be a two-dimensional Cohen-Macaulay local ring.

The main purpose of this section is to prove that Conjecture 2 for two-

dimensional Cohen-Macaulay local rings.

The following lemma gives a lower bound for eHK(I) in terms of the

multiplicity e(I). Although the proof of the lemma is very similar to that

of [WY, Lemma 5.5], we give a proof for convenience of the reader.

Lemma 2.1. Let A be a two-dimensional Cohen-Macaulay local ring

and I an m-primary ideal. If r ≥ µA(I) − 2, then

eHK(I) ≥
r + 2

2(r + 1)
· e(I).(2.1)

In particular, we have

eHK(I) ≥
e(I) + 1

2
.(2.2)

Proof. In the following, Ixq for x ∈ Q means In, where n is the greatest

integer which does not exceed xq. Since we are interested in the highest

power of q, difference of a fixed integer independent of q does not matter in

our argument.
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Let J be a minimal reduction of I. Since lA(A/J [q]) = e(I)q2, we want to

find the lower bound for eHK(I) by finding an upper bound for lA(I [q]/J [q]).

Let u1, . . . , ur ∈ I be generators of I/J , and let s be a rational number such

that 1 ≤ s < 2. Then we have

lA(I [q]/J [q]) ≤ lA

(
I [q] + Isq

J [q] + Isq

)
+ lA

(
J [q] + Isq

J [q]

)
=: (A1) + (A2).(2.3)

Since I [q] = J [q] + uq
1A + · · · + uq

rA and uq
i · I

(s−1)q ⊆ Isq, we have

(A1) ≤
r∑

i=1

lA

(
uq

i A + J [q] + Isq

J [q] + Isq

)
≤

r∑

i=1

lA(A/Isq : uq
i ) ≤ rlA

(
A/I(s−1)q

)
.

Moreover, since we have

lA(A/I(s−1)q) =
(s − 1)2

2
q2e(I) + o(q2)

and

(A2) =
(2 − s)2

2
q2e(I) + o(q2),

if we put s = r+2
r+1 , then we get

lA(I [q]/J [q]) ≤
e(I)q2

2

{
r(s− 1)2 +(2− s)2

}
+ o(q2) =

r

2r + 2
q2e(I)+ o(q2).

This shows the inequality (2.1).

Now we show the second statement. Since

1 + lA(m/I) + µA(I) + lA(mI/mJ) = lA(A/mJ) = e(I) + 2,

we have µA(I) = e(I) + 1 − lA(m/I) − lA(mI/mJ) ≤ e(I) + 1. If we put

r = e(I) − 1, then we obtain the desired inequality.

Since the right-hand side of Eq.(2.1) is a decreasing function of r, we

obtain the following.

Corollary 2.2. Under the same notation as in Lemma 2.1, if r ≥

µA(I) − 2 and equality eHK(I) = r+2
2(r+1) · e(I) holds, then r = µA(I) − 2.
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2.3. Mixed multiplicity. We now recall the notion of mixed multiplic-

ity. Let I, J be m-primary ideals of A. Then we put

e(I|J) :=
1

2
{e(IJ) − e(I) − e(J)}

and call it the (first) mixed multiplicity of I and J .

Let us summarize some properties of the mixed multiplicities; see e.g.

[Ve1], [Ve2].

(1) There exists some integers f, g and h such that for all large enough r

and s,

lA(A/IrJs) = e(I)

(
r

2

)
+ e(I|J)rs + e(J)

(
s

2

)
+ fr + gs + h.

(2) There exists a parameter ideal (a, b) such that a ∈ I, b ∈ J and

aJ + bI is a reduction of IJ . Such a parameter ideal (a, b) is called a

joint reduction of (I, J).

(3) If (a, b) is a joint reduction of (I, J), then e(I|J) = e(a, b).

(4) If I ′ (resp. J ′) is a reduction of I (resp. J), then e(I ′|J ′) = e(I|J).

It seems that the following lemma is well-known. Actually, (1) follows

from [Sa1, Theorem 1.2]. However, as for (2), we cannot find the suitable

literature. So we give a proof for the sake of completeness.

Lemma 2.4. Let A be a two-dimensional Cohen-Macaulay local ring

with multiplicity e := e(A). Then

(1) For all n ≥ 1, µA(mn) ≤ ne + 1.

(2) The following conditions are equivalent.

(a) A has minimal multiplicity, that is, µA(m) = e + 1.

(b) µA(mn) = ne + 1 for all n ≥ 1.

(c) µA(mn) = ne + 1 for some n ≥ 1.

Proof. First we prove (1). Let (a, b) be a minimal reduction of m. Notice

that (an, b) gives a joint reduction of (mn,m). In fact, let r be a positive
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integer such that m
r+1 = (a, b)mr. Then (mn+1)r = (an

m+ bmn)(mn+1)r−1.

By [Ve1, Lemma 3.1], we have

ne = e(m |mn) ≥ lA(A/mm
n) − lA(A/m

n) − lA(A/m) = µA(mn) − 1(2.4)

for any positive integer n. Moreover, equality holds in Eq.(2.4) if and only

if m
n+1 = an

m + bmn; see [Ve1, Theorem 3.2].

(2) To see (a)=⇒(b), it is enough to show that m
k+1 = ak

m + bmk for

all k ≥ 1. But it follows easily from m
2 = (a, b)m by induction on k ≥ 1.

Thus in order to complete the proof of this lemma, it suffices to show only

(c)=⇒(a).

Suppose µA(mn) = ne + 1 for some integer n ≥ 1. Then m
n+1 =

an
m+bmn. When n = 1, clearly m is stable; thus A has minimal multiplicity

by [Sa2]. So we suppose n > 1 and m
2 6= (a, b)m. Then for z ∈ m

2 \ (a, b)m,

since an−1z ∈ m
n+1, we can write an−1z = anx + by for some x ∈ m

and y ∈ m
n; hence an−1(z − ax) = by. Since an−1, b is an A-sequence,

we can write z − ax = bs, y = an−1s for some s ∈ A. As elements a, b

are analytically independent, we obtain s ∈ m. However, this implies that

z = ax + bs ∈ (a, b)m; this is a contradiction.

The following theorem is the main result in this section.

Theorem 2.5. Let A be a two-dimensional Cohen-Macaulay local ring

with multiplicity e := e(A). Then

(1) For all n ≥ 1, we have

eHK(mn) ≥
e

2
n2 +

n

2
≥ lA(A/m

n).(2.5)

(2) The following conditions are equivalent :

(a) eHK(A) = e+1
2 .

(b) eHK(mn) = e
2 n2 + n

2 holds for all n ≥ 1.

(c) eHK(mn) = e
2 n2 + n

2 holds for some n ≥ 1.

(3) The following conditions are equivalent :

(a) A is regular.

(b) eHK(A) = 1.

(c) eHK(mn) = lA(A/m
n) for all n ≥ 1.
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(d) eHK(mn) = lA(A/m
n) for some n ≥ 1.

(e) lA(A/m
n) = e

2 n2 + n
2 for all n ≥ 1.

(f) lA(A/m
n) = e

2 n2 + n
2 for some n ≥ 1.

Remark 1. According to Theorem 1.8, for all n ≥ 1, we have

eHK(mn) ≤
e

2
n2 +

(
eHK(A) −

e

2

)
n.

Proof of Theorem 2.5. First, we prove the inequality of the left-hand

side of Eq.(2.5). By Lemma 2.4, we have µA(mn) ≤ ne + 1 for all n ≥ 1.

Putting r = ne − 1 in Lemma 2.1, we obtain

eHK(mn) ≥
ne − 1 + 2

2ne
· e(mn) =

(
1

2
+

1

2ne

)
n2e =

e

2
n2 +

n

2
.

Next, we check the inequality of the right-hand side. By Proposition 1.7,

we get

e

2
n2 +

n

2
= e

(
n

2

)
− 1 · n +

e − 1

2
n(2.6)

≥ lA(A/m
n) +

e − 1

2
n ≥ lA(A/m

n).

We now prove (2). Suppose that eHK(mn) = e
2 n2 + n

2 for some n ≥ 1.

Then µA(mn) = ne + 1 by Corollary 2.2. This implies that A has minimal

multiplicity by Lemma 2.4. Thus in the proof of (2), we may assume that

A has minimal multiplicity. Then by virtue of Theorem 1.8, we have

eHK(mn) =
e

2
n2 +

(
eHK(A) −

e

2

)
n

for all n ≥ 1. The required assertion follows from the above equation.

Finally, we prove (3). (a) ⇐⇒ (b) follows [WY, Theorem 1.5]. Moreover,

(a) =⇒ (c) is well-known. (c) =⇒ (e) follows from (1). Hence it suffices to

check (f) =⇒ (a). Suppose (f). Then equality holds in Eq.(2.6). This implies

that e = 1; hence A is regular.

Remark 2. In Eq.(2.5), we cannot replace lA(A/m
n) with Pm(n), the

Hilbert-Polynomial of m; see Example 4.3.
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§3. Local rings with “minimal” Hilbert-Kunz multiplicity

Let (A, m) be a two-dimensional Cohen-Macaulay local ring. In the

previous section, we showed that

eHK(A) ≥
e(A) + 1

2
.(3.1)

In this section, we characterize the cases where we have equality in

Eq.(3.1). Surprisingly, for each multiplicity e, there is essentially only one

ring with this property; that is, Veronese subring of degree e of k[X, Y ].

Theorem 3.1. Let A be a Cohen-Macaulay local ring of characteristic

p > 0 with dim A = 2. Assume that k = A/m is algebraically closed. Then

eHK(A) = (e(A) + 1)/2, if and only if G := gr
m
(A) ∼= (k[X, Y ])(e(A)),

where G is the associated graded ring with respect to the maximal ideal and

(k[X, Y ])(e(A)) is the subring of k[X, Y ] generated by all forms of degree

e(A).

To prove the “only if” part, we use the following proposition concerning

“curves of minimal multiplicity”.

Proposition 3.2. Let R be a graded ring of dimension 2 over a field

k = R0, generated by elements of degree 1. Assume R is Cohen-Macaulay

with a(R) < 0 and multiplicity e. Then we have;

(1) Let I be a graded ideal of R of pure height 0. Then the following state-

ments are equivalent.

(a) R/I is Cohen-Macaulay.

(b) The Poincaré series of I is of the form P (I, t) = bt
(1−t)2

for some

b ∈ Z.

(c) If we put X ′ = Proj(R/I), then H0(X ′,OX′(0)) = k(= k) and

H0(X ′,OX′(n)) = 0 for all n < 0.

If these equivalent conditions are satisfied, then I is generated by

elements of degree 1 and P (R/I, t) = 1+at
(1−t)2

for some a ∈ Z.

(2) If R is not reduced, then the nilradical N of R is generated by elements

of degree 1 and N e = 0. Also, Rred is Cohen-Macaulay with a(Rred) <

0.
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(3) Assume that R is reduced. Let E be a subset of the set Min(R) of

the minimal prime ideals of R. Let I be the intersection of the prime

ideals in E and J the intersection of those in Min(R)\E. Also, assume

that Proj(R/I) and Proj(R/J) are both connected. Then there exists a

minimal system of generators {x, y1, . . . , ys, z1, . . . , zt} of R1 so that

I = (y1, . . . , ys) and J = (z1, . . . , zt).

In this case, R/(I + J) = k[x], deg(R/I) = t and deg(R/J) = s.

Also, for an integer n > 0, we have

dimk(R/(m2n + In)) = n

{
(2n − 1)e + 2

}
−

sn(n + 1)

2
.

Note that a(R) is defined by a(R) = max{n ∈ Z : [H2
m
(R)]n 6= 0} (cf.

[GW]).

We will first prove Theorem 3.1 assuming the results of Proposition 3.2.

Let J be a minimal reduction of m. If m/J is generated by r elements, then

eHK(A) ≥
r + 2

2(r + 1)
e(A).(3.2)

Recall that m/J is generated by at most e(A)− 1 elements. Hence we have

Eq.(3.1) substituting r = e(A) − 1 in Eq.(3.2).

If we have equality in Eq.(3.1) then m/J is minimally generated by

e(A) − 1 elements by Corollary 2.2. Hence m
2 = Jm and we know that

gr
m

(A) = ⊕n≥0m
n/m

n+1 is Cohen-Macaulay with a(G) < 0 ([Sa2]); see

also Proposition 1.7.

Put e = e(A). We will show that if G is not a domain, then

lA

(
m

[q] + m
(e+1)q/e

J [q] + m(e+1)q/e

)
<

e − 1

2e
q2 + o(q2)(3.3)

and then the Hilbert-Kunz multiplicity becomes strictly bigger.

Now, assume that G is not reduced. By Proposition 3.2 (2) there exists

x ∈ m \ m
2 such that ini(x)e = 0. Since xe ∈ m

e+1, we have xq ∈ m
(e+1)q/e

and thus

the left-hand side of Eq.(3.3)

≤

{
(e − 2) ·

e

2

(
e + 1

e
− 1

)2
}

q2 =
e − 2

2e
q2 + o(q2).
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Hence we have eHK(A) ≥ e+1
2 + 1

2e .

Next, if G is reduced and not an integral domain, then take a minimal

generator system {x, y1, . . . , ys, z1, . . . , zt} of m corresponding to those basis

of G1 as in Proposition 3.2(3). Further, we may assume that (x, y1 + z1)

is a minimal reduction of m. Then if we put I1 = (y1, . . . , ys) and I2 =

(z1, . . . , zt), we have I1.I2 ⊂ m
3 and yq

i I
q/2e
2 ⊂ m

(e+1)q/e and by Proposition

3.2(3), we have strict inequality in Eq.(3.1). In fact, if we put n = q/2e,

then

the left-hand side of Eq.(3.3)

≤
s∑

i=2

lA

(
m

(e+1)q/e : yq
i

)
+

t∑

i=1

lA

(
m

(e+1)q/e : zq
i

)

≤ lA(A/m
2n + In

2 ) × (s − 1) + lA(A/m
2n + In

1 ) × t

= n

{
(2n − 1)e + 2

}
(s − 1 + t) −

{
t(s − 1) + st

}
n(n + 1)

2

=
e − 1

2e
q2 −

(2s − 1)t

8e2
q2 + o(q2).

Thus we have shown that if eHK(A) = (e(A) + 1)/2, then gr
m

(A) is an

integral domain. Then it is well known that any 2-dimensional graded do-

main with minimal multiplicity is isomorphic to a Veronese subring (cf.

[EG],[EH],[Xa]).

Conversely, assume that gr
m
(A) is an integral domain. In [WY, The-

orem 2.15] we showed that eHK(gr
m

(A)) ≥ eHK(A) in general. Then (e +

1)/2 = eHK(gr
m
(A)) ≥ eHK(A) ≥ (e + 1)/2 and we have equality.

Now, we will prove Proposition 3.2. In the following proof, we write

f(t) ≥ 0 if f(t) ∈ Z[t, t−1] whose coefficients are non-negative integers.

(1) First, recall that if R is an unmixed graded ring of dimension 2, then

there is a finite overring R with depthR R ≥ 2 and R/R ∼= H1
m
(R) has finite

length. Note that if we put X = Proj(R), then R = ⊕n∈ZH0(X,OX (n)).

We always use R in this sense. Moreover, in this case, the condition (c)

means that [R/I]0 = k and [R/I]n = 0 for all n ≤ −1.

Now let I be a graded ideal of pure height 0. From the exact sequence

0 → I → R → R/I → 0(3.4)

we easily see that I is a Cohen-Macaulay R-module. Also, since H2
m
(R)

surjects to H2
m

(R/I) = H2
m
(R/I), we also have a(R/I) < 0.
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Now, let us compute the Poincaré series of each term. We will write

P (M, t) =
∑

n∈Z

dimk Mntn.

Also, since R,R/I are Cohen-Macaulay with a(R), a(R/I) < 0,

P (R, t) =
1 + (e − 1)t

(1 − t)2
and P (R/I, t) =

f(t)

(1 − t)2

with f(t) ≥ 0,deg f ≤ 1. Also, since I is also Cohen-Macaulay, P (I, t) =
g(t)

(1−t)2 , where g(t) = P (I/(x, y)I, t) ≥ 0.

Now, from Eq.(3.4), we have

P (R, t) = P (I, t) + P (R/I, t) = P (I, t) + P (R/I, t) − P ((R/I)/(R/I), t).

Hence
1 + (e − 1)t

(1 − t)2
=

g(t)

(1 − t)2
+

f(t)

(1 − t)2
− h(t),(3.5)

where h(t) ≥ 0.

If we assume the condition (a), then h(t) = 0 and we have 1+(e−1)t =

g(t)+f(t). Hence g(t) = bt and f(t) = 1+at for some non-negative integers

a, b with a + b = e − 1 and we have conditions (b), (c).

Now, assume the condition (b). Then Eq.(3.5) looks as

1 + (e − 1)t = bt + f(t) − (1 − t)2h(t)

with deg(f) ≤ 1. Now it is easy to see that the above equality is possible

only when h(t) = 0 and f(t) = 1 + (e − 1 − b)t. Thus we have conditions

(a), (c). Since the argument is the same if we start from the condition (c),

the proof of (1) is complete.

If R is not reduced, let N be the nilradical of R. Since R is Cohen-

Macaulay, H0(X,OX ) = R0 = k and hence X is connected. Since Xred is a

reduced connected curve, condition (c) holds for Xred and N is generated

by elements of degree 1 by (1).

If N is the nilradical of OX , then {N i} (i = 1, 2, . . .) is a strictly

decreasing sequence of ideals of OX . Since the degree of such ideals are

strictly decreasing, we have N e = 0 and hence N e ⊂ H0(X,N e) = 0.

Now let I, J be as in (3). Since they define reduced connected curves,

we have condition (c) of (1). Hence R/I and R/J are Cohen-Macaulay.

https://doi.org/10.1017/S0027763000007819 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007819


HILBERT-KUNZ MULTIPLICITY 105

From the exact sequence

0 → R → R/I ⊕ R/J → R/(I + J) → 0,(3.6)

we have the equality of Poincaré series (we can easily see that R/(I + J) is

Cohen-Macaulay of dimension 1 from Eq.(3.6)):

1 + (e − 1)t

(1 − t)2
=

1 + at

(1 − t)2
+

1 + bt

(1 − t)2
−

g(t)

1 − t
,

where P (R/(I + J), t) = g(t)
1−t and a, b ≥ 0 are integers. Hence g(t) = 1 and

a + b = e− 2. Hence I, J are generated respectively by b + 1, a + 1 elements

of degree 1. Since m is generated by e + 1 elements, we have the desired

conclusion.

§4. Several examples

Throughout this section, let A be a two-dimensional Cohen-Macaulay

local ring with infinite residue field. The purpose of this section is to present

several examples of Hilbert-Kunz multiplicities of stable ideals.

4.1. Rational double points

Assume e(A) = 2. Then we have eHK(A) < 2 (resp. eHK(A) = 2) if A

is F-rational (resp. not F-rational). In both cases, since m is stable, we can

apply Theorem 1.8 to the maximal ideal m. Namely, we have

eHK(mn) = n2 +

(
eHK(A) − 1

)
n for all n ≥ 1.(4.1)

Hence if A is not F-rational, eHK(mn) = n2 + n for all n ≥ 1. If A is a

complete F-rational double point and if k = A/m is algebraically closed,

then A is isomorphic to one of following rings in Example 4.1 below. Using

this fact, we can compute eHK(mn) for any Cohen-Macaulay local ring with

e(A) = 2.

Example 4.1. (cf. [WY, Sect.5]) Put A = k[[x, y, z]]/(f(x, y, z)), where

k is a field of characteristic p.

type equation char A eHK(A)

(An) f = xy + zn+1 p ≥ 2 2 − 1/(n + 1) (n ≥ 1)

(Dn) f = x2 + yz2 + yn−1 p ≥ 3 2 − 1/4(n − 2) (n ≥ 4)

(E6) f = x2 + y3 + z4 p ≥ 5 2 − 1/24

(E7) f = x2 + y3 + yz3 p ≥ 5 2 − 1/48

(E8) f = x2 + y3 + z5 p ≥ 7 2 − 1/120
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Remark 3. For the polynomial f in the list of Example 4.1, we have

gr
m
(A) ∼= k[x, y, z]/(xy + z2) ⇐⇒ f is type (A1)

gr
m
(A) ∼= k[x, y, z]/(xy) ⇐⇒ f is type (An) for some n ≥ 2

gr
m
(A) ∼= k[x, y, z]/(x2) ⇐⇒ f is either type (Dn), (E6), (E7)

or (E8)

By the similar argument as in the proof of Theorem 3.1, we can show

that if e ≥ 3 and eHK(A) < e+1
2 + 1

2(e−1) then gr
m

(A) is reduced. In general,

the converse is not true. Namely, the reducedness of gr
m

(A) does not yield

the above inequality.

Example 4.2. (cf. [WY, Sect.5]) Let A = k[[T, xT a, x−1T b, 1
x+1T c]],

where k is a field of characteristic p and 1 ≤ a ≤ b ≤ c are given integers.

Then A is a two-dimensional Cohen-Macaulay local ring with rational triple

point and is defined by the ideal I = (UV −T a+b, UW −T a+c+T aW, V W −

T cV + T bW ) in k[[T,U, V,W ]]. Then we have

eHK(A) = 3 −
a + b + c

ab + bc + ca
.

In this case, gr
m

(A) is always reduced, but eHK(A) < 9
4 if and only if

(a, b, c) = (1, 1, 1) or (1, 1, 2).

4.2. Hilbert-Polynomial

Let Pm(n) be the Hilbert Polynomial of m. Namely, Pm(n) is a rational

polynomial in n of degree d(= dimA) having leading coefficient e(A)/d!

such that Pm(n) = lA(A/m
n) for large enough n. In particular, in case of

d = 2, it has the following expression:

Pm(n) = e0

(
n + 1

2

)
− e1n + e2 =

e0

2
n2 +

( e0

2
− e1

)
n + e2,

where e0, e1, e2 ∈ Z.

If A has minimal multiplicity, then we have eHK(mn) ≥ Pm(n) for all

n ≥ 1, since Pm(n) = lA(A/m
n) for all n ≥ 1 (cf. Theorem 2.5). But this is

not true in general, as is shown in the following example.

Example 4.3. (cf. [Sa4]) Let k be any field of characteristic p > 0,

and let e ≥ 4 be an integer. Then A = k[[s, te, te+1, t2e+3, t2e+4, . . . , t3e−1]]

is a two-dimensional Cohen-Macaulay local ring with multiplicity e(A) = e

and embedding dimension emb(A) = e. Furthermore, we have
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(1) eHK(mn) =
(
n+1

2

)
e for all n ≥ 1.

(2) Pm(n) =
(
n+1

2

)
e − (2e − 3)n +

(
e−1
2

)
for all n ≥ 1.

(3) n(m) := max{n ∈ Z : Hm(n) 6= Pm(n)} = e − 3.

In particular, eHK(mn) ≥ Pm(n) if and only if n ≥ (e−1)(e−2)
2(2e−3) .

Proof. Since B := k[[s, t]] is the integral closure of A in its fraction

field, we get

eHK(mn) = eHK(mnB) = lB(B/m
nB) = lB(B/(s, te)nB) =

(n+1
2

)
e.

On the other hand, we have P
m/sA(n) = (n − 1)e − (e − 3) for all n ≥ 1 by

[Sa4, Example 4.4]. Moreover, as s is a superficial element in m, we get

Pm(n) =

(
n + 1

2

)
e − (2e − 3)n + e2.

Hence e1 = 2e− 3 = 2(e− 2) + 1. Thus we obtain that e2 =
(e−1

2

)
by [ERV,

Proposition 3.3]. This shows the assertion (2).

Moreover, by [Sa4, Corollary 5.8], we have depth gr
m
(A) = 1. Hence by

[Sa3, Proposition 3] or [Ma, Theorem 2], we have n(m) = r(m)− 2 = e− 3,

where r(m) = e − 1 follows from [Sa4, Example 4.4].

4.3. Pseudo-rational local rings

In the rest of this section, we will show that we can apply our theory

to complete ideals of pseudo-rational local rings.

We first recall the notion of pseudo-rational local rings: Let A be a

two-dimensional normal, analytically unramified local ring. Then for an m-

primary ideal I, there exists an integer n0 such that, for all n ≥ n0,

lA(A/In) = e(I)

(
n

2

)
+ f(I)n + g(I).

Definition 4.4. ([Li], [Re2]) Let A be a two-dimensional normal,

analytically unramified local ring. It is pseudo-rational if the normal genus

g(I) = 0 for every m-primary ideal I.

Remark 4. Let A be as above. For an m-primary ideal I of A, we

put X = Proj
(
⊕n≥0In

)
. Let OX be the structure sheaf of X, then g(I) =

lA(H1(X,OX )).
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Any excellent F-rational local ring is pseudo-rational. But the converse

is not true. For example, if k is a field of characteristic p = 2, then A =

k[[x, y, z]]/(x2 + y3 + z3) has a rational singularity (hence pseudo-rational),

but not F-rational.

Now, let us summarize properties of pseudo-rational local rings; see [Li],

[Re2], [Ve1] and [Ve2].

Fact 4.5. Let A be a two-dimensional pseudo-rational local ring, and

let I, J be m-primary complete (i.e. integrally closed) ideals of A. Then

(1) IJ is also complete; see [Li, Theorem 7.1].

(2) For any joint reduction (a, b) of (I, J), IJ = aJ + bI. In particular, I

is stable. See [Ve2, Proposition 3.5].

For pseudo-rational local rings (of dimension 2), we have a stronger

result than Theorem 1.8 as follows:

Proposition 4.6. Let A be a two-dimensional pseudo-rational local

ring, and let I, J be complete m-primary ideals of A. Then

eHK(IrJs) = e(I)

(
r

2

)
+ e(I|J)rs + e(J)

(
s

2

)
+ eHK(I)r + eHK(J)s

for all non-negative integers r, s with r + s ≥ 1.

Proof. By Fact 4.5(2), there exists a joint reduction (a, b) of (I, J)

such that IJ = aJ + bI. Then we have I [q]J [q] = aqJ [q] + bqI [q] for all

q = pe, e ≥ 1. Moreover, we have that both I [q] and J [q] are stable. Thus by

[Ve2, Proposition 2.9], we get

lA(A/(IrJs)[q])(4.2)

= e(I [q])

(
r

2

)
+ e(I [q] |J [q])rs + e(J [q])

(
s

2

)
+ lA(A/I [q])r + lA(A/J [q])s.

Moreover, we have

e(I [q] |J [q]) =
1

2

{
e((IJ)[q]) − e(I [q]) − e(J [q])

}

=
q2

2
{e(IJ) − e(I) − e(J)} = q2e(I|J).

Dividing the both sides in Eq.(4.2) by q2 and letting e tend to ∞, we obtain

the required formula.
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