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Abstract

We are concerned with the solution of the second kind Fredholm equation (and
eigenvalue problem) by a projection method, where the projection is either an orthogo-
nal projection on a set of piecewise polynomials or an interpolatory projection at the
Gauss points of subintervals.

We study these cases of superconvergence of the Sloan iterated solution: global
superconvergence for a smooth kernel, and superconvergence at the partition points for
a kernel of "Green's function" type. The mathematical analysis applies for the solution
of the inhomogeneous equation as well as for an eigenvector.

1. Introduction

We consider some projection methods for the solution of second kind integral
equations of the form

(Tx)(s) - zx(s) = f(s), 0 < s < 1, (1)

where T is the operator defined by

x(s)t-+ fXk(s, t)x(t) dt, 0 < s < 1.
A)

Along with (1), we consider the eigenvalue problem

(T*)(s) = X*(J), 0 < s < 1, * * 0. (2)

(1) and (2) are regarded as equations in an appropriate subspace X of the
complex Banach space L°°(0, 1) with the norm || • Ĥ ,. T is supposed to be
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440 Francoise Chatelin and Rachid Lebbar 12 J

compac t and z G p(T), the resolvent set of T, so that ( T — z)"1 is bounded with

doma in X. Let Xn be a finite dimensional subspace of X and let I I n be a

projection onto Xn. T h e n the projection method consists in approximating (1)

a n d (2) respectively by

(UnT - z)xn = UJ, xnGXn, (3)

nnr<t>n = \<t>n, o*<t>nexn, (4)
where xn (resp. £„) is the projection solution (resp. eigenvector), corresponding
to the approximation T* = HnT of T (P for projection).

Given a projection A = {f,}J| of [0, 1], t0 = 0, tn = 1, let Â n be a space 5A of
piecewise polynomials of degree < r on each subinterval A, = [/,_), /,-],
i = 1, . . . , n. We set h = max1<(<(](f( - /,_,). We shall consider two types of
projection methods:

(a) I1B is the orthogonal projection (in L2(0, 1)) on SA,
(b) !!„ is an interpolatory projection defined so that Hnx is the piecewise

polynomial of degree < r which interpolates x at r + 1 points {TJ)JZ\, on each
A,., i = 1, . . . , « .

Case (a) corresponds to a Galerkin method, and case (b) to a collocation
method at the collocation points {T/} .

If z =?£ 0 (resp. \ , ^ 0) we consider the iterated projection solution xn (resp.
eigenvector <j>n) introduced by Sloan [13], [14] and given by the formulae:

xn=-z{Txn-f), ^ = ^ - ^ n )

where xn and <$>„ are solutions of the equations

(TUn-z)xn=f, (5)

and

TUj>n = \ , ^ , (6)

corresponding to the approximation T% = TIin of T (S for Sloan). Now
Hnxn = xn and I I n ^ = <#>„, so that in case (b), the iterated solutions and the
solutions themselves agree at the collocation points.

If k a n d / are smooth enough, it is known that \\xn — xW^ = O(hr+l), while
ll*n - -*IL = O(h2r+2) for case (b) for example, provided that the {T/} are the
r + 1 Gauss points on A,, / = 1, . . . , n. The optimal rate of convergence,
relative to 5A, which is irify£SJ\x - yW^ = O(hr+l), is then overshot by
xn £ SA, when k and / are smooth. Such fast convergence is often called
superconvergence.

When k is the Green's function of an ordinary differential equation (o.d.e.) of
order p with smooth coefficients, xn is still superconvergent at the partition
points {/,}5, but not globally: the global rate of convergence is now O(hr+1+P).
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Similar results hold for <j>n. This problem is studied for the equation (1) and the
Galerkin method in Chandler's thesis [6]. The collocation method for a non
linear o.d.e. has been looked at by de Boor-Swartz (see [1] for the solution of (1),
and [2], [3] for the linear eigenvalue problem (2)), where T is the associated
differential operator. In de Boor-Swartz [4] the "essential" least squares method
(or local moment method) for an o.d.e. is also studied.

We present in this paper an analysis of the convergence rates which is a blend
of the techniques of Chandler and of de Boor-Swartz. It applies for the iterated
solution xn as well as for the iterated eigenvector <j>n (the result seems to be new
for the eigenvector in the most general case). It is. ased on a study of the error at
the point / of [0, 1] in terms of the scalar product </„ (1 — IIn)xn> (resp.
<//, (1 — n,,)4>n» where /, (resp. //) is a function having the same smoothness
properties as k,() •= k(t, •), and where </, g> = flfg.

In case (a), we use the orthogonality of IIn:

</„ (i - nn)xn> = <(i - nn)/,, (i - nn)xn>.

In case (b) we use firstly that the function (1 — IIn)xn vanishes at the collocation
points TJ, and secondly that the {T/} being the r + 1 Gauss points in A,, then
/A(/?(s)II^J($ — T,') ds = 0 for all polynomials/; of degree < r.

The superconvergence in case (a) is proved under the assumption that A is
quasi-uniform. In case (b), A is arbitrary but more smoothness properties are
required for k and / .

2. The setting of the problem

2.1. Piecewise continuous functions

Let be given A = {/,.}(;, a strict partition of [0, 1], 0 = f0 < / , < • • • < tn = 1.
It is quasi-uniform if there exists a > 0: max(/,- — ^. .^ /min^, - /,_,) < a for
n = 1, 2, . . . . Then nh < a. A, := [*,._„ /,.], i = 1, 2, . . . , n. We define
Q : = n"_,C( A ) : / e CA consists of n components / G C(A), / is a piecewise
continuous function having (possibly) different left and right values at the
partition points /,. With the norm || • ||A defined by ||/||A = max,_, JUHoo.
CA is a Banach space. CA c L°°(0, 1) by ||/ | |A < WfW^ and if / i s continuous on
[0, 1], then H/lloo = ||/| |A. We define, more generally, CA for positive integer / by
CA = II7_ i C(A;) where jt e C(A j iff its /th derivative / ( / ) is continuous on A,.
Clearly SA c CA and the projection IIn is defined CA ^ 5A wi th / = ( /„ . . . , / „ )
• - * n , / = (11/,, . . . , n / n ) , where 11/ is the projection of/ G C(A) on the poly-
nomials of degree < r on A,.
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2.2. Spectral definitions

T is supposed to be compact in the complex Banach space X = Ca. S-(X) is
the algebra of bounded operators on X. The resolvent set of T is p(T) = {z £ C ;
(T - z)~x e £(*)} where z stands for z\. For z in p(T), R(z) = (T - z)"1 is the
resolvent of T and TR(z) = /*(z)r. The unique solution of (1) is then x = R(z)f.

Let X ^ 0 be an isolated eigenvalue of T with algebraic (resp. geometric)
multiplicity m (resp. g), and ascent ju, 1 < /i < m, 1 < g < m. The associated
eigenspace is £ = ker( T — A), the null space of T — \ so dim £ = g; the
invariant subspace is

M = ker(r - A)"1, dim A/ = m, and ker(r - A)" = ker(T - A)m.

Let F be a Jordan curve in p(T), around A, which contains neither 0 nor any
other eigenvalue of T. P := -l/2iV/r/?(z) dz is the spectral projection associated
with A, M = PX. Let Tn be a sequence of operators in £(Ar) such that Tn

converge to T pointwise. Tn will be either Tf = Iln T or Tn
s = 7TIn. If T c

p(7),), we may define for Tn the resolvent Rn(z) for z e F and the spectral
projection Pn := -\/2iirfTRn(z) dz. If Tn is strongly stable inside T (Chatelin [8],
[9]), there are, for n large enough, exactly m eigenvalues {\n}7Li of Tn inside F
(counting their algebraic multiplicities), An is their arithmetic mean, and \, is any
one of them.

For the projections Iln under consideration, both 7jf and r / are strongly
stable around any non-zero eigenvalue of T (Chatelin [7], [9]). The solution xn of
(3) is such that xn = Rf(z)UJ, and xn = R%(z)f. Similarly <£„ is an eigenvector
of T/ and $n of Tf, associated with the same eigenvalue An.

23. The errors xn - x, <pn - P<t>n, xn - x, <£„ - P$n and A - \

C is a generic constant, which may depend on r and a, but is otherwise
independent of A.

23.1. The projection method

We recall the following equality:

xn - x = zRf(z)(l - Hn)x, then ||* - x J L < C||(l -

As for the resolvents,

(Rf(z) - R(z))+H = R(z)(T - T;)R;(z)4>n = ^ ^ ( 1
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because Rf(z)<j>n = 4>n/\, — z.To integrate on T, we distinguish whether \ = X
or not. If \ = X, then -l/2/V/r(/?(z)/X - z)dz = S = limz_^ /?(z)(l - P);
S is the reduced resolvent with respect to X. If \ , ^ X, /?(z) — R(\,) =

and

2s/"W *
X is the only pole of R(z) inside T, /?(\,)(1 — P) is well defined and when
n -» oo, \, -+X, ^(\,)(1 - />) -> S. /*(\,)(1 - i») is then uniformly bounded in
n, for n large enough. To have a unique formula for the cases \ = X and Xn =£ X,
we set R(X)(l - P) = S.

By integration in z on T, we get <j>n - P$n = /?(\,)(1 - .P)(l - Iln)T<t>n, and

distfo, A/) = inf II*. - ^11. < ||<»n - P ^ J L < C||(l -

23.2. The Sloan method

i) xn - x = (jtf(z) - /?(z))/ = /?(z)(r - rn
s)Rn

sf
r/?(z)(i - n j x n .
Then for any fixed / in [0, 1], and any fixed z in p(T),

Because R*(z) := (/?(z))* = (r» - z)"1, /, := /?*(z)fc, is the solution of
(T* — 1)1, = kt; the solution /, (which depends on z) is unique since z £ p ( 7 ) «

2) Similarly

(Rn
s(z) - /?(z))^ = R(z)(T - Tn

s)Rn
s(z)*n = ^ ^ 7X1 "

By integration on T, we get for any fixed / on [0, 1]

We define // := R*(Xn)(l - P*)kt, that is // is the unique solution of {T* - \,)lt'
= (1 - P*)kr We define accordingly R*(X)(l - P*) := S*. Then ^n(0 -
(/>£„)(/) = <//, (1 - Un)4>ny. We have just proved that the error (x - *„)(/)
(resp. (4>n — P<j>n)(t)) at / e [0, 1] can be expressed in terms of the scalar product
</„ (1 - nn)xfl> (resp. <//, (1 - n > n » .
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444 Fran$oise Chatelin and Rachid Lebbar 161

REMARK. Another way to bound

l/2m fT(R(z)/K ~ z) dz){\ - IL

is the following (Lebbar [10]). Let F be the circle centered at \ , with radius r,
containing A and contained in T (for n large enough, there exists such a circle).
We set z = \ + rem, 0 < 9 < In, for z G F .

-± r R(z) dz=zLf R
dz=

2m JrXn — z 2iir

2m ./„

az

o -reie

Then

\{&n - P<i>n)(t)\ — ^rI f v\ TR(K + rew)(i - n j i n

< sup

For z <= F , we define /,(z) := R\z)kr Then

l(^n ~~ ^><l>n)(')l ^ S U P

As for the global bounds on [0, 1], they are easy to get:

rxn-x= R(z)T(\ - Un)xn

implies \\xn - JC|L < C||T(1 - I L J J C J L , and

/S[0, 1] "

i n - /*in = /?(An)(l - P)T(l - n n ) i n implies

dist(«^n, A/) := inf ||<#>n — ̂ IL < ||</>n — '̂•/'nlL ^ 1̂1 ^(^ "" nn)^!!,,,,,

and

117X1 - n j i . i L = sup |<*,, (i - n j i B > | .
/e[0,1]

3) Now we set Mn := PnX. For n large enough, P(M has a bounded inverse
and m(X - AJ = 27L,<^*, (1 - Un)T(PfM )-'x,> where"{x,.}7 (resp. {x?}?) is a
basis of M (resp. the adjoint basis of M*) (see de Boor-Swartz [2]). The error
A — \ is then of the same type as the errors (xn — x)(t) and ($„ — P<f>n)(t)-

4) Let Q be the eigenprojection on E = ker(T — A), along a supplementary
subspace F.
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k ~ Qk =[(T-\)(l - Q)]-\T-\)(l -

and

(T - x)(i - Q)k = (T- x)k = ni - n>_ + (\, -
Therefore

, E) = inf

Note that this method does not provide a pointwise estimate for <j>n — Q<j>n- This
is due to the fact that, unlike the spectral projection P, the eigenprojection Q has
no expression in terms of the resolvent.

3. Two basic results

We shall be concerned with two types of continuous kernels k that we define
now.

i) k is smooth (of order / > 0) if k e C^([0, 1] X [0, 1]), that is ktJ e C('A/XA),
for 1 < i,j < n, and k is continuous on [0, 1] X [0, 1].

ii) A; is a Green's kernel (of order / > 1, and continuity 5, 0 < 5 < /) if

k(t s)=lkl(t's) {oTt>s>J \ k2(t, s) for / < s,

is such that

kl e C'({0 <s <t < 1}),

M C ' ( { 0 < / < J < 1}),

*eca([o, l] x[o,i]).
An obvious example of case ii) is the Green's function of an o.d.e. of order
S + 2.

For any z in p(T), we consider the solution x = R(z)f of (1), along with xn

and <$>„> solutions of (5) and (6).

LEMMA 1. Let T be an integral operator with a kernel k of order I, of type i) or
ii). Iff e C^ then, in both cases, x, xn and <j>n are in C1^.

Now with k,{) := k(t, •) for / fixed in [0, 1], we consider the equation
(T* - 1)1, = k,, for z G p(T).
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LEMMA 2. When k is a smooth kernel of order I, then I, G C'jO, 1) for any t in
[0, 1]. When k is a Green's kernel of order I and continuity 8, then I, G C^(0, I) for
/,.e4,/ = 0 n, and I, G Cs{0, \)for t <2 A.

It is left to the reader to check the two lemmas (see Lebbar [10]). Note that
when A; is a Green's kernel, /, is defined by the functions /,, G C'(0, /), l2l G
C'(t, 1).

Lemma 2 shows that /, has the same smoothness properties as kr The same is
true for //.

We define a := min(/, r + 1) and a* := min(/, r + 1, 8 + 2).

3.1. IIn is an orthogonal projection

THEOREM 3. Let A be quasi-uniform. With the above definitions, then for
/ G CA, and z in p(T):

i) // k is a smooth kernel of order I, then for t G [0, 1]: |</,, (1 - IIn)/>| <
Ch2°\\l<a%, and globally \\T(l - Un)f\\x < Ch2".

ii) // k is a Green's kernel of order I and continuity 8,0<8<l, then for t, G A,

for t (2 A,

|</,, (1 -

and globally, \\T(l - Un}f\\oo < Cha+a'.

PROOF. It is adapted from Chandler [6]. Since I l n is an orthogonal projection:
</„ (i - n_)/> = <(i - n j / , , (i - n n ) /> . And

[\i - nn)i,(s)(\ - un)f(s) ds = £ / (l - n)/,,(*)(i - n)/,(j) ds.
Jo , = i A ,

Given ft G C(A) ; 11/ is the orthogonal projection of / on the set of polynomials
of degree < r on A,. When/ , /, G CA(0, 1) , / , /„ G C('A), and

H(i - n)/n, < C A ' + ' H ^ I L , n(i - n y j u < CA-||/io)IL.
When /, G C8(0, 1), with /,_, < t < /„ then on A,., if 8 < r,

H(i - n y j u < chs+i max(||//«+I)IL, Il4a+I)IL).

The result follows by summing over /, and using nh < a.

3.2. II,, is an interpolatory projection

L e t / b e a function of Cl+\a, b), such that/(»v,) = 0J = I, . . . , r + \, where
the {w,}^+1 are r + 1 distinct points in (a, b). The (r + l)th divided difference
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o f / o n the points w,, . . . , wr+l is denoted by 8[wv w2, . . . , wr+l, • ] / . Then

f(s) = (s - w,) • • • (s - w,+,)«[*„ w2, . . . , wr+l, s]f, for J £ {wy}J+l.

We set, for s G [a, b],

\f(s)/v(s)

where v(s) = (s — w,) • • • (s — wr+,).

LEMMA 4. / / / G Cl+\a, b), then g* e C'(a, b).

There is only a need to prove that g* is C ' in the neighborhood of any Wj,
j = 1, . . . , / • + 1 (see Lebbar [10]). If / G C/ + 1 (a , fc), the divided difference
S[wu . . . , wr+i, • ] / m a y therefore be prolongated by continuity on [a, b], up to
the order /.

We shall apply this lemma on each A,, with the {w,}^+l being the Gauss
points {TJ}jt\- F o r / e C^+1, n/j is the polynomial of degree < r on A, which
interpolates / at the Gauss points {rj}jZ\- Hence (1 - I T ^ T / ) = 0 for j =
1, . . . , r + 1. We consider the divided difference 5[T{, . . . , Tr'+1, -](1 — IT)/.,
and set qu := lu8[r[, . . . , r'+l, -](1 - n ) / . ku E C^,1 (resp. C^j) implies that
/„ 6 C/+; (resp. CfA)) and ?,, e C ^ , (resp. C(i(), for 5 < /) .

THEOREM 5. W///i //ie aZ>m)e definitions, then for f G C^+1 anrfz in p(T)
i) if k is a smooth kernel of order I, then for t G [0, 1], |</,, (1 - IIn) />| <

Ch'+1+°\\q(°X and globally \\T(l - UJf]^ < MJi'+'+a,
ii) // k is a Green's kernel, of order I and continuity 8, 0 < 8 < /, then for tt G A,

\{it, ( i - n j / > | < c / j ' + 1 + i ^ a > I L > i = o , . . . , « ,

for t ^ A,

and globally \\T(l - Un)f\\x <
Iff G C l + r + 1 , //ien MA < C.

PROOF. It is adapted from de Boor-Swartz [1].

f/,(s)(i - n n ) f ( s ) d s = t f a

= 2
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When qit G C'^y qit(s) = <?,,(/,_,) + • • • +((* - tt_tf/lV)tfiK9,\ /,_, <9,<s.
Making use of f&v(s)p(s) ds = 0 for all polynomial p of degree < r on A,, we
get |/A,<7,,(*M5) eb\ < Ch'+^Wq^W^, which gives, for /, G Cj,

When /,., G C^y

jf/„(*)(! " n)/,(*) ds <O

and |</,, (1 - nn) /> | < Chr+l+a\ by summing over /.

Theorems 3 and 5 play a central role to derive the convergence rates, as we
shall see in the next section.

4. Convergence rates

We recall that a = min(/, r + 1) and a* = min(/, r + 1, 8 + 2). In practice
8 + 2 < r + l < / , so that a = r + 1 and a* = 8 + 2. We assume throughout
this section that the kernel k is of order / for the Galerkin method ( / G C^ =* xn

G C'i, $n G C^) and of order I + r + 1 for the collocation method ( / G C^+r+1

4 . 1 . Convergence r a t e for the eigenvalues

The definitions a re those of Section 2.2.

T H E O R E M 6. For both types of kernel k

\ - \ , = O(en), max\\ - \n\ = O(ey»), min|A - AJ = O(tf/«)

wAere (a) en = h2a for the Galerkin method, and (b) en = hr+x+a for the colloca-
tion method.

PROOF. It is adapted from de Boor-Swartz [2] where it is noticed that X (resp.
\ n ) are the eigenvalues of two m X m matrices such that the (»',y)th coefficient
of the difference is <*,*, (1 - Hn)T(PtM )''.*,>. Theorem 3 applies where /, is
replaced by x? G C^ and T(P(u )'lXj G C ,̂ if the kernel is of order /. Similarly,
Theorem 5 applies if k is of order / + r + 1. And the results follow from
classical theorems in matrix theory (see Wilkinson [18], pp. 80-81).
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4.2. Convergence rate for the solutions and the eigenvectors

(a) The Galerkin method. We suppose t ha t / G C^ and k is of order /. Then xn,
<j>n G C^. A is quasi-uniform.

THEOREM 7. With a smooth kernel, \\x — xjl^ and dist(<£n, M) are of the order
h2a, distftv E) = O(hla/lx). With a Green's kernel, then: at tt G A, \x(t,) - xH(t,)\
and |<j>n(/,) - (•?<£„)(/,)| are of the order h2", i = 0, . . . , n, whereas globally
II* ~ *»IL and d i s t (6» M) are of the order ha+a', dist(*n, E) - 0 ^ ' % for

PROOF. We apply Theorem 3 to (*„ - JCXO = </„ (1 - n j i n > , ( ^ - P4>n)(t)
= <//, (1 - nn)^n>, and Theorem 6 to

distfo, E) < c(nni - n ^ i L + \K - x\).

(b) The collocation method. We suppose tha t / G C^+r+1 and k is of order
I + r + 1. Then *„, </>„ e C^+r+1. We get, as Theorem 8, the analog of Theorem
7, where h2" (resp. ha+a') is replaced by / i f + 1 + a (resp. hr+l+a'). The conver-
gence rates in Theorems 7 and 8 are the best we could hope from the known
results. It should be noticed that the computation of xn (resp. <j>n) from xn (resp.
\ , $„) does not require much extra work: let dim Xn = n (say), let {e,"}" be a
basis of Xn: if xn = 2 ; = , | ,V ' t h e n Tx

n = ^Uii"Te,n where the {re/1}? have
already been computed to get the coefficients of the matrix associated with the
projection method.

5. Numerical Example

We end this paper with a numerical example illustrating the behavior of the
iterated collocation solution for the Fredholm equation

Ck(t, s)x(s) ds - -rx(t) = -cosh(l), 0 < t < 1,
Jo 4

with

k{t-s)'{'%-'! u'sVi
The exact solution is x(t) = cosh(2/ — 1).

We choose the partition A = {//5}Q, h=\, and on each interval A,, the
r + 1 = 4 Gauss points. We display in Table 1 the values of x — xn and x — xn
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at the partition points /„ / = 1, 2, 3, 4. The kernel k is of "Green's function"
type with 8 = 0.

TABLE 1

Error values at the partition points

i

i

2

3

4

(x - xn)(0

8.10"1

6.10-5

6.10-5

7.10-5

(x - xnXt,+)

7.10-5

6.10-5

6.10-5

8.10-5

(* " *„)('/)

-5.10-12

-7.10"12

-7.10"12

-5.10"12
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