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Abstract
The reconfigurable mechanisms can satisfy the requirements of changing environments, working conditions, and
tasks on the function and performance of the mechanism and can be applied to machine tool manufacturing, space
detection, etc. Inspired by the single-vertex fivefold origami pattern, a new reconfigurable parallel mechanism is
proposed in this paper, which has special singular positions and stable motion due to replicating the stabilizing
kinematic properties of origami. Through analyzing the topologic change of the folding process of the pattern and
treating it as a reconfigurable joint, a new reconfigurable parallel mechanism with 3, 4, 5, or 6 degrees of freedom
is obtained. Then, the kinematics solution, workspace, and singularity of the mechanism are calculated. The results
indicate that the singular configuration of the origami-derived reconfigurable parallel mechanism is mainly located
in a special plane, and the scope of the workspace is still large after the configuration change. The mechanism has the
potential to adapt to multiple tasks and working conditions through the conversion among different configurations
by folding reconfigurable joints on the branch chain.

Nomenclature
αi(i+1): crease angle.
ϕi: dihedral angle.
cθ : cosine of θ .
sθ : sine of θ .
ei: unit vector.
$̂r: constraint screw.
Jx: constraint Jacobian.
Jq: actuation Jacobian.
r1: radius of the fixed base.
r2: radius of the moving platform.
di: actuation parameters of prismatic pair P.
ψ : angle of the passive spherical hinge.
Reqv1R: state 1 of the spherical 5R mechanism.
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Reqv2: state 2 of the spherical 5R mechanism.
φi: rotation angle of Reqv1.
θi: rotation angle of Reqv2.
$: screw in plücker coordinate.
→
s i: direction vector of the axis of the kinematic pair.
jRi: rotation matrix from coordinate i to coordinate j.
$P: instantaneous motion screw of the moving platform.
q: input of the reconfigurable parallel mechanism

1. Introduction
The reconfigurable mechanisms can satisfy the requirements of changing environments, working condi-
tions, and tasks on the function and performance of the mechanism and can be applied to machine tool
manufacturing [1], space detection [2–3], etc. Moreover, the reconfigurable parallel mechanism (RPM)
is concerned due to its advantages of large bearing capacity and high precision [4]. At present, the recon-
figurable parallel mechanism is mainly designed as follows: reconfigurable joints [5–13], reconfigurable
kinematic chain [14–20], reconfigurable moving platform [21–24], reconfigurable fixed base [25], etc.
Through conferring the moving platforms, bases, joints, branched chains, and other components with
variable motions or topologies, a reconfigurable generalized parallel mechanism can be constructed.

In addition to the existing literatures on reconfigurable moving platforms and bases, numerous stud-
ies have focused on reconfigurable joints and branch reconfigurable problems caused by the singularity
of the single loop branch chain. Various reconfigurable joints have been designed, such as reconfig-
urable Hooke joint with the orientation of connector T changeable (rT) [5], reconfigurable revolute joint
(rR) [8], and reconfigurable spherical variable-axis joint (Sv) [9], proposed various new reconfigurable
mechanisms and evaluated their performance [12–13]. Hu et al. [6] synthesized a kind of actuating
reconfigurable parallel spherical joint, which is capable of realizing one-dimensional fixed-axis rotation
and one-dimensional variable-axis rotation, two-dimensional and three-dimensional rotation. Li et al
[7] proposed a reconfigurable axial joint inspired by Rubik’s Cubes, which evolved from two types of
spherical joints to three types of variable hook joints and one type of revolute joint.

The research on reconfigurable kinematic chains is mainly realized by the bifurcation characteristics
of limbs. Ye et al. [14–15] designed a multi-rhombic metamorphic limb with multiple motion branches
and constructed a kind of planar reconfigurable parallel mechanism. Wei et al. investigated a novel RPM
based on the bifurcation of planar subgroup SE (2) and rotational subgroup SO (3) in the transformed
configuration space [19] and studied the configuration switching and path selection of the novel RPM
based on the subgroup SE (2), SO (3) and X (z) [20].

Some studies have proposed a series of reconfigurable mechanisms by regarding special origami
structures as reconfigurable joints or reconfigurable limbs [26–31]. Dai [26–27] proposed the reconfig-
urable mechanism with variable topology and variable freedom in the research on the gift box packaging.
Fang [28] designed a new type of parallel mechanism with three degrees of freedom (DOFs) based on
the origami structure, whose moving platform and the base center are always coaxial under special
geometric constraints. Wang [29] suggested an 8R reconfigurable quadruped mobile robot based on an
origami structure. Inspired by a kirigami structure, Zhang [30] designed a novel reconfigurable parallel
mechanism. Through the method of graph theory and group theory enumeration, Barreto [31] derived
a kind of multi-circuit spherical parallel mechanism based on the origami design theorem.

To sum up, reconfigurable branches and joints are mainly realized by variable topology structures,
whose characteristics and selection depend on researchers’ own experience. Hence, origami is one of
the inspiration sources for constructing RPM in many studies due to its relevancy with variable topology
structure. Based on the box folding pattern with a single vertex and fivefold [32], a spherical reconfig-
urable closed-loop chain is designed and its motion characteristics are studied in this paper. Then, a novel
RPM is proposed, and its various kinematic performances are analyzed, which provides ideas for the
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crease pattern                                     origami model                   folding process                     fully folded

(a) (b) (c) (d)

Figure 1. The box fold pattern with a single vertex and five creases and its folding process.

design and analysis of reconfigurable parallel mechanisms. The arrangement of this paper is as follows:
section 2 analyzes the spherical reconfigurable linkages inspired by a single-vertex fivefold origami pat-
tern, and puts forward a new RPM based on its motion characteristics and configuration switching by
folding. Section 3 analyzes the variation of motion performance of the reconfigurable parallel mech-
anism, including its inverse kinematics, workspace, and singularity. Eventually, the innovations and
perspectives of this study are summarized in section 4.

2. Spherical 5R closed-loop linkage and its derived reconfigurable mechanism
2.1. Reconfigurable spherical closed-loop chain inspired by origami
Origami is an art form that transforms two-dimensional paper into a three-dimensional structure based
on predesigned crease patterns. Origami structures are widely used in the engineering field due to their
advantages, such as being foldable, deformable, and motion stable [33–34]. During the folding process,
the paper surface is regarded as a link rotating around the creases, and the paper that does not deform
except for the creases is called rigid origami. The geometric elements of origami are composed of ver-
tices and creases. According to the number of creases per single vertex, the origami structure can be
divided into fourfold structures (such as Miura-ora units), fivefold structures, sixfold structures (such as
Diamond units and Kresling units [35–36]), eightfold structures, etc.

Since single-vertex fourffold origami conventionally only has a single degree of freedom [37] and
does not have topological changes; while single-vertex sixfold origami has three rotational DOF [38],
if it is regarded as a reconfigurable closed-chain joint with topology changes by locking certain joints,
its variable motion analysis will relatively more complicated than fivefold origami pattern. This article
designs a spherical reconfigurable motion joint based on a box fold pattern with a single vertex with
fivefold. A single-vertex fivefold pattern, as shown in Fig. 1, is commonly used in the design of paper
box folding [32]. In Fig. 1, the red line represents a mountain crease, the blue line represents a valley
crease, and the black line represents the boundary.

Fig. 2 shows the geometric parameters and equivalent folding mechanism of the single vertex five-
fold pattern. Given the parameters α23 = α51 = π/2, α34 = α45 = α, and α12 = π − 2α, the motion of this
origami pattern is equivalent to a spherical 5R mechanism [39], as shown in Fig. 2(b). Under a spherical
coordinate system, the foldable mechanism’s displacement can be expressed as two moving DOFs on a
sphere centered in the vertex of five creases.

The motion characteristics and singularity of a single-vertex fivefold pattern in its folding process
are analyzed as follows. First, the unit direction vectors of revolute pairs’ axis can be written as
→
s 1 = [

0 − sin (α12/2) cos (α12/2)
]T

,
→
s 2 = [

0 sin (α12/2) cos (α12/2)
]T

,
→
s 3 = [a3 b3 c3]T ,

→
s 4 =

[a4 b4 c4]T ,
→
s 5 = [a5 b5 c5]T . Using the paper surface 1 as a fixed base and assuming that the direction
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mathematical model of the origami pattern. the derived spherical 5R deformation unit.

(a) (b)

Figure 2. Single-vertex fiveffold origami pattern and its derived spherical 5R deformation mechanism.

vector →
s 4 of the crease between the paper surface 3 and the paper surface 4 is a known value, then

calculating the positions of the remaining crease axes according to geometric constraints as follows.
Since →

s 2 · →
s 3 = 0 and →

s 1 · →
s 5 = 0, it can be solved separately: c3 = −b3 cot α, c5 = b5 cot α. Based on

screw theory and structural parameters αi(i+1), and regarding link 1 as the fixed base and link 4 as the
output link, the kinematic screw of two branch chains can be expressed as Eq. (1).

$A =

⎧⎪⎨
⎪⎩

$2 = [0 cos α sin α; 0 0 0]T

$3 = [a3 b3 − b3 cot α; 0 0 0]T

$4 = [a4 b4 c4; 0 0 0]T

, $B =
{

$1 = [0 − cos α sin α; 0 0 0]T

$5 = [a5 b5 b5 cot α; 0 0 0]T
(1)

Since α34 = α45 = α, Eq. (2) can be obtained.
→
s 3 · →

s 4 = cos α,
→
s 4 · →

s 5 = cos α (2)

From Eq. (2), a3 = (cos α− b3(b4 − c4 cot α))/a4 and a5 = (cos α − b5(b4 + c4 cot α))/a4 can be
obtained. According to a3

2 + b3
2 + (−b3 cot α)2 = 1 and a5

2 + b5
2 + (b5 cot α)2 = 1, b3 and b5 can be

solved with each has two sets of solutions. Depending on the direction in which the crease is folded, one
set of solutions can be eliminated and a unique solution can be obtained, as follows:

b3 =
cos α (b4 − c4 cot α)+

√
a4

2
(
a4

2
(
1 + cot2 α

)− cot2 α+ (b4 − c4 cot α)2
)

a4
2
(
1 + cot2 α

)+ (b4 − c4 cot α)2

b5 =
cos α (b4 + c4 cot α)−

√
a4

2
(
a4

2
(
1 + cot2 α

)− cot2 α+ (b4 + c4 cot α)2
)

a4
2
(
1 + cot2 α

)+ (b4 + c4 cot α)2

(3)

Solving the reciprocal screw of two limbs’ screw systems $A and $B, and obtaining the kinematic
screw of output link 4, which can be expressed as Eq. (4).

0$ =
{

0$1 = [a 0 1; 0 0 0]T

0$2 = [b 1 0; 0 0 0]T
(4)

where a = − cot α(b4b5−cos α+b5c4 cot α)

a4b5(1+cot2 α)
, b = − b4b5−cos α+b5c4 cot α

a4b5(1+cot2 α)
.

As shown in Fig. 2(a), ϕi(i = 2, 3, . . . , 5) shows the dihedral angle formed by the paper surface i and
i − 1, ϕ1 especially presents the dihedral angle formed by the paper surface 5 and paper surface 1. The
rotation angle corresponding to ϕi is denoted as θi. The mountain crease surrounded by paper surface
3 and paper surface 4 has a dihedral angle ϕ4 ∈ [0, π ] and an auxiliary rotation angle θ4 = ϕ4 − π , ∈
[ − π , 0]. According to the folding process of the origami pattern shown in Fig. 1, link 3 and link 4 will
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incomplete folding state and corresponding 
spherical joints marked as

eqv1R R .
  complete folding state and

corresponding spherical joints marked as
eqv2R .

(a) (b)

Figure 3. Topological changes of the spherical deformation 5R joints before and after folding.

be regarded as cemented together and treated as a single link, denoted as link 3(4), when the actuator
ϕ4 is locked at the fully folded state. The branch screw system $A becomes:

$A =
{

$2 = [0 cos α sin α; 0 0 0]T

$3 = [a3 b3 − b3 cot α; 0 0 0]T
(5)

the kinematic screw of the output link 3(4) becomes:
0$ = [c d 1; 0 0 0]T (6)

where c = 2 sin2 α(cos α−b3(b4−c4 cot α))(cos α−b5(b4+c4 cot α))
a4(2b3b5c4+sin α(b5−b3))

, d = (cos α(b3+b5)−2b3b4b5) cot α
2b3b5c4 cot α+cos α(b5−b3)

.
So, the output motion of link 3(4) is reduced to one rotational DOF on the axis [c d 1]T. Especially,

when the dihedral angle ϕ4 = 0 is locked, which means →
s 3 = →

s 5 = [1 0 0]T, the kinematic screw of the
spherical mechanism becomes:

0$ = [1 0 0; 0 0 0]T (7)

Eq. (7) represents the rotation around the x-axis, which is consistent with the DOF after fully folding
the dihedral angle ϕ4 of origami.

The geometric topology and motion characteristics of the spherical mechanism have changed corre-
sponding to the singular configuration of the origami. The equivalent joint that corresponds to the state
of incomplete folding of origami is defined as Reqv1R with two rotational DOFs; when the origami is
fully folded, the spherical 5R joint becomes a single rotational motion record as Reqv2, as shown in Fig. 3
(a) and (b), respectively.

The spherical 5R mechanism is regarded as a reconfigurable joint, and its two reconfigurable forms
are Reqv1R and Reqv2, which correspond to the topological states of incomplete folding and complete
folding of origami, respectively. When the reconfigurable joint is Reqv1R, the two rotations of output
link 4: the screw expression of the equivalent rotation pair Reqv1 is shown in Eq. (6); And R is a rotating
pair composed of link 3 and link 4. When the reconfigurable joint is Reqv2, the motion screw of output
link 3(4) is written as Eq. (7).

2.2. Derived reconfigurable parallel mechanism
Based on the spherical unit shown in Fig. 3, a triangular box fold pattern can be formed, whose crease
pattern and folding process are shown in Fig. 4.

The single-vertex fivefold origami is equivalent to the spherical 5R mechanism shown in Fig. 3.
Using this spherical mechanism as a special kinematic pair and combining it into the form of Fig. 4, a
reconfigurable parallel mechanism is designed, as shown in Fig. 5. The initial installation state of the
spherical 5R mechanism is consistent with the distribution of mountain and valley creases in the fivefold
origami, so its movement process is equivalent to the folding process of origami. Based on the stability
of the unidirectional motion of origami, the different solutions of the closed-loop kinematic chain are
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crease pattern   origami model                         folding process               fully folded

(a) (b) (c) (d)

Figure 4. Triangle box fold pattern and its folding process.

triangle box folding origami  parallel mechanism with box fold pattern as reconfigurable joint

(a) (b)

Figure 5. Origami-inspired 3 − (5R)PS reconfigurable parallel mechanism.

avoided, which is conducive to reducing the complexity of kinematic analysis of spatially closed-loop
mechanisms by replicating the unidirectional actuation of creases. The spherical 5R joint can realize
stable driving of the reconfigurable parallel mechanism.

Each branch chain includes a spherical 5R joint, a prismatic pair (P), and a spherical hinge (S).
The 3 − (5R)PS reconfigurable parallel mechanism has four configurations with 6, 5, 4, or 3 DOFs,
respectively, as shown in Fig. 6. si1 and si2 represent the rotating axis direction of the reconfigurable
5R joint, and si3 represents the axis direction of the moving pair in the ith branch chain. Based on the
reciprocity between the constraint force and the kinematic screw [40], it can be seen that the branch chain
including a reconfigurable joint Reqv1R has no constraint on the moving platform, while the branch chain
including a reconfigurable joint Reqv2 provides a restraint force Fi against the moving platform, with the
direction of Fi perpendicular to si3 that the axis of prismatic pair and coplanar with si1 that the axis
direction of the reconfigurable joint Reqv2.

3. Kinematic analysis of different configurations
Kinematics and singularity analysis are important mathematical methods for evaluating the performance
of parallel mechanisms [41–42] and have made contributions to helping researchers improve mech-
anism performance and promote the practical application of new mechanisms. Soheil [43] presented
a systematic method to obtain singular configurations of spherical mechanisms with input and out-
put links. Gallant and Gosselin [44] proposed a method of singularity robust balancing for parallel
manipulators passing through type II singular configurations, which characteristically arise within the
workspace while following inconsistent trajectories. In this paper, vector equations are used to analyze
the inverse kinematic solutions of four different configurations of the 3 − (5R)PS reconfigurable parallel
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3− Reqv1 R PS reconfigurable parallel
mechanism (6-DOF).

3− Reqv2 R PS reconfigurable parallel
mechanism (3- DOF).

2(Reqv1 R PS) −1(Reqv2 PS) reconfigurable
parallel mechanism (5-DOF).

1(Reqv1 R PS) − 2(Reqv2 PS) reconfigurable
parallel mechanism (4-DOF).

(a) (b)

(c) (d)

Figure 6. Four different configurations of 3 − (5R)PS reconfigurable parallel mechanisms.

mechanism. The Jacobian matrix of different configurations are derived through the screw reciprocity
product, and the singularities of the RPM in different configurations are analyzed based on the numerical
algorithm.

3.1. Inverse kinematic solutions
Fig. 7 established the moving platform coordinate system P − uvw and the branch chain coordinate
system Ai − xAiyAizAi(i = 1, 2, 3). OAi = r1 and PBi = r2 are, respectively, the circumcircle radius of fixed
base and movable platform, and di is the length of prismatic pair. If the pose P(x, y, z), θx, θy and θz of the
moving platform is known, the actuation parameters d1, d2, d3, θ41, θ42, and θ43 can be inversely solved as
follows.
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Figure 7. Inverse kinematics: 3 − (5R)PSreconfigurable parallel mechanism.

In the basic coordinate system O − xyz, points A1, A2, and A3 can be expressed as

A1 = [−r1 0 0]T , A2 =
[

r1

2
−

√
3r1

2
0

]T

, A3 =
[

r1

2

√
3r1

2
0

]T

(8)

In the moving platform coordinate system P − uvw, point B1, B2, and B3 can be expressed as

pB1 = [−r2 0 0]T , pB2 =
[

r2

2
−

√
3r2

2
0

]T

, pB3 =
[

r2

2

√
3r2

2
0

]T

(9)

In the basic coordinate system O − xyz, point B1, B2, and B3 can be expressed as

B1 = 0Rp
pB1 + P, B1 = 0Rp

pB2 + P, B3 = 0Rp
pB3 + P (10)

where 0Rp = Rz(θz)Ry(θy)Rx(θx) represents the rotational transformation matrix from the moving coor-
dinate system P − uvw to the base coordinate system O − xyz.

Therefore, the vector
→

AiBi(i = 1, 2, 3) in the base coordinate system O − xyz is
→

AiBi = Bi − Ai = [li, mi, ni]
T , i = 1, 2, 3 (11)

where the formulae for li, mi, ni are given in the Appendix.
Then the actuator di of the prismatic pair can be obtained,

di =
√

l2
i + m2

i + n2
i , i = 1, 2, 3 (12)

The transformation matrix from the branch coordinate system Ai − xAiyAizAi(i = 1, 2, 3) to the base
coordinate system O − xyz can be written as

0RA1 = Rz (π) Ry (−π/2) , 0RA2 = 0RA1Rx (2π/3) , 0RA3 = 0RA1Rx (−2π/3) (13)

The unit vector
→

AiBi can be expressed at coordinate system O − xyz:
0ei = AiBi/|AiBi| =

[
xi, yi, zi

]T
, (i = 1, 2, 3) (14)

In the branch chain coordinate system, Ai − xAiyAizAi(i = 1, 2, 3),
→
s 4i represents the direction vector of

the revolute joint θ4i:
→
s 4i = [a4i, b4i, c4i]

T , i = 1, 2, 3 (15)

Eq. (15) can be transformed to the base coordinate system:
0ei = 0RAi

→
s 4i, i = 1, 2, 3 (16)
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→
s 4i is calculated from Eq. (16), then substitute into Eq. (2) to find two sets of solutions for →

s 3i and →
s 5i. Due

to the characteristics of valley creases, one set of solutions can be omitted to obtain a unique solution.
The dihedral angle ϕ4i can be obtained by calculating quantity product between the unit normal vectors of
paper surface 3 and paper surface 4, as the formula: cos (π − ϕ4i) = (

→
s 3i × →

s 4i/ sin α) · (
→
s 4i × →

s 5i/ sin α),
and then the actuation angle θ4i = ϕ4i − π , (i = 1, 2, 3) can be obtained.

Without loss of generality, when locking the revolute pair actuator θ4i of the ith branch chain,
→

AiBi is
represented in the branch chain coordinate system:

→
AiBi = di (cos α, sin α sin φi, sin α cos φi)

T (17)

As shown in Eq. (17), φi is the angle between the projection of the vector
→

AiBi on the plane yAiAizAi

and the axis yAi.
→

AiBi can be represented in the base coordinate system by left-multiplying the rotation
matrix 0RAi.

There have been divided into three situations when reconfigurable joints are locked.

1. When locking θ41 = −π , the first branch chain becomes a Reqv2PS branch chain, which provides
a constraint force through the center of the spherical joint for the moving platform. The mov-
ing platform has 5 DOF, whose dependent pose parameter z can be represented by independent
parameters x, y, θx, θy, and θz. From Eq. (11) and Eq. (17), it can be found that

d1 cos α = z + r2 sin θy (18)

By subtracting the squares of Eq. (12) and Eq. (18), the driving d1 can be determined, and substituting
it with Eq. (18) can determine the positional parameters z. According to Eq. (12) and Eq. (16), the
actuators d2, d3, θ42, and θ43 are solved.

2. When locking the two prismatic pairs’ actuators, the moving platform has 4 DOF. Yet the general
to simplify the analysis, locking the actuators that θ42 and θ43, and the dependent pose parameters
of the moving platform are taken as x and y. Calculating d2 and d3 as Eq. (19).

⎧⎪⎨
⎪⎩

d2 cos α = z − r2

(√
3cθysθx + sθy

)
/2

d3 cos α = z + r2

(√
3cθysθx − sθy

)
/2

(19)

Substituting Eq. (19) into Eq. (12) by subtracting the squares obtain that y = (c1 − b1x)/a1, where
a, b, and c are expressions about z, θx, θy, and θz. Substituting y into Eq.(12) to find out x by excluding
a set of bad solutions to obtain the representation of dependent pose parameters x and y concerning
independent parameters z, θx, θy, and θz. Thereby, the inverse kinematic solution of the mechanism can
be solved.

3. When all three prismatic pairs’ actuators are locked, the mechanism degenerates into a
3 − Reqv2PS mechanism. Taking the platform independent pose parameters as z, θx, and θy, the
actuators d1, d2, and d3 are solved by Eq. (18) and (19). Substituting d1, d2, and d3 into Eq. (17)
and solving three equations: |B1B2|2 = 3r2

2, |B2B3|2 = 3r2
2 and |B1B3|2 = 3r2

2, φ1, φ2 and φ3 can
be calculated by Newton’s iterative numerical solution according to Eq. (17) since their ana-
lytical solutions cannot be found. Then the coordinates of B1, B2, and B3 can be calculated.
By introducing a reference point B4 = (B2 + B3)/2 to determine the position coordinates of the
moving platform that P(x, y, z) = B4 + (B1 − B4)/3. Then calculating θz = arctan

(
(y−m1)/(r2cθy)
(r1+x−l1)/(r2cθy)

)
according to Eq. (11). Hence, x, y, and θz have been solved.
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Table I. The range of given actuators and the constraints of passive joints.

RPM configurations Constraints
3 − Reqv1RPS 120mm ≤ d1, d2, d3 ≤ 210mm, −π ≤ θ41, θ42, θ43 ≤ 0, 0 ≤ψ1,ψ2,ψ3 ≤

π/3
2(Reqv1RPS) − 1(Reqv2PS) 120mm ≤ d1, d2, d3 ≤ 210mm, −π ≤ θ42, θ43 ≤ 0, −α/2 ≤ φ1 ≤ α/2, 0 ≤

ψ1, ψ2,ψ3 ≤ π/3
1(Reqv1RPS) − 2(Reqv2PS) 120mm ≤ d1, d2, d3 ≤ 210mm, −π ≤ θ41 ≤ 0, −α/2 ≤ φ1, φ2 ≤ α/2, 0 ≤

ψ1, ψ2,ψ3 ≤ π/3
3 − Reqv2PS 120mm ≤ d1, d2, d3 ≤ 210mm, −α/2 ≤ φ1, φ2, φ3 ≤ α/2, 0 ≤

ψ1,ψ2,ψ3 ≤ π/3

Figure 8. Verification of the kinematic inverse solution of the 3 − Reqv2PS configuration with comparing
simulation and theoretical values of the driving parameters.

Taking the 3 − Reqv2PS configuration as an example, the mechanism motion simulation is performed
after giving the initial position and motion trajectory of the moving platform. The simulation results
are compared with the theoretical values calculated by the inverse solution to verify the correctness
of the mechanism’s inverse kinematic solution. Setting the motion trajectory of the moving platform
in the simulation software as shown in Eq. (20). As shown in Fig. 8, the simulated prismatic pair’s
actuation parameter di is basically consistent with its theoretical calculation value, so the inverse solution
calculation of the mechanism is believed to be correct and scientific.⎧⎪⎨

⎪⎩
z = 70 + t

θx = π sin (2t) /36

θy = π sin (2t) /36

(20)

3.2. Workspace
Based on the inverse kinematic solution of the mechanism, the workspace of the reconfigurable parallel
mechanism can be calculated using numerical methods. To prevent mutual interference between links,
the range of given actuators and the constraints of passive joints are shown in Table I.

Note that di(i = 1, 2, 3) refers to the prismatic actuator of the ith branch chain, with a range of
120mm ∼ 210 mm; θ4i(i = 1, 2, 3) represents the actuator of the fourth rotation pair of the spherical 5R
joint on the ith branch chain, whose range is [ − π , 0] consistent with the folding angle range of the
origami; φi represents the rotation angle of the rotating pair Reqv2, whose range is [ − α/2, α/2] when
the ith branch chain’s spherical 5R linkage is equivalent to the Reqv2;ψi(i = 1, 2, 3) represents the rota-
tion range of ball hinge on the ith branch chain. As shown in Fig. 7, here define Pk1 = [

√
2/2, 0,

√
2/2]T
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Figure 9. Posture space of 3 − Reqv1RPS configuration when x = y = 0mm and z = 90mm.

and express it as k1 = 0Rp · Pk1 in the base coordinate system, so that k2 = 0Rp · Rz(2π/3) · Pk1 and
k3 = 0Rp · Rz(−2π/3) · Pk1 can be obtained. The angle range of the passive spherical hinge of each branch
chain can be expressed as ψi:

ψi = arccos
(

0ei · ki

)
, (i = 1, 2, 3) (21)

Given the base size parameter r2 = 180mm and moving platform size parameter r1 = 60mm, and
taking the 3 − Reqv1RPS configuration as an example, the workspace solution algorithm is shown in the
Appendix Fig. A1.

Since the mechanism is in 3 − Reqv1RPS configuration, the reachable pose space when the position
fixes on x, y = 0mm and z = 90mm is shown in Fig. 9. In Fig. 9, (d) is the three-dimensional point cloud
map of the moving platform reachable posture space, while (a), (b), and (c) are projection views of (d)
in three basic planes. And by the same token, the workspaces of other reconfigurable configurations are
shown in Figs. 10-14.

When the fixed posture is θx = θy = θz = 0, the position space of the 3 − Reqv1RPS configuration
is shown in Fig. 10. It can be seen that the position space of the 3 − Reqv1RPS configuration is
symmetrically distributed along the y-axis.

When locking the revolute pair actuator θ41 = −π of the first branch chain, the position space is shown
in Fig. 11 due to the posture parameter θx = θy = θz = 0 being taken, and the posture space is shown in
Fig. 12 as the position parameter x = y = 0mm is taken.
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Figure 10. Position space of 3 − Reqv1RPS configuration when θx = θy = θz = 0.

The posture space of 2(Reqv1RPS) − 1(Reqv1PS) configuration with the fixed position shown in Fig. 12
is similar to the posture space of 3 − Reqv1RPS configuration shown in Fig. 9. When locking the rotating
pair actuator θ42 = θ43 = −π of the second and third branch chains, the mechanism is 1(Reqv1RPS) −
2(Reqv2PS) configuration, which has 4-DOF. Suggesting the position parameter z = 70mm, its posture
space is shown in Fig. 13. When locking the rotating pair actuator θ41 = θ42 = θ43 = −π of the first,
second, and third branch chains, the mechanism becomes 3 − Reqv2PS configuration, which has 3-DOF,
and its workspace is shown in Fig. 14.

From Figs. 9 to 14, it can be seen that the working space of the mechanism has been reduced to a
certain extent after locking the rotating pair actuator of the branch chain, but it can still achieve a large
range of motion. So the new reconfigurable parallel mechanism proposed in this article has the potential
for “one machine for multiple purposes”.

3.3. Singularity
The Jacobian matrix of the RPM is derived by using the concept of reciprocal screws, and the sin-
gularity positions of the mechanism are analyzed by calculating the determinant of the Jacobian
matrix. Fig. 15 shows the kinematic screw on a single branch chain of the RPM when the spheri-
cal 5R joint is at two states of Reqv1R and Reqv2. Where: the driving joint of the revolute pair of the
branch chain can be represented as $̂i2 = [aibi

TAi
T × aibi

T]T in the base coordinate system; the equiv-
alent rotational screw of the other four rotational joints of the spherical 5R joint can be denoted as
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Figure 11. Position space of 2(Reqv1RPS) − 1(Reqv2PS) configuration when θx = θy = θz = 0.

Figure 12. Posture space of 2(Reqv1RPS) − 1(Reqv2PS) configuration when x = y = 0mm.
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Figure 13. Posture space of 1(Reqv1RPS) − 2(Reqv2PS) configuration when z = 70mm.

$̂i1 = [Ci
TAi

T × Ci
T]T, here Ci = 0RAi · [cd1]T according to Eq. (6); the screw of the prismatic joint is

recorded as $̂i3 = [0Taibi
T]T; the ball hinge is decomposed into three mutually perpendicular rotating pair

screws as $̂i4 = [ex
TBi

T × ex
T]T, $̂i5 = [ey

TBi
T × ey

T]T and $̂i6 = [ez
TBi

T × ez
T]T, here ex, ey and ez represent

the unit vector along the axis of x, y and z, respectively.
Considering each branch chain as an open chain, the instantaneous motion screw of the mov-

ing platform can be written as: $P = [ωn
T v0

T]T, which can be described as a linear combination of
instantaneous motion spirals for each joint on the branch chain.

$P = θ̇i1$̂i1 + θ̇i2$̂i2 + ḋi$̂i3 + θ̇i4$̂i4 + θ̇i5$̂i5 + θ̇i6$̂i6 (i = 1, 2, 3) (22)

For a Reqv1RPS branch chain, the two actuation screws are $̂i2 and $̂i3, and their constraint screws $̂ri1

and $̂ri2 can be calculated by being reciprocal to all other screws $̂i1, $̂i4, $̂i5, $̂i6 besides actuation screws.
As shown in Eq. (23), note the product operations of the screws in this paper are all reciprocal product
operations.

$̂
T

ri1$P = $̂
T

ri1$̂i2θ̇i2 + $̂
T

ri1$̂i3ḋi, $̂
T

ri2$P = $̂
T

ri2$̂i2θ̇i2 + $̂
T

ri2$̂i3ḋi (23)

However, due to the actuation screw $̂i2 and the motion screws $̂i4, $̂i5, $̂i6 of the ball joint always
intersect at point Bi, $̂

T

ri1$̂i2 = 0 is obtained.
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Figure 14. Workspace of 3 − Reqv2PS configuration.

Figure 15. Motion screws of Reqv1RPS and Reqv2PS branch chains.
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Table II. Values of constraint Jacobian matrix Jx and rotate joint actuator q̇i in different configurations
of the RPM.

RPM configuration $̂
T

1 $̂
T

2 $̂
T

3 $̂
T

4 $̂
T

5 $̂
T

6 q̇1 q̇2 q̇3

3 − Reqv1RPS $̂
T

r11 $̂
T

r12 $̂
T

r21 $̂
T

r22 $̂
T

r31 $̂
T

r32 θ̇12 θ̇22 θ̇32

2(Reqv1RPS) − 1(Reqv2PS) $̂
T

r1s $̂
T

r13 $̂
T

r21 $̂
T

r22 $̂
T

r31 $̂
T

r32 0 θ̇22 θ̇32

1(Reqv1RPS) − 2(Reqv2PS) $̂
T

r11 $̂
T

r12 $̂
T

r2s $̂
T

r23 $̂
T

r3s $̂
T

r33 θ̇12 0 0
3 − Reqv2PS $̂

T

r1s $̂
T

r13 $̂
T

r2s $̂
T

r23 $̂
T

r3s $̂
T

r33 0 0 0

(a) (b)

Figure 16. Singularity of 3 − Reqv1RPS configuration.

For a Reqv2PS branch chain, the actuation screw is $̂i3 and the spherical 5R mechanism becomes a
passive joint, whose motion screw $̂i1 changes to $̂i1 = [ez

TAi
T × ez

T]T. Since the Reqv2PS branch chain
has five DOFs, there is a constraint screw that is reciprocal to all screws on the branch chain:

$̂
T

ris$P = 0 (24)

A screw that reciprocals to all but the actuation screw can be expressed as $̂ri3 = [aibi
TAi

T × aibi
T]T,

which satisfied the equation that $̂
T

ri3$P = $̂
T

ri3$̂i3ḋi. Combining Eq. (22), Eq. (23), and Eq. (24) above can
obtain the Jacobi of the mechanism Jx$P = Jqq̇i, which can be written as Eq. (25).⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

$̂
T

1

$̂
T

2

$̂
T

3

$̂
T

4

$̂
T

5

$̂
T

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

$P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 0 0 0 0

Q21 Q22 0 0 0 0

0 0 Q33 Q34 0 0

0 0 Q43 Q44 0 0

0 0 0 0 Q55 Q56

0 0 0 0 Q65 Q66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇1

ḋ1

q̇2

ḋ2

q̇3

ḋ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

Here Jx =
[

$̂
T

1 $̂
T

2 $̂
T

3 $̂
T

4 $̂
T

5 $̂
T

6

]T

is the constraint Jacobian matrix of the mechanism;

Jq = diag

((
Q11 Q12

Q21 Q22

)
,

(
Q33 Q34

Q43 Q44

)
,

(
Q55 Q56

Q65 Q66

))
is the actuation Jacobian matrix of the

mechanism; q̇i =
[

q̇1 ḋ1 q̇2 ḋ2 q̇3 ḋ3

]T is the input of the RPM.
For example, as to the 3 − Reqv1RPS configuration, the constraint Jacobian and actuation Jacobian

matrices are given by Eq. (18). The element values of the Jacobian matrix of different configurations
are shown in Table II and Table AI.
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(a) (b)

Figure 17. Verification diagram for singularity of 3 − Reqv1RPS configuration.

(b)

(a)

Figure 18. Singularity of 2(Reqv1RPS) − 1(Reqv2PS) configuration.

Taking the 3 − Reqv1RPS configuration as an example, the numerical algorithm for solving the
Jacobian matrix is shown in Fig. 16. The singularity of the constrained Jacobian matrix and determinant
is solved by numerical method as shown in Appendix Fig. A2.

The special singular positions of the 3 − Reqv1RPS configuration are singular planes as shown in
Fig 16 (a), for example, the plane y = 0. And its special singular postures are curved surfaces and
special lines as shown in Fig. 16 (b), e.g. the intersection line of two planes: θz = 0 and θx = 0.
Similarly, the singular configurations of the other three configurations can be obtained, as shown in
Figs. 18-20.

Taking the 3 − Reqv1RPS configuration as an example, the correctness of the singular configuration
points obtained by the numerical solution was verified based on the line geometry method. The singu-
larity verification diagram at the plane y = 0mm is shown in Fig. 18(a). When the posture of the moving
platform is at θx = θy = θz = 0, the two actuation joints in each chain are locked and provided two con-
straint screw $r11 and $r12 for the moving platform, where $r11 is along the direction of prismatic pair,
and $r12 passes through the center of the spherical hinge and is perpendicular to $r11. When the position
of the moving platform located in the plane of y = 0, the constraint screw $r11, $r21, and $r31 are intersect
at the point E1, and the constraint screw $r12, $r22, and $r32 are intersect at the point F1 directly below the
point E1. Therefore, the straight line E1F1 intersects the axes of six constraint screw at the same time, and
the rank of the constraint screw system is 5. At this time, the degree of freedom of the moving platform
increases while the mechanism behaves as constraint singularity. As branch chains of this mechanism are
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Figure 19. Singularity of 1(Reqv1RPS) − 2(Reqv2PS) configuration when z = 70mm.

Figure 20. Singularity of 3 − Reqv2PS configuration.

symmetrically distributed around the z-axis, we can draw the conclusion as shown in Fig. 17(a) that the
singular points of this configuration are mainly distributed on three planes which intersect the z-axis. In
the same way, as shown in Fig. 17(b), when the moving platform’s position fixed at x = y = 0, z = 90mm,
one of the singular straight lines in the 3 − Reqv1RPS configuration is θx = θz = 0. The singularity ver-
ification diagram is shown in Fig. 18(b). It can be found that the straight line E2F2 intersects with all
constraint screw, therefore, the mechanism is singularity with the rank of the constraint screw system of
the moving platform is 5.

As shown in Fig 19(a), the singular positions of 2(Reqv1RPS) − 1(Reqv2PS) configuration are con-
centrated near the three straight lines passing through the origin, and its singular posture is mainly
concentrated on singular planes θz = 0 according to Fig 19 (b), which contains two straight lines: θx = 0
and θy = 0 in the θxθy plane.

The singular posture of 1(Reqv1RPS) − 2(Reqv2PS) configuration is the singular surface concentrated
near the plane θz = 0 as shown in Fig. 19, and the singular curved surface divides the workspace into
two parts.

The constraint singularity positions of 3 − Reqv2PS configuration are all located are located at both
ends of the z-axis in the workspace as shown in Fig. 20, so there remain an entire accessible workspace
after eliminating singularity when the mechanism is performing a task.
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(a) (b)

(c) (d)

(e) (f)

Figure 21. Singularity of the RPM with different configurations in its reachable workspace.

3.4. Discussion
In order to analyze the practicality and application prospects of the four reconfigurable configurations,
it is crucial to discuss the distribution of singular configuration points inside and outside the workspace.
The constraint singularity in the workspace of the four configurations of the reconfigurable parallel
mechanism is shown in Fig. 21, which indicating that the singularities are mainly distributed on spe-
cial surfaces and planes. As shown in Fig. 21 (a) and (b), the singularity of 3 − Reqv1RPS configuration
divides the position space into six parts and divides the posture space into upper and lower halves. The
branch-chain rotational symmetry of the mechanism at 6-DOF configuration results in a high degree
of symmetry in the distribution of singularity points and workspace, which make the mechanism has
high potential for practical application. According to Fig. 21 (c), (d), and (e), when locking one or two
actuators of the reconfigurable 5R closed-loop linkages, the singularity of RPM does not significantly
affect the segmentation of the workspace. However, when locking three actuators of the reconfigurable
5R closed-loop linkages, the singularity of RPM limits its motion to a small range on the z-axis as
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shown in Fig. 21 (f). The advantage is that the workspace of the 3-DOF configuration still remains
a whole after removing the influence of singular points. This is because after locking the reconfig-
urable joints in the three branch chains, the mechanism once again has a good geometric relationship
with rotational symmetry of the branch chains. In summary, the reconfigurable configurations with 6,
5, and 3 DOF exhibit better kinematic performance than the 4 DOF configuration. Additionally, the
mechanism’s variable DOF and workspace can meet the practical application of task-oriented parallel
mechanisms.

4. Conclusions
This work proposes a reconfigurable joint and designs a reconfigurable parallel mechanism with 4, 5,
or 6 DOFs by analyzing the topological changes during the folding process of a single-vertex fivefold
origami pattern. The configuration switching of RPM is achieved by utilizing the singular configuration
when the origami pattern is fully folded. According to the kinematic analysis of different configurations
on the proposed RPM, the following conclusions can be obtained:

1. The spherical 5R mechanism moving in the folding direction of the crease replicates the stabiliz-
ing kinematic properties of origami, and the structural constraints and initial position and posture
of the reconfigurable parallel mechanism limit the complexity of the kinematic inverse solution,
both will promote to reduce the difficulty of controlling the mechanism while performing the
desired motion.

2. The proposed new RPM has different DOFs and motion performance after being switched to
different configurations, which can realize the multi-purpose of one machine. Even if the DOF
of a single direction is limited after configuration switching, the scope of its accessible workspace
can still satisfy the general operating requirements.

3. The singularity of the RPM is mainly located in the special planes, after setting the position or
posture of the moving platform, the singularity divided the reachable workspace of the mecha-
nism into several parts. Theoretically, the path of the mechanism can be controlled away from
the singularity by suitable trajectory planning, which has less influence on the execution of the
actual task of the mechanism. Therefore, the mechanism has the potential to adapt to multiple
tasks and different working conditions.
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Appendix

l1 = r1 + x − r2cθycθz, m1 = y − r2cθysθz, n1 = z + r2sθy.

l2 =
(

2x − r1 + r2cθycθz + √
3r2

(
cθxsθz − cθzsθxsθy

))
/2,

m2 =
(

2y + √
3r1 + r2cθysθz − √

3r2

(
cθxcθz + sθxsθysθz

))
/2, n2 = z − r2

(√
3cθysθx + sθy

)
/2.,

l3 =
(

2x − r1 + r2cθycθz + √
3r2

(
cθzsθxsθy − cθxsθz

))
/2,

m3 =
(

2y − √
3r1 + r2cθysθz + √

3r2

(
cθxcθz + sθxsθysθz

))
/2, n3 = z + r2

(√
3cθysθx − sθy

)
/2.

Table AI. Values of actuation Jacobian matrix Jq in different configurations of RPM

RPM configuration
(

Q11 Q12

Q21 Q22

) (
Q33 Q34

Q43 Q44

) (
Q55 Q56

Q65 Q66

)

3 − Reqv1RPS

⎛
⎝ $̂

T

r11 $̂12 $̂
T

r11 $̂13

$̂
T

r12 $̂12 $̂
T

r12 $̂13

⎞
⎠
⎛
⎝ $̂

T

r21 $̂22 $̂
T

r21 $̂23

$̂
T

r22 $̂22 $̂
T

r22 $̂23

⎞
⎠
⎛
⎝ $̂

T

r31 $̂32 $̂
T

r31 $̂33

$̂
T

r32 $̂32 $̂
T

r32 $̂33

⎞
⎠

2(Reqv1RPS) − 1(Reqv2PS)

(
0 0

0 $̂
T

r13 $̂13

) ⎛
⎝ $̂

T

r21 $̂22 $̂
T

r21 $̂23

$̂
T

r22 $̂22 $̂
T

r22 $̂23

⎞
⎠
⎛
⎝ $̂

T

r31 $̂32 $̂
T

r31 $̂33

$̂
T

r32 $̂32 $̂
T

r32 $̂33

⎞
⎠

1(Reqv1RPS) − 2(Reqv2PS)

⎛
⎝ $̂

T

r11 $̂12 $̂
T

r11 $̂13

$̂
T

r12 $̂12 $̂
T

r12 $̂13

⎞
⎠ (

0 0

0 $̂
T

r23 $̂23

) (
0 0

0 $̂
T

r33 $̂33

)

3 − Reqv2PS

(
0 0

0 $̂
T

r13 $̂13

) (
0 0

0 $̂
T

r23 $̂23

) (
0 0

0 $̂
T

r33 $̂33

)
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Figure A1. Numerical algorithm to solve the 3 − Reqv1RPS configuration’s workspace.
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Figure A2. Numerical algorithm for solving Jacobian matrix and singularity of 3 − Reqv1RPS configu-
rations.
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