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Abstract

Using variational methods and depending on a parameter λ we prove the existence of solutions for the
following class of nonlocal boundary value problems of Kirchhoff type defined on an exterior domain
Ω ⊂ R3: M(‖u‖2)[−∆u + u] = λa(x)g(u) + γ|u|4u in Ω,

u = 0 on ∂Ω,

for the subcritical case (γ = 0) and also for the critical case (γ = 1).
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1. Introduction

The purpose of this article is to investigate the existence of positive solutions to the
following class of nonlocal boundary value problems of the Kirchhoff type:M

(
‖u‖2)

[
−∆u + u

]
= λa(x)g(u) + γ|u|4u in Ω,

u = 0 on ∂Ω,
(Pλ,γ)

where λ is a positive real parameter and Ω is an exterior domain in R3, that is,
Ω = R3\Θ, with Θ a bounded smooth domain in R3. In this paper we study two cases
of the problem (Pλ,γ); the first case is when γ = 0 (subcritical case) and the second
case is when γ = 1 (critical case). The functions M : R+ ∪ {0} → R+, a : Ω→ R and
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g : R→ R are continuous functions that satisfy some conditions to be established later,
and

‖u‖2 =

∫
Ω

|∇u|2 dx +

∫
Ω

|u|2 dx.

Before stating our main result, we need the following hypotheses on the function
M : R+ ∪ {0} → R+:

(M1) The function M is increasing and 0 < M(0) := m0.
(M2) The function t 7→ M(t)/t is decreasing.

More information about the physical motivation behind Kirchhoff problems can be
found in [1–3, 6–8, 12] and references therein.

The hypothesis (M1) allows us to deal with the problem (Pλ,γ) via variational
methods. The hypothesis (M2) gives an important growth criterion to be used
throughout the paper.

A typical example of a function satisfying conditions (M1) and (M2) is given by

M(t) = m0 + bt,

for a real constant b > 0 and for all t ≥ 0. This function is the one originally considered
in the Kirchhoff equation in the seminal paper [10]. However, our hypotheses on the
function M include different classes of functions, such as M(t) = m0 + bt +

∑k
i=1 bitdi

with bi ≥ 0, di ∈ (0, 1) for all i ∈ {1, 2, . . . , k}, and also some more special functions,
not involving powers, such as M(t) = ln(t + m0), for some m0 > e (base of the natural
logarithm) and t ≥ 0.

The hypotheses on the function g : R→ R are as follows:

(g1)

lim
t→0

g(t)
|t|

= 0.

(g2)

lim
|t|→+∞

g(t)
t5 = 0.

(g3) There exists θ ∈ (4, 6) such that

0 < θG(t) ≤ tg(t) for all |t| > 0,

where G(t) =
∫ t

0 g(s) ds.
A typical example of a function satisfying conditions (g1)–(g3) is given by

g(t) =

k∑
i=1

Cit
qi
+

with k ∈ N, 1 < qi < 5, Ci > 0 and t+ = max{t, 0}.
The first hypothesis on the function a is:

(a1) a ∈ C(Ω,R) changes sign in Ω.
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To state the next hypotheses on the function a, let us define

Ω+ = {x ∈ Ω : a(x) > 0} and Ω− = {x ∈ Ω : a(x) < 0}.

It is known that there is a function ζ ∈ C∞0 (Ω) such that 0 ≤ ζ(x) ≤ 1 in Ω, ζ(x) = 1
in Ω+ and ζ(x) = 0 in Ω−. Depending on the distance dist(Ω+,Ω−) between the sets
Ω+ and Ω−, it is possible to take this function with K̃ := supΩ |∇ζ | as small as we need
(see (1.1)).

The next hypotheses on a are as follows:

(a2) The distance
dist(Ω+,Ω−) = δ > 0

is such that

K̃ <
θ

2
− 2, (1.1)

where θ is the constant that appears in hypothesis (g3).
(a3) There is R0 > 0 such that

a(x) < 0 for |x| ≥ R0 and sup
|x|≥R
|a(x)||x|2 <∞ for all R ≥ R0.

The hypothesis (a1) characterizes the problem (Pλ,γ) as indefinite, as can be seen in
[4, 9, 13].

The previous function ζ will be essential to overcome some difficulties such as the
boundedness of the Palais–Smale sequence.

The hypothesis (a3) appeared in [13] and is used to overcome the lack
of compactness of the embedding H1

0(Ω) ↪→ Ls(Ω), for 2 < s ≤ 6, due to the
unboundedness of the domain Ω.

The main result of this paper is the following theorem.

Theorem 1.1. Assume that conditions (M1), (M2), (g1)–(g3) and (a1)–(a3) hold. If
γ = 0, the problem (P1,0) has a positive solution for all λ > 0. If γ = 1, there exists
λ∗ > 0 such that the problem (Pλ,1) has a positive solution for all λ > λ∗.

In the literature, we did not find any works about Kirchhoff equations on exterior
unbounded domains as studied in this paper.

The scheme of this paper is as follows: in Section 2, we build up the variational
framework and prove some technical results; in Section 3, we prove the subcritical
case of the problem; and in Section 4, we prove the critical case.

2. The variational framework and some technical lemmas

Since we intend to find a positive solution for the problem (Pλ,γ), throughout this
paper let us assume that

g(t) = 0 ∀t ≤ 0.
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We recall that u ∈ H1
0(Ω) is a weak solution of (Pλ,γ) if it satisfies

M(‖u‖2)
[∫

Ω

∇u∇φ dx +

∫
Ω

uφ dx
]

= λ

∫
Ω

a(x)g(u)φ dx + γ

∫
Ω

|u|4uφ dx

for all φ ∈ H1
0(Ω).

We shall look for positive solutions as critical points of the C1-functional Iλ,γ :
H1

0(Ω)→ R, given by

Iλ,γ(u) =
1
2

M̂(‖u‖2) − λ
∫

Ω

a(x)G(u) dx −
γ

6

∫
Ω

u6
+ dx,

where M̂(t) =

∫ t

0
M(s) ds and u+ := max{u, 0}.

Note that

I′λ,γ(u)(φ) = M(‖u‖2)
[∫

Ω

∇u∇φ dx +

∫
Ω

uφ dx
]
− λ

∫
Ω

a(x)g(u)φ dx − γ
∫

Ω

u5
+φ dx

for all φ ∈ H1
0(Ω). Moreover, if the critical point is nontrivial, by a maximum principle,

we conclude that it is a positive solution for (Pλ,γ).
In order to use variational methods, we first derive some results related to the well-

known Palais–Smale compactness condition ((PS ) for short).
In the sequel, we prove that the functional Iλ,γ has the mountain pass geometry. This

fact is proved in the next two lemmas.

Lemma 2.1. Assume that conditions (M1), (a1)–(a3), (g1) and (g2) hold. Then there
exist positive numbers ρ and α such that

Iλ,γ(u) ≥ α > 0 ∀u ∈ H1
0(Ω); ‖u‖ = ρ.

Proof. It follows from (g1) and (g2) that, for each ε > 0, there is a positive constant Cε

such that

g(t) ≤ ε |t| + Cε |t|5. (2.1)

By (a3) we conclude that Ω+ is bounded. Defining C0 = sup
Ω+

a and using (2.1),∫
Ω

a(x)G(u) dx ≤
∫

Ω+

a(x)G(u) dx ≤ C0
ε

2

∫
Ω

|u|2 dx + C0
Cε

6

∫
Ω

|u|6 dx. (2.2)

By (2.2) and (M1),

Iλ,γ(u) ≥
m0

2
‖u‖2 −C0

ε

2

∫
Ω

|u|2 dx −
γ + Cε

6

∫
Ω

u6
+ dx.

Finally, using the Sobolev embedding theorem, there is a positive constant C > 0 such
that

Iλ,γ(u) ≥
m0 −C · ε

2
‖u‖2 −C‖u‖6.

For a sufficiently small ε the result follows choosing ρ > 0 small enough. �
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Lemma 2.2. Assume that conditions (M1), (M2), (a1)–(a3) and (g1)–(g3) hold. Then
there exists a function e ∈ H1

0(Ω) such that Iλ,γ(e) < 0 and ‖e‖ > ρ, where ρ > 0 appears
in Lemma 2.1.

Proof. Notice that using (g3) there exist constants C,D > 0 such that

G(t) ≥ C|t|θ − D. (2.3)

Moreover, by (M2),

M(t) ≤ M(1)t, (2.4)

for all t ≥ 1.
Let us consider v0 ∈ C∞0 (Ω+) \ {0}with v0 ≥ 0 in Ω+ and ‖v0‖ = 1. Using C0 := sup

Ω+

a,
(2.3) and (2.4),

Iλ,γ(tv0) ≤
M(1)

2
t2 −Ctθ

∫
supp v0

a(x)vθ0 dx + DC0|supp v0| − γ
t6

6

∫
Ω

v6
0 dx,

where |supp v0| denotes the Lebesgue measure of the set supp v0. Since 4 < θ < 6, the
result follows picking e = t∗v0, for some large enough t∗ > 0. �

Due to the two previously proved lemmas, we may employ a version of the
mountain pass theorem, without the (PS ) condition (see [14, page 12]), due to
Ambrosetti and Rabinowitz [5], and conclude the existence of a sequence (un) ⊂ H1

0(Ω)
satisfying

Iλ,γ(un)→ cλ,γ and I′λ,γ(un)→ 0, (2.5)

where

cλ,γ = inf
η∈Γ

max
t∈[0,1]

Iλ,γ(η(t)) > 0 (2.6)

and
Γ := {η ∈ C([0, 1],H1

0(Ω)) : η(0) = 0, η(1) = e}. (2.7)

Let us prove the following lemma about the sequence (un).

Lemma 2.3. Let (un) ⊂ H1
0(Ω) be a sequence satisfying (2.5). Then (un) is bounded.

Proof. By straightforward calculations, there is a positive constant C such that

Iλ,γ(un) −
1
θ

I′λ,γ(un)(ζun) ≤ ‖un‖ + C, (2.8)

where ζ is the function whose supremum (least upper bound), K̃, appears in hypothesis
(a2).

On the other hand, since ζ = 0 in Ω−, by (a3),

Iλ,γ(un) −
1
θ

I′λ,γ(un)(ζun)≥
1
2

M̂(‖un‖
2) −

1
θ

M(‖un‖
2)‖un‖

2

−
1
θ

K̃M(‖un‖
2)

∫
Ω

|un||∇un| dx.
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From Young’s inequality,

Iλ,γ(un) −
1
θ

I′λ,γ(un)(ζun)≥
1
2

M̂(‖un‖
2) −

1
θ

M(‖un‖
2)‖un‖

2

−
1
2θ

K̃M(‖un‖
2)‖un‖

2. (2.9)

By (2.8) and (2.9),

1
2

M̂(‖un‖
2) −

1
θ

M(‖un‖
2)‖un‖

2 −
1
2θ

K̃M(‖un‖
2)‖un‖

2 ≤ ‖un‖ + C. (2.10)

Recall that by the definition of M̂ and by (M2), it follows that

M̂(t) ≥ 1
2 M(t)t for all t ≥ 0. (2.11)

Thus, using (M1), (2.10) and (2.11),

m0

(1
4
−

1
θ
−

K̃
2θ

)
‖un‖

2 ≤ ‖un‖ + C.

Since δ in (a2) was taken to satisfy (1.1), we conclude that the sequence (un) is
bounded. �

Lemma 2.3 guarantees the existence of a convergent subsequence (un) ∈ H1
0(Ω) such

that
un ⇀ u in H1

0(Ω) (2.12)

and
un → u in Ls

loc(Ω), (2.13)

for 2 ≤ s < 6.
The following lemma will also be very useful.

Lemma 2.4. Let (un) ⊂ H1
0(Ω) be as in (2.12) and (2.13).

Then ∫
Ω

a(x)g(un)un dx→
∫

Ω

a(x)g(u)u dx (2.14)

and ∫
Ω

a(x)g(un)u dx→
∫

Ω

a(x)g(u)u dx. (2.15)

Proof. We shall prove (2.14); the proof of the other limit (2.15) is analogous.
Notice that for all R ≥ R0, where R0 is the positive constant that appears in

hypothesis (a3), since g has subcritical growth and (2.13) holds, applying the Lebesgue
dominated convergence theorem,∫

Ω
⋂

BR

a(x)g(un)un dx→
∫

Ω
⋂

BR

a(x)g(u)u dx.

https://doi.org/10.1017/S1446788716000574 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000574


[7] Kirchhoff equations in exterior domains 335

The proof is completed if we prove that

lim
R→∞

∫
Ω\BR

a(x)g(un)un dx = 0 (2.16)

uniformly in n.
It follows from (g1) and (g2) that, for ε > 0 and a fixed q ∈ (4, 6), there is a constant

Cε such that

g(t) ≤ ε|t| + Cε |t|q−1 + ε |t|5. (2.17)

Using (2.17),∫
Ω\BR

a(x)g(un)un dx ≤ ε sup
|x|≥R
|a(x)|

∫
Ω\BR

|un|
2 dx

+ Cε sup
|x|≥R
|a(x)||x|2

∫
Ω\BR

|un|
q

|x|2
dx

+ ε sup
|x|≥R
|a(x)|

∫
Ω\BR

|un|
6 dx. (2.18)

Applying Hölder’s inequality,∫
Ω\BR

|un|
q

|x|2
dx ≤

(∫
Ω\BR

dx
|x|2r

)1/r
‖un‖

q (2.19)

where r = 6/(6 − q). Since r > 3/2, then, given ε > 0, there exists R = R(ε) ≥ R0

such that (∫
Ω\BR

dx
|x|2r

)1/r
< ε. (2.20)

Employing inequality (2.20) in (2.19) and (2.19) in (2.18), considering that (a3)
implies sup|x|≥R |a(x)| < ∞, and taking into account the boundedness of the sequence
(un), the limit (2.16) is proved and the proof is completed. �

3. The subcritical case

In the subcritical case, we consider γ = 0 and no restriction on the parameter λ is
made, so it can be absorbed by the function a. Then, the problem (Pλ,γ) reduces toM(‖u‖2)[−∆u + u] = a(x)g(u) in Ω,

u = 0 on ∂Ω,
(P1,0)

with the associated functional given by

I0(u) =
1
2

M̂(‖u‖2) −
∫

Ω

a(x)G(u) dx.
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Proof of Theorem 1.1 in the subcritical case (γ = 0).
Let us show that the sequence (un) that satisfies (2.5) has, indeed, a convergent

subsequence. By Lemma 2.3, the sequence is bounded and has a weak convergent
subsequence converging to u. Hence, up to subsequences, since ‖u‖ ≤ lim infn→∞ ‖un‖,
we get ‖un‖

2 − ‖u‖2 ≥ 0 for sufficiently large n. Thus, the weak convergence of (un),
(2.14) and (2.15) implies that for large n,

on = I′0(un)(un) − I′0(un)(u)

= M(‖un‖
2)[‖un‖

2 − ‖u‖2] +

∫
Ω

a(x)g(un)u dx −
∫

Ω

a(x)g(un)un dx

≥m0[‖un‖
2 − ‖u‖2] + on.

Hence, since m0 > 0, we conclude that limn→∞ ‖un‖ = ‖u‖, which implies the
convergence limn→∞ un = u in the space H1

0(Ω).
The functional I0 is of C1 class, and by (2.5) and the above convergences it follows

that I
′

0(u) = 0. Therefore, u is a weak solution of the problem (P1,0).

4. The critical case

In the critical case, we consider γ = 1, and the problem (Pλ,γ) takes the formM(‖u‖2)[−∆u + u] = λa(x)g(u) + |u|4u in Ω,

u = 0 on ∂Ω,
(Pλ,1)

with the associated functional given by

Iλ(u) =
1
2

M̂(‖u‖2) − λ
∫

Ω

a(x)G(u) dx −
1
6

∫
Ω

u6
+ dx.

To prove Theorem 1.1 in the case γ = 1, we need to establish some definitions. Let
us denote by S the best Sobolev constant of the embedding

H1
0(Ω) ↪→ L6(Ω),

which is given by

S := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2 dx

(
∫

Ω
|u|6 dx)1/3

.

It is well known that S is independent of the set Ω and it is never achieved, except
when Ω = R3. Moreover,

S :=

∫
R3 |∇U |2 dx

(
∫
R3 |U |6 dx)1/3

,

where U(x) = C3/(|x|2 + 1) and C3 is a constant such that

−∆U = U5 in R3.

From now on, we shall prove an estimate for cλ,1 defined in (2.6). For economy of
notation let us write cλ,1 := cλ.

https://doi.org/10.1017/S1446788716000574 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000574


[9] Kirchhoff equations in exterior domains 337

Lemma 4.1. If conditions (M1)–(M3), (a1)–(a3) and (g1)–(g3) hold, then

lim
λ→∞

cλ = 0. (4.1)

Proof. Let v0 ∈ H1
0(Ω) be the function given in the proof of Lemma 2.2. Since the

functional Iλ has the mountain pass theorem geometry, there exists tλ such that

Iλ(tλv0) = max
t≥0

Iλ(tv0).

Hence, since v0 is normalized,

t2
λM(t2

λ) = λ

∫
Ω

a(x)g(tλv0)tλv0 + t6
λ

∫
Ω

v0
6 dx, (4.2)

and then,

t2
λM(t2

λ) ≥ t6
λ

∫
Ω

v0
6 dx.

Using (2.4),

t4
λM(1) ≥ t6

λ

∫
Ω

v0
6 dx,

and, therefore, for any sequence λn →∞ there is a sequence tλn → t0, for some real
number t0 ≥ 0.

Let us prove that t0 = 0. If t0 > 0, we would have a contradiction. Indeed, (4.2)
implies that the expression

λn

∫
Ω

a(x)g(tλn v0)tλn v0 + t6
λn

∫
Ω

v0
6 dx

is bounded. This, in turn, yields that

λn

∫
Ω

a(x)g(tλn v0)tλn v0 ≤

∫
Ω

a(x)g(tλn v0)tλn v0 + t6
λn

∫
Ω

v0
6 dx

is also bounded, but this cannot happen because

lim
n→∞

λn

∫
Ω

a(x)g(tλn v0)tλn v0 = +∞.

Therefore, t0 = 0.
Using the notation and results of Lemma 2.2, let us define the path η∗(t) =: te =

tt∗v0. Note that η∗(0) = 0, Iλ(η∗(1)) < 0 and, consequently, η∗(t) ∈ Γ, as defined in
(2.7).

Finally,
0 < cλ ≤ max

t∈[0,1]
Iλ(η∗(t)) = Iλ(tλv0) ≤ 1

2 M̂(t2
λ)

and the continuity of the function M̂, together with the limit tλn → 0, imply that
limλ→+∞ cλ = 0, as we wished to prove. �
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Proof of Theorem 1.1 in the critical case (γ = 1).
Let us show that the Palais–Smale sequence (un) that satisfies (2.5) has a

subsequence such that

lim
n→∞

∫
Ω

|un|
6 dx =

∫
Ω

|u|6 dx (4.3)

and also that
lim
n→∞
||un||

2 = ||u||2. (4.4)

Indeed, in order to prove (4.3), taking a subsequence, we may suppose that

|∇un|
2 ⇀ |∇u|2 + µ and |un|

6 ⇀ |u|6 + ν (in the weak∗ sense of measures).

Using the concentration compactness principle due to Lions (see [11, Lemma 2.1]),
we obtain an at most countable index set Λ and sequences (xi) ⊂ R3, (µi), (νi) ⊂ [0,∞),
such that

ν =
∑
i∈Λ

νiδxi , µ ≥
∑
i∈Λ

µiδxi and S ν1/3
i ≤ µi, (4.5)

for all i ∈ Λ, where δxi is the Dirac mass at xi ∈ Ω.
Now we claim Λ = ∅. Arguing by contradiction, assume that Λ , ∅. Consider a

function φ such that φ ∈ C∞0 (Ω, [0, 1]), φ ≡ 1 on B1(0), φ ≡ 0 on B2(0) and |∇φ|∞ ≤ 2.
Let us fix i ∈ Λ. Defining ψ%(x) := φ((x − xi)/%) where % > 0, we have that (ψ%un) is
bounded. Thus I′1(un)(ψ%un)→ 0, that is,

M(‖un‖
2)
[∫

Ω

un∇un · ∇ψ% dx +

∫
Ω

|un|
2ψ% dx

]
= −M(‖un‖

2)
∫

Ω

ψ%|∇un|
2 dx + λ

∫
Ω

a(x)g(un)ψ%un dx +

∫
Ω

ψ%|un|
6 dx + on(1).

Since the support of ψ% is B2%(xi), we obtain∣∣∣∣∣∫
Ω

un∇un · ∇ψ% dx
∣∣∣∣∣ ≤ ∫

B2ρ(xi)
|∇un||un∇ψ%| dx.

By the Hölder inequality and the fact that the sequence (un) is bounded in H1
0(Ω),∣∣∣∣∣∫

Ω

un∇un · ∇ψ% dx
∣∣∣∣∣ ≤ C

(∫
B2%(xi)

|un∇ψ%|
2 dx

)1/2
.

By the dominated convergence theorem,
∫

B2%(xi)
|un∇ψ%|

2 dx→ 0 as n→ +∞ and
%→ 0. Therefore,

lim
%→0

[
lim
n→∞

∫
Ω

un∇un · ∇ψ% dx
]

= 0.

By (M1),

lim
%→0

lim
n→∞

[
Ma(‖un‖

2)
∫

Ω

un∇un · ∇ψ% dx
]

= 0.
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Moreover, similar reasoning yields

lim
%→0

lim
n→∞

[∫
Ω

a(x)g(un)ψ%un dx
]

= 0.

Thus,

m0

∫
Ω

ψ%dµ ≤
∫

Ω

ψ%dν + o%(1).

Letting % → 0, and using the standard theory of Radon measures and (4.5), the
following inequality is achieved:

νi ≥ (m0S )3/2.

Now we shall prove that the above inequality cannot occur, and therefore that the
set Λ is empty. Indeed, arguing by contradiction, let us suppose that νi ≥ (m0S )3/2 for
some i ∈ Λ. Thus, some known standard arguments imply that

cλ ≥
(1
θ
−

1
2∗

)
(m0S )3/2. (4.6)

By (4.1), there exists λ∗ > 0 such that

cλ <
(1
θ
−

1
2∗

)
(m0S )3/2 ∀λ ≥ λ∗. (4.7)

But inequality (4.6) contradicts (4.7) above. Hence, the index set Λ = ∅ and thus
(4.3) holds.

In order to prove (4.4), by Lemma 2.3, again up to subsequences, we may assume
that limn→∞ ||un||

2 = A, for some real number A ≥ 0.
By (4.3) and Lemma 2.4,

lim
n→∞

M(||un||
2)||un||

2 = λ

∫
Ω

a(x)g(u)u dx +

∫
Ω

|u|6 dx. (4.8)

Using (M1),

M(A)
[∫

Ω

∇u∇φ dx +

∫
Ω

uφ dx
]

= λ

∫
Ω

a(x)g(u)φ dx +

∫
Ω

|u|4uφ dx, (4.9)

for all φ ∈ H1
0(Ω).

The limits in (4.8) and (4.9) yield

lim
n→∞

M(||un||
2)||un||

2 = M(A)||u||2

and (4.4) is valid.
For λ ≥ λ∗, the rest of the proof follows the same steps made at the end of the proof

of Theorem 1.1 in the subcritical case. �

https://doi.org/10.1017/S1446788716000574 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000574


340 G. M. Figueiredo and D. C. de Morais Filho [12]

References
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