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Regular Homeomorphisms of Finite Order
on Countable Spaces

Yevhen Zelenyuk

Abstract. We present a structure theorem for a broad class of homeomorphisms of finite order on

countable zero dimensional spaces. As applications we show the following.

(a) Every countable nondiscrete topological group not containing an open Boolean subgroup can be par-

titioned into infinitely many dense subsets.

(b) If G is a countably infinite Abelian group with finitely many elements of order 2 and βG is the Stone–

Čech compactification of G as a discrete semigroup, then for every idempotent p ∈ βG \ {0},

the subset {p,−p} ⊂ βG generates algebraically the free product of one-element semigroups {p}
and {−p}.

1 Introduction

Let X be a topological space with a distinguished point e ∈ X and let f : X → X be a

homeomorphism with f (e) = e. We say that f is regular if for every x ∈ X\{e}, there

is a homeomorphism gx of a neighborhood of e onto a neighborhood of x such that

f gx|U = g f (x) f |U for some neighborhood U of e. All spaces are assumed to be Haus-

dorff. Notice that if a space X admits a regular homeomorphism, then for any two

points x, y ∈ X, there is a homeomorphism g of a neighborhood of x onto a neigh-

borhood of y with g(x) = y, and if in addition X is countable and zero dimensional

(i.e., has a base of clopen sets), then g can be chosen to be a homeomorphism of X

onto itself. Hence, a countable zero dimensional space admitting a regular home-

omorphism is homogeneous. The notion of a regular homeomorphism generalizes

that of a local automorphism on a local left group [7].

A space X with a partial binary operation · and a distinguished point e ∈ X is a

local left group if

(i) x · e = x for all x ∈ X,

(ii) (x · y) · z = x · (y · z) whenever all the products in the equality are defined, and

(iii) for every x ∈ X \ {e}, there is a neighborhood U of e such that x · y is defined

for all y ∈ U , x ·U is a neighborhood of x and λx : U ∋ y 7→ x · y ∈ x ·U is a

homeomorphism.

A basic example of a local left group is an open neighborhood of the identity of a

left topological group. (A group endowed with a topology is left topological if all left
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Regular Homeomorphisms of Finite Order on Countable Spaces 709

shifts are continuous, or equivalently, homeomorphisms.)

A mapping f : X → X of a local left group X onto itself is a local automorphism if f

is a homeomorphism with f (e) = e and for every x ∈ X\{e}, there is a neighborhood

U of e such that f (xy) = f (x) f (y) for all y ∈ U .

To see that a local automorphism f : X → X is regular, for every x ∈ X \ {e},

choose a neighborhood Ux of e such that xy is defined for all y ∈ Ux, xUx is a

neighborhood of x and λx : Ux ∋ y 7→ xy ∈ xUx is a homeomorphism, and put

gx = λx. Clearly gx(e) = x. Choose a neighborhood Vx of e such that Vx ⊆ Ux,

f (Vx) ⊆ U f (x) and f (xy) = f (x) f (y) for all y ∈ Vx. Then for every y ∈ Vx,

f gx(y) = f (xy) = f (x) f (y) = g f (x) f (y).

We shall deal with regular homeomorphisms of finite order. A bijection f : X → X

has finite order if there is n > 0 such that f n
= idX , and the smallest such n is the

order of f . Regular homeomorphisms of finite order occur very naturally in a large

class of topological groups. For example, by Lemma 3.3, if G is a topological group

with no elements of order 2, then the inversion G ∋ x 7→ x−1 ∈ G is a regular

homeomorphism.

Let X be a space with a distinguished point e ∈ X and let f : X → X be a homeo-

morphism of finite order with f (e) = e. Define the spectrum of f by

spec( f ) = {|O(x)| : x ∈ X \ {e}},

where O(x) is the orbit of x with respect to f , and more generally, for any subset

Y ⊆ X,

spec( f ,Y ) = {|O(x)| : x ∈ Y \ {e}}.

We say that f is spectrally irreducible if for every neighborhood U of e,

spec( f ,U ) = spec( f ).

Also, a neighborhood U of a point x ∈ X is spectrally minimal if for every neighbor-

hood V of x contained in U ,

spec( f ,V ) = spec( f ,U ).

It is clear that for every neighborhood U of x, there is a spectrally minimal neigh-

borhood of x contained in U and that if U is spectrally minimal, so is every neigh-

borhood of x contained in U . We now show that there is an arbitrarily small open

invariant neighborhood of e. This will allow us to restrict ourselves in the study of

homeomorphisms of finite order in a neighborhood of a fixed point to considering

spectrally irreducible ones.

We say that a family F of subsets of X is invariant with respect to f : X → X if for

every Y ∈ F, f (Y ) ∈ F. In particular, Y ⊆ X is invariant if f (Y ) = Y . (Since f has

finite order, f (Y ) = Y is equivalent to f (Y ) ⊆ Y .)

Lemma 1.1 Let X be a space, let f : X → X be a homeomorphism of finite order,

and let x ∈ X with |O(x)| = s. Then for every neighborhood U of x, there is an open

neighborhood V of x contained in U such that the family { f j(V ) : j < s} is disjoint

and invariant. If X is zero dimensional, then V can be chosen to be clopen.
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Proof For each j < s, choose a neighborhood U j of f j(x) such that all of them

are pairwise disjoint and U0 ⊆ U . Let n be the order of f . Then n = sl for some

integer l. Choose a neighbourhood W of x such that f j+is(W ) ⊆ U j for all j < s and

i < l. Put V =

⋃

i<l f is(W ). Then for each j < s, f j(V ) =

⋃

i<l f j+is(W ) ⊆ U j ,

so { f j(V ) : j < s} is disjoint. Also f s(V ) =

⋃

i<l f (i+1)s(W ) and since f ls
= f 0,

f s(V ) =

⋃

i<l f is(W ) = V , so { f j(V ) : j < s} is invariant.

In this paper we examine spectrally irreducible regular homeomorphisms of fi-

nite order. The following lemma says that the spectrum of such a homeomorphism

is a finite subset of N closed under taking the least common multiple, lcm, (i.e.,

lcm(s, t) ∈ spec( f ) for all s, t ∈ spec( f )).

Lemma 1.2 Let X be a space with a distinguished point e and let f : X → X be a

spectrally irreducible regular homeomorphism of finite order. Let x0 ∈ X \ {e} with

|O(x0)| = s and let U be a spectrally minimal neighbourhood of x0. Then spec( f ,U ) =

{lcm(s, t) : t ∈ {1} ∪ spec( f )}.

Proof For each x ∈ O(x0), let gx be a homeomorphism of a neighborhood Ux of

e onto a neighborhood of x such that f gx|Vx
= g f (x) f |Vx

for some neighborhood

Vx ⊆ Ux of e. Choose a neighborhood V of e such that V ⊆ U ∩
⋂

x∈O(x0) Vx and

the subsets gx(V ), where x ∈ O(x0), are pairwise disjoint. Let n be the order of f .

Choose a neighborhood W of e such that f i(W ) ⊆ V for all i < n. Then clearly

this inclusion holds for all i < ω, and furthermore, for every y ∈ W , f igx0
(y) =

g f i (x0) f i(y). Indeed, it is trivial for i = 0, and further, by induction, we obtain that

f igx0
(y) = f f i−1gx0

(y) = f g f i−1(x0) f i−1(y) = g f i (x0) f i(y).

Now let y ∈ W , |O(y)| = t , and k = lcm(s, t). We claim that |O(gx0
(y))| =

k. Indeed, f k(gx0
(y)) = g f k(x0)( f k(y)) = gx0

(y). On the other hand, suppose that

f i(gx0
(y)) = gx0

(y) for some i. Then g f i (x0)( f i(y)) = gx0
(y). Since the subsets gx(V ),

x ∈ O(x0), are pairwise disjoint, it follows from this that f i(x0) = x0, so s|i. But then

also f i(y) = y, as gx0
is injective, and so t|i. Hence k|i.

Now, given any finite subset of N closed under lcm, we produce a spectrally irre-

ducible regular homeomorphism of the corresponding spectrum.

Example 1.3 Let S be a finite subset of N closed under lcm. Put m = 1 +
∑

s∈S s

and let Z(m) = {0, 1, . . . , m − 1} denote the additive group of integers modulo m.

Let Z =

∑

ω Z(m) be the direct sum of ω copies of Z(m). Endow Z with the topology

induced by the product topology on
∏

ω Z(m), so Z is a topological group with a

neighborhood base of the zero consisting of subgroups

Zn = {(xi) ∈ Z : xi = 0 for all i ≤ n},

where n < ω. Enumerate S as s0 < s1 < · · · < st−1 and define the permutation π0

on Z(m) by the product of disjoint cycles

π0 = (1, . . . , s0)(s0 + 1, . . . , s0 + s1) · · · (s0 + · · · + st−2 + 1, . . . , s0 + · · · + st−1).
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Let π : Z → Z be the coordinatewise permutation induced by π0, that is, π is defined

by π((xn)) = (π0(xn)). Then π is a homeomorphism with π(0) = 0, spec(π, Zn) = S,

and π(x + y) = π(x) + π(y), whenever supp(x) ∩ supp(y) = ∅, where, as usual,

supp(x) = {n < ω : xn 6= 0}.

Hence π : Z → Z is a spectrally irreducible local automorphism of spectrum S. We

call π the standard permutation of spectrum S.

We need one more notation concerning the group Z =

∑

ω Z(m).

For every x ∈ Z, let σx denote the shift in Z by x, that is σx : Z → Z is defined by

σx(y) = x + y.

Our main result tells us that in a certain sense Example 1.3 is universal.

Theorem 1.4 Let X be a countable nondiscrete zero dimensional space with a distin-

guished point e ∈ X, let f : X → X be a spectrally irreducible regular homeomorphism

of finite order, and let π : Z → Z be the standard permutation of the same spectrum

as f . Then there is a continuous bijection h : X → Z with h(e) = 0 such that

(1) f = h−1πh, and

(2) for every x ∈ X, λx = h−1σh(x)h is a homeomorphism of X onto itself.

Furthermore, if X is a local left group and f is a local automorphism, then h can be

chosen so that

(3) λx(y) = xy, whenever max supp(h(x)) + 1 < min supp(h(y)).

The conclusion of Theorem 1.4 can be rephrased as follows:

One can define the operation of the group Z on X in such a way that 0 = e, the

topology of Z is weaker than that of X and

(1) f = π, and

(2) for every x ∈ X, σx : X ∋ y 7→ x + y ∈ X is a homeomorphism.

Furthermore, if X is a local left group and f is a local automorphism, then the oper-

ation can be defined so that

(3) x + y = xy, whenever max supp(x) + 1 < min supp(y).

The second part of Theorem 1.4, the case when X is a local left group and f is a

local automorphism, is a result from [7, Theorem 3.1]. The first part with f = idX is

a result from [8, Theorem 2].

Actually, Theorem 1.4 characterizes spectrally irreducible regular homeomorph-

isms on countable zero dimensional spaces. Suppose f : X → X is a spectrally irre-

ducible homeomorphism of finite order and for some m there is a continuous bijec-

tion h : X → Z =

∑

ω Z(m) with h(e) = 0 such that

(1) h f h−1 is a coordinatewise permutation on Z, and

(2) for every x ∈ X, h−1σh(x)h is a homeomorphism of X onto itself.

Then f is regular.

To see this, let π = h f h−1. For every x ∈ X \ {e}, let n(x) = max supp(h(x)) + 1,

Ux = h−1(Zn(x)) and gx = h−1σh(x)h|Ux
. Then for every y ∈ Ux, f (y) ∈ Ux = U f (x)
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and

f gx(y) = h−1πhh−1σh(x)h(y) = h−1πσh(x)h(y)

= h−1π(h(x) + h(y)) = h−1(π(h(x)) + π(h(y)))

= h−1(h( f (x)) + h( f (y))) = h−1σh( f (x))h( f (y)) = g f (x) f (y).

In Section 2, we prove Theorem 1.4. In Section 3, we consider two applications of

Theorem 1.4. The first one is concerned with resolvability of topological spaces. The

second one deals with the Stone–Čech compactification of a discrete semigroup.

2 Proof of Theorem 1.4

Let W be the set of all words over the alphabet Z(m) including the empty word ∅.

For every w ∈ W , let |w| denote the length of w. A nonempty word w is basic if all

nonzero letters in w form a final subword. In particular, every nonempty zero word

(i.e., all the letters are zero) is basic. For every v, w ∈ W such that |v|+1 < |w| and the

first |v|+ 1 letters in w are zero, define v + w ∈ W to be the result of substituting v for

the initial subword of length |v| in w. Each nonempty w ∈ W has a unique canonical

decomposition in the form w = w0 + · · · + wk, where for each i ≤ k, wi is basic, and

for each i < k, wi is nonzero. From now on, when we write w = w0 + · · · + wk, we

mean that this is the canonical decomposition.

The permutation π0 on Z(m), which induces the standard permutation π on

Z, also induces the permutation π1 : W → W . If w = ξ0 · · · ξp, then π1(w) =

π0(ξ0) · · ·π0(ξp). But we will write π instead of π0 and π1.

For each x ∈ X \ {e}, choose a homeomorphism gx of a neighborhood of e onto a

neighborhood of x with gx(e) = x such that f gx = g f (x) f |U for some neighborhood

U of e. Also put ge = idX . If X is a local left group and f is a local automorphism,

choose gx so that gx(y) = xy. Enumerate X as {xn : n < ω} with x0 = e.

We shall assign to each w ∈ W a point x(w) ∈ X and a clopen spectrally minimal

neighborhood X(w) of x(w) such that

(i) x(0n) = e and X(∅) = X,

(ii) {X(w⌢ξ) : ξ ∈ Z(m)} is a partition of X(w),

(iii) x(w) = gx(w0) · · · gx(wk−1)(x(wk)) and X(w) = gx(w0) · · · gx(wk−1)(X(wk)), where

w = w0 + · · · + wk,

(iv) f (x(w)) = x(π(w)) and f (X(w)) = X(π(w)),

(v) xn ∈ {x(w) : |w| = n}.

For this, we need the following lemma.

Let P and Q be families of subsets of a set X. We say that Q is inscribed into P if

every member of Q is contained in a member of P.

Lemma 2.1 Let X be a countable nondiscrete zero dimensional space with a distin-

guished point e ∈ X and let f : X → X be a homeomorphism of finite order with

f (e) = e. Let U be a clopen invariant subset of X, let K be a finite invariant sub-

set of U , and let P be a clopen invariant partition of U such that for each C ∈ P,

spec( f , K∩C) = spec( f ,C). Then there is a clopen invariant partition {U (x) : x ∈ K}
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of U inscribed into P such that for each x ∈ K, U (x) is a spectrally minimal neighbor-

hood of x.

Proof Enumerate U as {xn : n < ω}with x0 ∈ K . For each x ∈ K , we shall construct

an increasing sequence (Un(x))n<ω of clopen spectrally minimal neighborhoods of x

such that for every n < ω, the family {Un(x) : x ∈ K} is disjoint, inscribed into P

and invariant, and xn ∈ Un =

⋃

x∈K Un(x). Then the subsets U (x) =

⋃

n<ω Un(x),

x ∈ K , will be as required. We proceed by induction on n.

Let yi , i < l, be representatives of all orbits in K and let |O(yi)| = si . For each

i < l, choose a neighborhood Wi of yi such that f j(Wi) is a spectrally minimal

neighborhood of f j(yi) for all j < si , and the family { f j(Wi) : i < l, j < si}
is disjoint and inscribed into P. By Lemma 1.1, for each i < l, there is a clopen

neighborhood Vi of yi contained in Wi such that the family { f j(Vi) : j < si} is

invariant. Put U0( f j(yi)) = f j(Vi).

Fix n > 0 and suppose that we have constructed required Un−1(x), x ∈ K . With-

out loss of generality one may suppose also that xn /∈ Un−1. Let |O(xn)| = s and

let xn ∈ Cn ∈ P. Using Lemma 1.1, choose a clopen neighborhood Vn of xn such

that for each j < s, f j(Vn) is a spectrally minimal neighborhood of f j(xn), and the

family { f j(Vn) : j < s} ∪ {Un−1(x) : x ∈ K} is disjoint, inscribed into P and

invariant. Pick zn ∈ K ∩ Cn with |O(zn)| = s. For each j < s, put Un( f j(zn)) =

Un−1( f j(zn)) ∪ f j(Vn). For each x ∈ K \ O(zn), put Un(x) = Un−1(x).

Now, enumerate S as s0 < s1 < · · · < st−1 and for each i < t , pick a representative

ζi of the orbit in Z(m)\{0} of length si . Choose a clopen invariant neighborhood U1

of e such that x1 /∈ U1 and spec( f , X \ U1) = spec( f ). Put x(0) = e and X(0) = U1.

Then choose points ai ∈ X \U1, i < t , with pairwise disjoint orbits of lengths si such

that x1 ∈
⋃

i<t O(ai). For each i < t and j < si , put x(π j(ζi)) = f j(ai). By Lemma

2.1, there is an invariant partition {X(ξ) : ξ ∈ Z(m) \ {0}} of X \U1 such that X(ξ)

is a clopen spectrally minimal neighborhood of x(ξ).

Fix n > 1 and suppose that X(w) and x(w) have been constructed for all w ∈ W

with |w| < n so that conditions (i)–(v) are satisfied.

Notice that the subsets X(w), |w| = n − 1, form a partition of X. So one of them,

say X(u), contains xn. Let u = u0 + · · · + uq. Then X(u) = gx(u0) · · · gx(uq−1)(X(uq))

and xn = gx(u0) · · · gx(uq−1)(yn) for some yn ∈ X(uq). Choose a clopen invariant

neighborhood Un of e such that for all basic w with |w| = n − 1,

(a) gx(w)(Un) ⊂ X(w),

(b) f gx(w)|Un
= g f (x(w)) f |Un

, and

(c) spec( f , X(w) \ gx(w)(Un)) = spec(X(w)).

If yn 6= x(uq), choose Un in addition so that

(d) yn /∈ gx(uq)(Un).

Put x(0n) = e and X(0n) = Un.

Let w ∈ W be an arbitrary nonzero basic word with |w| = n − 1 and let O(w) =

{w j : j < s}, where w j+1 = π(w j) for j < s − 1 and π(ws−1) = w0. Put Y j =

X(w j) \ gx(w j )(Un). Using Lemma 1.2, choose points bi ∈ Y0, i < t , with pairwise
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disjoint orbits of lengths lcm(si , s). If uq ∈ O(w), choose bi in addition so that

yn ∈
⋃

i<t

O(bi).

For each i < t and j < si , put x(π j(w⌢ξi)) = f j(bi). Then, using Lemma 2.1,

inscribe an invariant partition

{X(v⌢ξ) : v ∈ O(w), ξ ∈ Z(m) \ {0}}

into the partition {Y j : j < s} such that X(v⌢ξ) is a clopen spectrally minimal

neighborhood of x(v⌢ξ).

For nonbasic w ∈ W with |w| = n, define x(w) and X(w) by condition (iii).

To check (ii) and (iv), let |w| = n − 1 and w = w0 + · · · + wk. Then

X(w⌢0) = gx(w0) · · · gx(wk)(X(0n)) = gx(w0) · · · gx(wk−1)(gx(wk)(X(0n)))

and

X(w⌢ξ) = gx(w0) · · · gx(wk−1)(X(w⌢
k ξ)),

so (ii) is satisfied. Next,

f (x(w)) = f gx(w0) · · · gx(wk−1)(x(wk))

= g f (x(w0)) f gx(w1) · · · gx(wk−1)(x(wk))

...

= g f (x(w0)) · · · g f (x(wk−1)) f (x(wk))

= gx(π(w0)) · · · gx(π(wk−1))(x(π(wk)))

= x(π(w0) · · ·π(wk−1)π(wk))

= x(π(w)),

so (iv) is satisfied as well.

To check (v), suppose that xn /∈ {x(w) : |w| = n − 1}. Then

xn = gx(u0) · · · gx(uq−1)(yn) = gx(u0) · · · gx(uq−1)(u⌢
q ξ) = x(u⌢ξ).

Now, for every x ∈ X, there is w ∈ W with nonzero last letter such that x = x(w),

so {v ∈ W : x = x(v)} = {w⌢0n : n < ω}. Hence, we can define h : X → Z by

putting for every w = ξ0 · · · ξn ∈ W ,

h(x(w)) = w = (ξ0, . . . , ξn, 0, 0, . . .).

It is clear that h is bijective and h(e) = 0. Since for every z = (ξi)i<ω ∈ Z,

h−1(z + Zn) = X(ξ0 · · · ξn),
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h is continuous.

To see (1), let x = x(w). Then

h( f (x(w))) = h(x(π(w))) = π(w) = π(w) = π(h(x(w))).

To see (2), let x = x(w), w = w0 + · · · + wk and n = max supp(h(x)) + 1. We first

show that

λx|h−1(Zn) = gx(w0) · · · gx(wk)|h−1(Zn).

Let y ∈ h−1(Zn), y = x(v), and v = v0 + · · · + vl. Then

hgx(w0) · · · gx(wk)(y) = hgx(w0) · · · gx(wk)gx(v0) · · · gx(vl−1)(x(vl))

= h(x(w + v)) = w + v = w + v

= h(x(w)) + h(x(v)) = σh(x)h(y).

It follows from (iii) that gx(w0) · · · gx(wk) homeomorphically maps X(0n), a neigh-

borhood of e, onto X(w⌢0), a neighborhood of x, and so does λx.

Now, to see that λx homeomorphically maps a neighborhood of an arbitrary point

y ∈ X onto a neighborhood of z = λx(y), it suffices to check that λx = λz(λy)−1.

Indeed, z = h−1σh(x)h(y) = h−1(h(x) + h(y)), and then

λz(λy)−1
= h−1σh(x)+h(y)h(h−1σh(y)h)−1

= h−1σh(x)+h(y)hh−1(σh(y))
−1h

= h−1σh(x)+h(y)σ−h(y)h = h−1σh(x)h = λx.

To see (3), let x = x(w) and w = w0 + · · ·+ wk. If k = 0, then λx(y) = gx(y) = xy.

Continuing, by induction on k, we obtain that

λx(y) = gx(w0) · · · gx(wk)(y) = gx(w0) · · · gx(wk−1)(x(wk) · y)

= x(w0 + · · · + wk−1) · (x(wk) · y) = (x(w0 + · · · + wk−1) · x(wk)) · y

= (gx(w0) · · · gx(wk−1)(x(wk))) · y = x(w) · y.

Finally, if X has a countable base, then {X(0n) : n < ω} can be chosen to be a

neighborhood base of e, and then h will be a homeomorphism.

3 Applications

In this section we consider two applications of Theorem 1.4.

The first application is concerned with resolvability of topological spaces. A space

is called resolvable (ω-resolvable) if it can be partitioned into two (into ω) dense

subsets [2]. The study of this notion for topological groups was initiated in [1],

where it was proved that every Abelian group not containing an infinite Boolean

subgroup is resolvable in any nondiscrete group topology. (Under Martin’s Axiom,

an Abelian group containing an infinite Boolean subgroup admits nondiscrete ir-

resolvable group topologies [5, 10], but the existence of such topologies cannot be
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established in ZFC, the system of usual axioms of set theory [6].) The Comfort–van

Mill Theorem was later extended in several directions. In particular, in [7] it was

shown that every countable nondiscrete topological group not containing an open

Boolean subgroup is ω-resolvable. We now give a new proof of this result, shorter

and more transparent than the original one. And in fact we prove a more general

theorem.

Let X be a space with a distinguished point e ∈ X and let f : X → X be a home-

omorphism with f (e) = e. We say that f is nontrivial if every neighborhood of e

contains a nonfixed point.

Theorem 3.1 If a countable zero dimensional space admits a nontrivial regular home-

omorphism of finite order, then it is ω-resolvable.

Proof Let X be a countable zero dimensional space with a distinguished point e ∈ X

and let f : X → X be a nontrivial regular homeomorphism of finite order. It is well

known that if a homogeneous space contains an ω-resolvable subspace, then it itself is

also ω-resolvable (see [10, Lemma 2.3]). Therefore, one may suppose that f is spec-

trally irreducible. Let h : X →
∑

ω Z(m) be a bijection guaranteed by Theorem 1.4.

Denote by C the orbit in Z(m) (with respect to π0) of the least possible length s > 1

and let

Y = {x ∈ X : there is a coordinate of h(x) belonging to C}.

Note that every x ∈ X with |O(x)| = s belongs to Y . For every x ∈ Y , consider the

sequence of coordinates of h(x) belonging to C and define ν(x) to be the number of

pairs of distinct neighbouring elements in this sequence. Denote also by α(x) and

γ(x) the first and the last elements in the sequence. Then whenever x, y ∈ Y and

max supp(h(x)) + 1 < min supp(h(y)),

ν(λx(y)) =

{

ν(x) + ν(y) if γ(x) = α(y);

ν(x) + ν(y) + 1 otherwise.

We define the partition {Yn : n < ω} of Y by

Yn = {x ∈ Y : ν(x) ≡ 2n mod 2n+1}.

(Equivalently, Yn consists of all x ∈ Y such that the index of the leftmost nonzero

digit in the binary expansion of ν(x) is n.)

To see that every Yn is dense in X, let x ∈ X and let U be an open neighbourhood

of e. We have to show that λx(U ) ∩ Yn 6= ∅. Put k = 2n+1 and choose inductively

x1, . . . , xk ∈ U such that

(i) |O(x j)| = s,

(ii) max supp(h(x j)) + 1 < min supp(h(x j+1)), and if x 6= 0, then

max supp(h(x)) + 1 < min supp(h(x1)),

(iii) λy1
· · ·λyk

(e) ∈ U whenever y j ∈ O(x j).

Without loss of generality one may suppose that γ(x j) = α(x j+1), and that if x ∈ Y ,

then γ(x) = α(x1). For every l = 0, 1, . . . , k − 1, define zl ∈ U by

zl = λx1
λ f (x2) · · ·λ f l(xl+1)λ f l(xl+2) · · ·λ f l(xk)(e)
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(in particular, z0 = λx1
λx2

· · ·λxk
(e)). Then

h(λx(zl)) = h(x) + h(x1) + πh(x2) + · · · + πlh(xl+1) + πlh(xl+2) + · · · + πlh(xk).

It follows that ν(λx(z0)) = ν(x)+ν(x1)+· · ·+ν(xk) and ν(λx(zl)) = ν(z0)+ l. Hence,

for some l, ν(λx(zl)) ≡ 2n mod 2n+1, so λx(zl) ∈ Yn.

The next proposition says that every nondiscrete topological group not containing

an open Boolean subgroup admits a nontrivial regular homeomorphism of order 2.

Proposition 3.2 Let G be a nondiscrete topological group not containing an open

Boolean subgroup. Suppose that for every element x ∈ G of order 2, the conjugation

G ∋ y 7→ xyx−1 ∈ G is a trivial local automorphism. Then the inversion G ∋ y 7→
y−1 ∈ G is a nontrivial regular homeomorphism.

In order to prove Proposition 3.2, we need the following.

Lemma 3.3 Let X be a homogeneous space with a distinguished point e ∈ X and let

f : X → X be a homeomorphism of finite order n with f (e) = e. Suppose that for every

x ∈ X \ {e} with |O(x)| = s < n, there is a homeomorphism gx of a neighborhood U of

e onto a neighborhood of x with gx(e) = x such that f sgx(y) = gx f s(y) for all y ∈ U .

Then f is regular. In particular, if for every x ∈ X \ {e}, |O(x)| = n, then f is regular.

Proof Consider an arbitrary orbit in X distinct from {e} and enumerate it as {xi :

i < s}, where xi+1 = f (xi) for i = 0, . . . , s − 2 and f (xs−1) = x0. If s = n, choose

as gx0
any homeomorphism of a neighborhood U of e onto a neighborhood of x0

with gx0
(e) = x0. If s < n, choose gx0

in addition such that f sgx0
(y) = gx0

f s(y)

for all y ∈ U . For every i = 1, . . . , s − 1, put gxi
= f igx0

f −i|U . Then for every

i = 0, . . . , s − 1 and y ∈ U ,

f gxi
(y) = f f igx f −i(y) = f i+1gx f −(i+1) f (y).

If i < s − 1, then f i+1gx f −(i+1) f (y) = gxi+1
f (y), so f gxi

(y) = gxi+1
f (y). Hence, it

remains only to check that f gxs−1
(y) = gx0

f (y). If s = n, then

f gxs−1
(y) = f sgx0

f −s f (y) = idXgx0
idX f (y) = gx0

f (y).

If s < n, then

f gxs−1
(y) = f sgx0

f −s f (y) = gx0
f s f −s f (y) = gx0

f (y).

Proof of Proposition 3.2 Let f denote the inversion. It is clear that f is a homeo-

morphism of order 2 and that B = {x ∈ G : x2
= e} is the set of fixed points of

f , in particular, f (e) = e. We first show that B is not a neighborhood of e, and so

f is nontrivial. Indeed, assume the contrary. Then there exists a neighborhood U

of e such that U 2 ⊆ B. For every x, y ∈ U , (xy)2
= e and also xyyx = e, conse-

quently, xy = yx. But then for every x1, . . . , xn ∈ U , (x1 · · · xn)2
= x2

1 · · · x2
n = e,

and so x1 · · · xn ∈ B. Hence, the subgroup generated by U is open and contained in

B, which is a contradiction.
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To see that f is regular, let x ∈ G \ {e} and |O(x)| < 2. Then x is a fixed point,

and so x ∈ B. But then there is a neighborhood U of e such that xyx−1
= y for all

y ∈ U , that is xy = yx. Define gx : U → xU by gx(y) = xy. We have that

f gx(y) = (xy)−1
= (yx)−1

= x−1 y−1
= xy−1

= gx f (y).

Hence, by Lemma 3.3, f is regular.

Combining Theorem 3.1 and Proposition 3.2, we obtain the following.

Corollary 3.4 ([7]) Every countable nondiscrete topological group not containing an

open Boolean subgroup is ω-resolvable.

The second application deals with the Stone–Čech compactification βS of a dis-

crete semigroup S. We take the points of βS to be the ultrafilters on S and identify the

principal ultrafilters with the points of S. The topology of βS has a base of subsets of

the form A = {p ∈ βS : A ∈ p}, where A ⊆ S. The operation of S can be naturally

extended to βS by pq = limx→p limy→q xy, where x, y ∈ S. This makes βS a compact

right topological semigroup (i.e., for each q ∈ βS, the right shift βS ∋ p 7→ p ·q ∈ βS

is continuous) with S contained in the topological center (i.e., for each a ∈ S, the left

shift βS ∋ a 7→ a · q ∈ βS is continuous). For p, q ∈ βS, the ultrafilter pq has a base

of subsets
⋃

{xBx : x ∈ A} where A ∈ p and Bx ∈ q. As any compact right topolog-

ical semigroup, βS has idempotents. An elementary introduction to the semigroup

βS can be found in [3].

Now let X be a nondiscrete local left topological group and let βXd be the Stone–

Čech compactification of X as a discrete space. Denote by Ult(X) the closed sub-

space in βXd of all nonprincipal ultrafilters on X converging to e ∈ X. As in the

case of βS, the partial operation of X can be naturally extended to βXd by pq =

limx→p limy→q xy, where x, y ∈ X, making βXd a compact right topological partial

semigroup. The product pq is defined if and only if

{x ∈ X : {y ∈ X : xy is defined} ∈ q} ∈ p,

in particular, if q ∈ Ult(X). Clearly if p, q ∈ Ult(X), then also pq ∈ Ult(X). Hence,

Ult(X) is a closed subsemigroup in βXd . It is called the ultrafilter semigroup of X.

Suppose that f : X → X is a local automorphism and let f : βXd → βXd be the

continuous extension of f , that is, for every p ∈ βXd , f (p) is the ultrafilter on X

with a base of subset f (A), where A ∈ p. Then f |Ult(X)
is an automorphism on

Ult(X) (see [3, Theorem 4.21]), in particular, if p ∈ Ult(X) is an idempotent, so is

f (p) ∈ Ult(X). We will write f (p) instead of f (p).

Our second application is the following result.

Theorem 3.5 Let X be a countable nondiscrete zero dimensional local left topological

group, let f : X → X be a local automorphism of finite order, and let p ∈ Ult(X) be an

idempotent. If f (p) 6= p, then the subset {p, f (p)} ⊆ Ult(X) algebraically generates

the free product of one-element semigroups {p} and { f (p)}.
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Proof Consider an arbitrary relation

p1 · · · pk = q1 · · · qs

in Ult(X), where pi , q j ∈ {p, f (p)}, pi 6= pi+1 and q j 6= q j+1. We have to prove that

p1 = q1 and k = s.

Without loss of generality one may suppose that f is spectrally irreducible. Let

h : X →
∑

ω Z(m) be a bijection guaranteed by Theorem 1.4. Denote by C the set of

all nonfixed points in Z(m) (with respect to π0) and let

Y = {x ∈ X : there is a coordinate of h(x) belonging to C}.

(Equivalently, Y consists of all nonfixed points in X.) Note that Y ∩ Ult(X) is a

subsemigroup containing p and f (p). For every x ∈ Y , consider the sequence of

coordinates of h(x) belonging to C and denote α(x) and γ(x) the first and the last

elements in this sequence. Then for every u, v ∈ Y ∩ Ult(X), α(uv) = α(u).

Indeed, let α(u) = c ∈ C and let A = {x ∈ Y : α(x) = c}. Then A ∈ u. For

every x ∈ A, put n(x) = max supp(h(x)) + 1 and Ux = h−1(Zn(x)). We have that
⋃

x∈A xUx ∈ uv and for every y ∈ Ux, α(xy) = α(x) = c, so α(uv) = c.

Similarly, γ(uv) = γ(v), and if f (u) 6= u, then α(u) 6= α( f (u)) and γ(u) 6=
γ( f (u)). Applying α and γ to the relation gives α(p1) = α(q1) and γ(pk) = γ(qs),

so p1 = q1 and pk = qs.

We now show that k = s. Define the subset F ⊆ C2 by

F = {(γ(q), α(q)) : q ∈ {p, f (p)}}

and let n be any integer ≥ max{k, s}. For every x ∈ X, consider the sequence of

coordinates of h(x) belonging to C and define ν(x) ∈ Z(n) to be the number modulo

n of pairs of neighbouring elements in this sequence other than pairs from F. Then

for every u, v ∈ Ult(X),

ν(uv) =

{

ν(u) + ν(v) if (γ(u), α(v)) ∈ F

ν(u) + ν(v) + 1 otherwise.

It follows from this that

ν(p1 · · · pk) = ν(p1) + · · · + ν(pk) + k − 1

and

ν(q1 · · · qs) = ν(q1) + · · · + ν(qs) + s − 1.

Also we have that for every q ∈ {p, f (p)}, ν(qq) = 2ν(q). Consequently, since q is

an idempotent, ν(q) = ν(qq) = 2ν(q). Hence, ν(q) = 0. Finally, we obtain that

ν(p1 · · · pk) = k − 1 and ν(q1 · · · qs) = s − 1, so k = s.

Corollary 3.6 Let G be a countably infinite Abelian group and let B = {x ∈ G :

2x = 0}. Then for every idempotent p ∈ G \ B in βG, the subset {p,−p} algebraically

generates the free product of one-element semigroups {p} and {−p}.
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Proof Take any totally bounded group topology T on G and let X = (G, T). Then

Ult(X) holds all the idempotents of βG except for 0 [9, Lemma 3]. Define f : G → G

by f (x) = −x and apply Theorem 3.5.

Note that in the case G = Z, a much stronger result than Corollary 3.6 is known

to be true. For every idempotent p ∈ βZ \ {0}, all expressions of the form

a1 · p + a2 · p + · · · + an · p

are distinct, where 〈a1, a2, . . . , an〉 denotes a sequence in Z \ {0} in which any two

successive terms are different [4, Corollary 4.2].
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