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Abstract

The bipartite divisor graph B(X), for a set X of positive integers, and some of its properties have recently
been studied. We construct the bipartite divisor graph for the product of subsets of positive integers and
investigate some of its properties. We also give some applications in group theory.
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1. Introduction

Graphs associated with various algebraic structures have been actively investigated and
many interesting results have recently been obtained, for example in [14–16, 19]. An
extensive bibliography concerning applications of graphs of this kind is given in [12];
see also [8].

Let G be a finite group. For x ∈G, let xG = {xg : g ∈G} be the conjugacy class of x,
where xg = g−1xg. By cs(G), we mean the set of conjugacy class sizes of G. There
are several graphs associated with conjugacy class sizes, or the character degrees of
a finite group, which have been studied in [1–3, 6, 7, 11]. The main graph-theoretic
parameters considered in these papers are closely related. A survey regarding the
influence of the size of conjugacy classes on the structure of finite groups can be found
in [5].

Recently, Lewis [13] elucidated most of these connections first by analysing
analogues of these graphs for positive integer subsets. Inspired by this paper, in [9]
Praeger and the second author of the present paper considered the bipartite divisor
graph B(X) for a finite set X of positive integers and studied some properties of this
graph such as the diameter, girth, number of connected components and clique number.

For a nonempty subset X of positive integers, let π(x) be the set of primes dividing
x ∈ X and let X∗ = X \ {1}. Then we define:
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[2] Bipartite divisor graph for the product 289

(i) the prime vertex graph ∆(X) as a graph with vertex set

V(∆(X)) = ρ(X) =
⋃
x∈X

π(x)

and edge set

E(∆(X)) = {{p, q} : pq divides x, for some x ∈ X};

(ii) the common divisor graph Γ(X) as a graph with vertex set

V(Γ(X)) = X∗

and edge set
E(Γ(X)) = {{x, y} : gcd(x, y) , 1};

(iii) the bipartite divisor graph B(X) as a graph with vertex set

V(B(X)) = ρ(X)
⋃

X∗

and edge set

E(B(X)) = {{p, x} : p ∈ ρ(X), x ∈ X∗ and p divides x}.

Thus B(X) is bipartite, and {ρ(X) | X∗} forms a bipartition of the vertex set, which is
unique if B(X) is connected.

Let H, K be two finite groups. Since cs(H × K) = {xy : x ∈ cs(H), y ∈ cs(K)}, it is
important to consider a bipartite graph related to cs(H × K), which is a set of positive
integers.

Suppose that X is a subset of positive integers such that X has a decomposition
X = YZ, where Y and Z are some positive integer subsets, each of size at least two.
The aims of this paper are to construct a bipartite divisor graph B(YZ) for the product
of two integer subsets Y and Z and to find a relation between the graph B(YZ) and the
graphs B(Y) and B(Z).

In Section 2, we first construct a special bipartite graph and use this construction to
define the bipartite graph for the product of two integer subsets as follows.

D 1.1. Let Y and Z be two nonempty sets of positive integers, each of size at
least two. By B(YZ) we mean a bipartite graph with vertex set

(ρ(Y) ∪ ρ(Z))
⋃

({yz : y ∈ Y, z ∈ Z})

and edge set E(B(YZ)), where {p, yz} ∈ E(B(YZ)) if and only if {p, y} ∈ E(B(Y)) or
{p, z} ∈ E(B(Z)).

Then we study certain important properties of the diameter of B(X). In Section 3 we
consider the girth of B(X) in special cases. Finally, in Section 4, we apply the results
to finite group theory.
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For positive integers m and n, we denote the greatest common divisor of m and n by
gcd(m, n); the diameter of a graph G by diam(G) (where by the diameter we mean the
maximum distance between vertices in the same connected component of the graph);
and the girth of the graph G (the length of the shortest cycle) by g(G) (which is ∞ if
there is no cycle in the graph). Also, by Pn, Cn and Kn we mean a path of length n,
a cycle of length n and a complete graph with n vertices, respectively. Other notation
throughout the paper is standard.

2. Bipartite graph for the product of integer subsets

Throughout this paper we suppose that X and Y are two finite and nonempty sets of
positive integers.

Let Σ1 and Σ2 be two bipartite graphs with vertex sets VΣi = Σ
(1)
i

⋃
Σ

(2)
i , such that

Σ1 and Σ2 have no isolated vertices. For i = 1, 2, let Σ′i ⊂ Σ
(1)
i and suppose that there

is a bijection ϕ : Σ′1→ Σ
′
2. Suppose also that Π is a partition of Σ(2)

1 × Σ
(2)
2 such that

whenever (x1, y1), (x2, y2) lie in the same part of Π, the following conditions hold:

(i) for p ∈ Σ(1)
1 \ Σ

′
1, {p, x1} ∈ EΣ1 if and only if {p, x2} ∈ EΣ1;

(ii) for p ∈ Σ(1)
2 \ Σ

′
2, {p, y1} ∈ EΣ2 if and only if {p, y2} ∈ EΣ2;

(iii) for p ∈ Σ′1 both {p, x1} < EΣ1 and {ϕ(p), y1} < EΣ2 hold if and only if both
{p, x2} < EΣ1 and {ϕ(p), y2} < EΣ2 hold.

According to this notation, we may construct a bipartite graph Σ = Σ(Σ1, Σ2, ϕ, Π)
with vertex set VΣ = Φ∪̇Π, where Φ = Σ

(1)
1 ∪̇(Σ(1)

2 \ Σ
′
2), and edges of the form {p, π}

where p ∈ Φ, π ∈ Π and there exists (x1, y1) ∈ π such that for each (x2, y2) ∈ π one of
the above conditions holds.

T 2.1. The graph Σ = Σ(Σ1, Σ2, ϕ, Π) is a connected graph and diam Σ ≤ 6.

P. Let σ1, σ2 ∈ VΣ. We prove that there is a path in Σ from σ1 to σ2. Let
p ∈ Σ(1)

1 \ Σ
′
1. Since p is not isolated in Σ1, there exists x ∈ Σ(2)

1 such that {p, x} ∈ EΣ1.
By definition of EΣ, {p, π} ∈ EΣ for all π containing a pair of the form (x, z) for some
z ∈ Σ(2)

2 .

Consider q ∈ Σ(1)
2 \ Σ

′
2 and q′ ∈ Σ′2. Since Σ2 has no isolated vertices, there exist

y, y′ ∈ Σ(2)
2 such that {q, y} and {q′, y′} ∈ EΣ2. Let π, π′ be the points of Π containing

(x, y) and (x, y′), respectively. Then, by definition of EΣ, (p, π, q) and (p, π′, ϕ(−1)(q′))
are both paths in Σ. Thus p has distance 2 from each element of Σ′1∪̇ (Σ(1)

2 \ Σ
′
2). A

similar argument shows that each q ∈ Σ(1)
2 \ Σ

′
2 is at distance 2 from each element of

Σ
(1)
1 . In particular, for any r, r′ ∈ Σ(1)

1 ∪ (Σ(1)
2 \ Σ

′
2), we have dΣ(r, r′) ≤ 4.

Suppose that π ∈ Π. Let (x, y) ∈ π, so x ∈ VΣ(2)
1 and y ∈ VΣ(2)

2 . Since Σ1 and Σ2

have no isolated vertices, there exist p ∈ Σ(1)
1 and q ∈ Σ(1)

2 such that {p, x} ∈ EΣ1 and
{q, y} ∈ EΣ2. By the definition of EΣ, the following properties hold:

(i) if p ∈ Σ(1)
1 \ Σ

′
1, then {p, π} ∈ EΣ;
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(ii) if q ∈ Σ(1)
2 \ Σ

′
2, then {q, π} ∈ EΣ;

(iii) if p ∈ Σ′1 or ϕ(−1)(q) ∈ Σ′1, then {p, π} ∈ EΣ or {ϕ(−1)(q), π} ∈ EΣ, respectively.

Since at least one of (i) or (iii) holds for p and at least one of (ii) or (iii) holds for q,
we deduce that at least one of {p, π}, {q, π} or {ϕ(−1)(q), π} ∈ EΣ.

Let π, π′ ∈ Π. Then we have shown that {r, π}, {r′, π′} ∈ EΣ for some r, r′ ∈ Σ(1) =

Σ
(1)
1

⋃
(Σ(1)

2 \ Σ
′
2). We have proved that dΣ(r, r′) ≤ 4 and hence dΣ(π, π′) ≤ 6. Finally,

for π ∈ Π, r′ ∈ Σ(1)
1 , since dΣ(π, r) = 1 for some r ∈ Σ(1)

1 , it follows that dΣ(π, r′) ≤ 5. �

Let X and Y be two nonempty sets of positive integers. Let B(X) and B(Y) be
bipartite divisor graphs related to X and Y , respectively. Note that, by Definition 1.1,
B(XY) is a bipartite graph with vertex set (ρ(X) ∪ ρ(Y))

⋃
({xy : x ∈ X, y ∈ Y}) and edge

set E(B(XY)), where {p, xy} ∈ E(B(XY)) if and only if {p, x} ∈ E(B(X)) or {p, y} ∈
E(B(Y)).

L 2.2. Let Σ1 = B(X1) and Σ2 = B(X2). For (x, y), (x′, y′) ∈ X1 × X2 define
(x, y), (x′, y′) ∈ π ∈ Π if and only if xy = x′y′. Let ϕ be the identity function on
Σ′1 = Σ′2 = ρ(X1) ∩ ρ(X2). Then Σ = Σ(Σ1, Σ2, ϕ, Π) � B(X1X2).

P. By our assumption, we conclude that

Φ = (ρ(X1) ∪ ρ(X2)) \ (ρ(X1) ∩ ρ(X2)) = ρ(X1X2).

Define ψ : Φ ∪ Π→ ρ(X1X2) ∪ X1X2 such that ψ(p) = p, for all p ∈ Φ and for each
π ∈ Π, ψ(π) = xy, such that (x, y) ∈ π. It is enough to show that ψ preserves the
adjacency. Let p ∈ Φ and π ∈ Π such that {p, π} ∈ EΣ. By the definition of ψ and
Φ, we have ψ(p) = p, ψ(π) = xy, where (x, y) ∈ π. Since Φ = ρ(X1X2), by the definition
of Σ and B(X1X2) we conclude that {p, xy} ∈ E(B(X1X2)). Conversely, suppose that
{p, xy} ∈ E(B(X1X2)), such that (x, y) ∈ π ∈ Π. By the definition of Φ, there are the
following three cases for p:

(i) p ∈ ρ(X1) \ ρ(X2);
(ii) p ∈ ρ(X2) \ ρ(X1);
(iii) p ∈ ρ(X1) ∩ ρ(X2).

Since ψ−1(p) = p and ψ−1(xy) = π, in each case we conclude that {p, π} ∈ EΣ, so ψ
preserves the adjacency. This completes the proof. �

T 2.3. Suppose that X and Y are two nonempty sets of positive integers. Then
B(XY) is a connected graph and diam(B(XY)) ≤ 6.

P. Lemma 2.2 and Theorem 2.1 yield the desired result. �

Let X, Y be two nonempty sets of positive integers. By Γ(XY) and ∆(XY), we
mean the common divisor and prime graphs related to the product of two integer sets
X, Y . Then the diameters of Γ(XY) and ∆(XY) are less than or equal to 3. This is an
immediate consequence of Theorem 2.3 and [9, Lemma 1]. Note that all cases may
hold, as we may see in Table 1.
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T 1. Illustration of all cases in the note after Theorem 2.3.

X Y XY diam(Γ(XY)) diam(∆(XY))

{2} {3, 4} {6, 8} 1 1
{2, 5} {3, 4} {6, 8, 15, 20} 2 1
{5, 7} {3, 4} {15, 21, 20, 28} 2 2
{1, 2, 3} {1, 5} {1, 2, 3, 5, 10, 15} 3 2

L 2.4. Let X, Y be two nonempty sets of positive integers. Let B(X) and B(Y) be
bipartite divisor graphs for X and Y, respectively. Suppose that ∆(X), ∆(Y) and Γ(XY)
are complete graphs. Then diam(B(XY)) ≤ 3.

P. Since ∆(X), ∆(Y) and Γ(XY) are complete, it follows that ∆(XY) is complete.
Now by [9, Lemma 1], we conclude that

diam(B(XY)) = 2diam ∆(XY) + 1 = 3.

This completes the proof. �

3. Girth of the B(XY)

In this section, we prove that, under some conditions, g(B(XY)) ≤ 8 . Note that we
have the same results if we swap X and Y .

T 3.1. Let X, Y be two nonempty sets of positive integers. Let B(X) and B(Y)
be bipartite divisor graphs for X and Y, respectively. Then g(B(XY)) = 4 if one of the
following conditions holds.

(i) B(X) has a cycle and |Y∗| ≥ 1.
(ii) B(X) is connected, |X∗| ≥ 2 and there exists q ∈ ρ(Y) \ ρ(X).
(iii) Both B(X) and B(Y) are acyclic and disconnected and there is a component of

B(X) which contains P2.

Otherwise, if both B(X) and B(Y) are acyclic and disconnected, such that all
components of both B(X) and B(Y) are paths of length one and X , Y, then
g(B(XY)) ≤ 8.

P. (i) If one of the graphs B(X) or B(Y) contains a cycle of length four, then
g(B(XY)) = 4. So suppose that min{g(B(X)), g(B(Y))} ≥ 6. Since g(B(X)) ≥ 6, so B(X)
has at least six vertices. Suppose that ρ(X) = ρ(Y) and B(X) has a cycle of the form

p1 − x1 − p2 − x2 − · · · − pn − xn − p1. (∗)

Since ρ(X) = ρ(Y), so there exists y ∈ Y such that p1 divides y. Now p1 − x1y − p2 −

x2y − p1 is a cycle of length four in B(XY), so g(B(XY)) = 4. Suppose that ρ(X) , ρ(Y)
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and B(X) has a cycle similar to (∗). If there exists q ∈ ρ(Y) \ ρ(X), then we may choose
y ∈ Y such that q divides y. In this case q − x1y − p2 − x2y − q is a cycle in B(XY), so
g(B(XY)) = 4. On the other hand, if ρ(Y) is a proper subset of ρ(X) then, for p1 ∈ ρ(Y),
we have a cycle p1 − x1y − p2 − x2y − p1 in B(XY); otherwise q − x1y − p2 − x2y − q
is a cycle in B(XY) where q ∈ ρ(Y). So in this case g(B(XY)) = 4.

(ii) Let x, x′ be two distinct elements of X∗. Since B(X) is connected, there is a path
between x, x′, say x − p1 − x2 − p2 − · · · − x′. Let y ∈ Y with {q, y} ∈ E(B(Y)). Then
p1 − xy − q − x2y − p1 is a cycle of length four in B(XY).

(iii) First suppose that x1 − p − x2 is a path of length two in a component of B(X).
Since B(X) is disconnected, there must be x3 ∈ X \ {x1, x2} and q ∈ ρ(X) such that
q divides x3. If ρ(X) = ρ(Y), then there exists y ∈ Y such that q divides y. Hence
x1y − p − x2y − q − x1y is a cycle of length four in B(XY).

So suppose that ρ(X) , ρ(Y). Let r ∈ ρ(Y) \ ρ(X). Then B(XY) has a cycle of length
four.

Finally, let ρ(Y) be a proper subset of ρ(X). Since B(Y) is disconnected, there
must be t ∈ ρ(Y) such that t , p and there exists y ∈ Y such that t divides y. Now
p − x2y − t − x1y − p is a cycle of length four. For the case where there is a path of the
form p1 − x − p2 in a component of B(X), the proof is similar.

Suppose that both B(X) and B(Y) are acyclic and disconnected such that all
components of both B(X) and B(Y) are paths of length one. First suppose that there
exists p ∈ ρ(X) ∩ ρ(Y). Let x1, y1 be two elements of X, Y such that p divides x1 and
p divides y1. Since both B(X) and B(Y) are disconnected, both X∗ and Y∗ have size
greater than one, which implies that there is x2 ∈ X \ {x1} and y2 ∈ Y \ {y1}. Hence

p − x1y2 − q − x2y2 − p2 − x2y1 − p

is a cycle of length six in B(XY) where p2 divides x2 and q divides y2. Therefore
g(B(XY)) ≤ 6. On the other hand, if ρ(X) ∩ ρ(Y) = ∅, since both B(X) and B(Y) are
disconnected and all components of both B(X), B(Y) are paths of length one, so there
exist x1, x2 ∈ X, y1, y2 ∈ Y , p1, p2 ∈ ρ(X) and q1, q2 ∈ ρ(Y) such that pi divides xi and
qi divides yi, for i = 1, 2. Now it is easy to see that there is a path of length eight in
B(XY). �

R 3.2. The condition |X∗| ≥ 2 is necessary, since otherwise there may exist sets
of positive integers, say X, Y , such that B(XY) is acyclic and both B(X) and B(Y) are
connected. Also, there may exist X, Y such that both B(X) and B(Y) are acyclic, but
g(B(XY)) = 4. In case (ii) of Theorem 3.1 it is necessary that at least one of B(X) or
B(Y) be connected, since there are sets of positive integers such that both B(X), B(Y)
are disconnected and acyclic and g(B(XY)) = 6. Table 2 contains some examples of
these cases.

R 3.3. The case X , Y in the last part of the previous theorem is essential.
Since for X = Y = {1, 4, 9}, we can see that both B(X) and B(Y) are disconnected and
acyclic and all components are paths of length one. But B(XY) is acyclic and therefore
g(B(XY)) =∞.

Q 3.4. Determine all sets of positive integers X, Y such that g(B(XY)) = 4.
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T 2. Illustration of all cases of Remark 3.2.

X Y n(B(X)) n(B(Y)) g(B(X)) g(B(Y)) g(B(XY))

{1, 3, 6, 8} {1, 3, 6, 8} 1 1 ∞ ∞ 4
{1, 2, 3} {1, 2, 3, 5} 2 3 ∞ ∞ 6
{1, 2} {1, 3} 1 1 ∞ ∞ ∞

4. Some examples and applications in group theory

Let H, K be groups. It is a well-known fact that cs(H × K) = {xy : x ∈ cs(H), y ∈
cs(K)}, so by the definition we conclude that B(H × K) = B(XY), where X =

cs(H), Y = cs(K). Let G = H × K such that both groups are finite and H is abelian but
K is not. Since cs(H) = {1}, cs(G) = cs(K). Therefore B(G) = B(K). For example, let
G = D12 = Z2 × D6. Let X = cs(Z2) and Y = cs(D6), so X = {1} and Y = {1, 2, 3}. It is
easy to see that B(XY) � B(G). So B(D12) = B(D6). Also, B(SL(2, Z6)) is isomorphic
to B(XY) where X, Y are cs(S 3), cs(A4), respectively.

Throughout this section, let P be a p-group, Q a q-group and R an r-group for
distinct primes p, q, r. We consider the following three types of groups.
(i) Type(A): G = P o (Q × R), with P and Q abelian, r = 2, Z(G) = O2(G) and

G/Z(G) is a Frobenius group and R/Z(G) ' Q8.
(ii) Type(B): G = (P × R) o Q, with P and Q abelian, G/Z(G) a Frobenius group and

|cs∗(R)| = 1.
(iii) Type(C): G = R o PQ, with R = CG(R) minimal normal in G and PQ ⊆ ΓL(1, R)

a Frobenius group.

T 4.1. Let G be a finite group. If B(G) is a path, then G is solvable.
Furthermore, G is one of the following groups.
(i) G is one of the groups of type (A), (B) or (C).
(ii) G is a p-group for some prime p.
(iii) G = KL, with K EG, gcd(|K|, |L|) = 1 and one of the following cases occurs:

(a) both K and L are abelian, Z(G) < L and G is a quasi-Frobenius group;
(b) K is abelian, L is a nonabelian p-group for some prime p, Op(G) is an

abelian subgroup of index p in L and G/Op(G) is a Frobenius group;
(c) K is a p-group of conjugate rank one for some prime p, L is abelian,

Z(K) = Z(G) ∩ K and G is quasi-Frobenius.
(iv) G is a group such that cs(G) = {1, pa, qb, pcqd}.
(v) G is a direct product of a p-group and an abelian p′-group.

P. Suppose that B(G) is a path. By [4, Proposition 22 and Theorem 5], we know
that B(G) ' Pn, such that n ≤ 5, and for the case n = 5, G is solvable and is one of the
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groups of type(A), (B), or (C). Define

σ∗(G) := max{|π(xG)| : x ∈G}.

If B(G) is isomorphic to P4 or P3, then σ∗(G) = 2. Suppose that G is not solvable;
then by [18] we conclude that B(G) is a cycle of length six which is in contradiction
to the hypothesis, so G is solvable. Finally, suppose that B(G) is isomorphic to P2.
In this case, cs∗(G) has at most two elements. If cs∗(G) has only one element then
G is nilpotent, so is solvable, so suppose that cs∗(G) has two nontrivial elements, say
m, n. Hence G is a group of conjugate rank two. Ito [10] proved that a finite group of
conjugate rank two is solvable.

If B(G) = P3, or B(G) = P4 and G has conjugate rank two, then cs(G) =

{1, paqb, qcrd}, so by [5, Theorem 19], we conclude that up to abelian direct factor,
G = KL, with K EG, gcd(|K|, |L|) = 1 and one of the following cases occurs:

(i) both K and L are abelian, Z(G) < L and G is a quasi-Frobenius group;
(ii) K is abelian, L is a nonabelian p-group for some prime p, Op(G) is an abelian

subgroup of index p in L and G/Op(G) is a Frobenius group; or
(iii) K is a p-group of conjugate rank one for some prime p, L is abelian, Z(K) =

Z(G) ∩ K and G is quasi-Frobenius.

If B(G) = P4 and G has conjugate rank three, then there exist some positive integers,
say a, b, c, d, such that cs(G) = {1, pa, qb, pcqd}. If B(G) = P2 and G has conjugate
rank two, then both of its conjugacy class sizes must be a power of a prime number,
say p, so by [5, Theorem 19], G is a p-group. But if it has only one conjugacy class
size, then cs(G) = {1, paqb}. By [5, Theorem 13], if a group has only one nontrivial
conjugacy class size, it must be a power of a prime number. So this case will not occur.
Finally, if B(G) = P1, then by [5, Theorem 13], G is a direct product of a p-group and
an abelian p′-group (which is a group such that its order is not divisible by p). The
p-group P has an abelian normal subgroup A, such that P/A has exponent p. �

C 4.2. Let G and H be finite groups such that B(G) and B(H) are both paths.
Then the direct product of these groups is solvable.

P. This is an immediate consequence of Theorem 4.1. �

L 4.3. Suppose that G � H × K, and H, K are finite groups. If diam(B(G)) = 4,
and Γ(T ) is a complete graph for every subgroup T of G, then we have the following
properties:
(i) G is a solvable group;
(ii) there exist two prime numbers p, q ∈ ρ(G), such that G is p-nilpotent or

q-nilpotent.

P. Since diam(B(G)) = 4, by [9, Lemma 1] we have the following cases:
(i) diam(Γ(G)) = 1 and diam(∆(G)) = 2;
(ii) diam(Γ(G)) = 2 and diam(∆(G)) = 1;
(iii) diam(∆(G)) = diam(Γ(G)) = 2.
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Also, by Theorem 2.1, B(G) is a connected graph, so both Γ(G) and ∆(G) are also
connected. By the hypothesis, Γ(G) is a complete graph, so we conclude that only the
first case will occur. Since Γ(T ) is a complete graph for every subgroup T of G, by [17]
we conclude that G is solvable. As diam(∆(G)) = 2, so there exist at least two prime
numbers p, q ∈ cs∗(G) such that p is not adjacent to q. Since G is solvable, by [10] G
is either p-nilpotent or q-nilpotent. �

Q 4.4. If the second case in the proof of the last lemma occurs, then what can
we say about the group G?

L 4.5. Suppose that H and K are finite groups such that their bipartite divisor
graphs are both cycles. Let G = H × K. Then either Γ(G) is a complete graph or G
has a normal t-complement, abelian Sylow t-subgroup for some prime number t and
Γ(G) can be obtained by omitting just three edges of the complete graph K15 or four
edges of the complete graph K9.

P. Both B(H) and B(K) are cycles, so by [18, Theorem 1] B(H) ' B(K) 'C6, and
also H and K are isomorphic to A × SL2(q), where A is an abelian group and q ∈ {4, 8}.
Since cs(SL2(4)) = {1, 12, 15, 20} and cs(SL2(8)) = {1, 72, 63, 50}, we have three cases
as follows:

(i) cs∗(G) = {12, 15, 20, 144, 180, 240, 225, 300, 400};
(ii) cs∗(G) = {12,15,20,72,63,50,864,756,600,1080,945,750,1440,1260,1000};
(iii) cs∗(G) = {72, 63, 50, 5184, 4536, 3600, 3969, 3150, 2500}.

In the first case, we can see that Γ(G) is a complete graph. But in the second
case, gcd(63, 1000) = 1, gcd(63, 20) = 1 and gcd(63, 50) = 1. Also, in the last case,
gcd(63, 50) = 1, gcd(63, 2500) = 1, gcd(50, 3969) = 1, gcd(3969, 2500) = 1 and other
vertices are joined, so Γ(G) can be obtained by omitting just three edges of the
complete graph K15 or four edges of K9, respectively. Also, {5, 7} ⊆ V(∆(G)) and
they are not adjacent. So by [4, Lemma 13], G has a t-complement, abelian Sylow
t-subgroup for some t ∈ {5, 7}. �

R 4.6. Suppose that G is a finite group. It is proved in [4, Theorem 3] that
under certain conditions both ∆(G) and Γ(G) are acyclic. So for all groups G except
those mentioned in [4, Theorem 3] and for all groups H such that cs(G) , cs(H) and
|cs∗(H)| ≥ 2, g(B(G × H)) = 4.

E 4.7. Let G = H × K, where H, K are finite nonabelian groups. By
Theorem 2.3, B(G) is connected. Now by [4, Theorem 1] there are no abelian groups
A, B of coprime orders such that G = AB and G/Z(G) is a Frobenius group of order ab,
where a = |A : (Z(G) ∩ A)|, b = |B : (Z(G) ∩ B)|.
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