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INDEFINITE FINSLER SPACES AND TIMELIKE 
SPACES 

JOHN K. BEEM 

1. Introduction. In this paper we investigate indefinite Finsler spaces in 
which the metric tensor has signature n — 2. These spaces are a generalization 
of Lorentz manifolds. Locally a partial ordering may be defined such that the 
reverse triangle inequality holds for this partial ordering. Consequently, the 
spaces we study may be made into what Busemann [3] terms locally timelike 
spaces. Furthermore, sufficient conditions are obtained for an indefinite 
Finsler space to be a doubly timelike surface (see [2; 4]). In particular, all 
two-dimensional pseudo-Riemannian spaces are shown to be doubly timelike 
surfaces. 

2. Indefinite Finsler spaces. Let M be a connected paracompact 
difïerentiable manifold of dimension n and class Cœ. Denote the local coordinates 
of a point x on M by x1, x2, . . . , xn. In the tangent space T(x) at x we take a 
natural frame and denote the components of a vector y in T(x) by y1, . . . , yn. 
Let L(x, y) be a function on the tangent bundle T(M) of M which has the 
following properties: 

(A) The function L(x, y) is of class C4 whenever y ^ 0; 
(B) L(x, ky) = k2L(x, y) for all k > 0; 
(C) The metric tensor gij(x,y) = ^(d2L/dyidyi) has n — \ positive 

eigenvalues and one negative eigenvalue for all (x, y) with y ?£ 0. 
If M is a Lorentz manifold with ds2 = gij(x)dxidxj

f then L(x, y) = 
gij(x)yiyj satisfies the above conditions. 

For each fixed (x, y) the tangent vectors u at x are separated into three 
classes, spacelike, null, and timelike according to whether gij(x, y)uiui is 
(respectively) positive, zero or negative. 

Define F(x,y) = \L(x, y)\*. Then F(x,y) is of class C4 if L(x,y) 9e 0. 
In general, F{x, y) is not difïerentiable when L(x, y) = 0. If F(x, —y) = 
+ F(x,y), then F is called symmetric. 

For fixed x and a non-zero constant c let 5 be a component oî{y\ L (x, y) =c}. 
Then S is an (n — 1)-dimensional surface in the tangent space T(x). Let 
3̂o G S and define H(y) = gij(x, yo)yiyj. Then H(y) = zLc consists of two 
conjugate quadrics. Let Si be the component of H(y) = c that contains yQ. 
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Because of the homogeneity of gtj(x,y) in the second variable we have 

dgij(x,yo)yol 

Therefore, 
a7~~ = °-

dH(y0) dL(x,y0) t 

~~dyk~ = dyk— = gik^ ' yo'y° ' 

Consequently, 5 and Si have a common tangent hyperplane P at y0. Let y be a 
vector parallel to P. Let dH/ dyl = Hyi and dL/dy* = Lvi. Then 

Hyi(yo)yi = Lyi(x,y0)y
i = 0. 

The normal curvature of 5 in the direction y is 

, 2gti(x, y0)y
iyi

 = 2H(y)  

" IE (y')*][Z V ( * . yo)]* E (/)*][£ V(* , yo)]1 " 
LEMMA 1. Let S be a component of {y\ L(x, y) = c with c < 0}. 77zen 5 is a 

strictly convex surface whose principal curvatures are all positive. 

Proof. Using the above notation let y0 £ 5 and let y be parallel to the tangent 
plane P at y0. Then H(y) > 0 and hence kn > 0. Therefore, all of the principal 
curvatures of S at y0 are positive. 

Let S° = {y\ y = \u for X ^ 1 and u £ S}. Then 5° is closed, connected, and 
strongly locally convex. Consequently, 5° is convex. The set S is the boundary 
of S° and must be strictly convex. If n = 2, then 5 is a strictly convex curve 
with non-zero curvature at each point. 

By consideration of the normal curvature as in Lemma 1 we can establish 
the following result. 

LEMMA 2. Let She a component of \y\ L(x, y) = c and c > 0}. Then at each 
point, S has one negative principal curvature and n — 2 positive principal 
curvatures. 

3. The extremals. In this section and the next let F be symmetric. The 
Christoffel symbols are defined by 

gij 

7h*(x,y) = — dghi , dlik 
dxk "*" dxh dx* J ' 

where the tensor gij(x,y) is determined by gikgkj = ô / . The extremals are 
given by 

. . Ct X , 7 (XX (XX _. 

This defines a space of paths. Consequently, simple convex neighbourhoods 
exist in which every pair of distinct points x, y determine a unique solution 
of (*) ; see [5]. If £/(x0) is a simple convex neighbourhood about x0 and 
p, q G Z7(xo), let a(£, g) denote the unique extremal in U(x0) from p to g. 
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Let Xo be given with L(x0, Xo) = — 1. Construct a simple convex neighbour­
hood U(XQ) in M such that for all x G U(x0) we have L(x, x0) < 0. Let Ki(x) 
be the component of {y\ Lix,y) = —1} that contains Xx0 for some X > 0. 
Define B(x) = {6y\ y G Kx(x) and 6 > 0}. 

An indefinite metric is defined on U(x0) by p(p, q) = J J F(x, x) dt, where 
x(t) represents a (p, q) with x(0) = £ a n d x ( l ) = q. Since Fix, —y) = F(x,y), 
it follows that p(p, q) = p(g, £). 

The Weierstrass ^-function for the above integral is given by 

E(x, x, u) = F(x, u) — ̂ F^ix, x). 

LEMMA 4. Let x G U(x0) and x, u G B(x). Then E(x, x, u) ^ 0 and equality 
holds if and only if u = \x. 

Proof. The Weierstrass ^-function is homogeneous in both u and x. Without 
loss of generality we may assume that x G K\(x) and u is in the tangent plane 
to Ki(x) at x. Then 

F-Xi(x, x)(ul — xl) = 0 and F(x, x) = 1. 

Since Ki(x) is convex, we have Fix, u) < 1. Thus, 

E(x, x, u) = Fix, u) — 1 < 0. 

4. Timelike spaces. For p, q G U(x0) define p < q if there is a solution 
x(s) of (*) in U(xo) with x(0) = p, x(s0) = q, and x'(0) G ^ ( ^ ) . 

THEOREM 5. 77ze relation < is a partial ordering. Furthermore, if p < q < r, 
//^?z p(£>, r) ^ p(£, g) + p(q, r) awd equality holds if and only if q G a(£, r) . 

Proof. Let p < q and g < f. It is necessary to show that £ < r. Consider the 
Meyer field obtained by taking the extremals through p. This field covers a 
convex neighbourhood of U(p) and covers U(p) — p simply. We may assume 
that q, r G U(p). At each point v G oc(q, r) there is a tangent vector vv to 
a(£, z/) determined by the field. Traversing a(q, r) from q toward r we obtain 
a tangent vector vq to a(g, r) at v. For z; close to q we have ^ , vq £ B (v). Thus, 

E(v, vp, vQ) S 0. 

Consequently, p(p,v) ^ p(p, q) + p(q, v) with equality if and only if 
q G a(p, v). It follows that pip, v) is non-decreasing as v traverses a(q, r) from 
q to r. Therefore, p < r and the theorem is established. 

This theorem states that locally a timelike space can be obtained from an 
indefinite Finsler space of signature n — 2. 

In the special case of n = 2, Lemma 1 holds for components of {y\ F(x, y) = 
1}. Using this it is not hard to show the following theorem. 
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THEOREM 6. Let M be a two-dimensional space and let F(x, y) be symmetric. 
If at each point of M there are exactly two {linearly independent) null directions, 
M is a doubly timelike surface. 

It is only necessary to prove Theorem 6 locally for simple convex sets Ui. 
Then we cover M with sufficiently small convex neighbourhoods U % such that 
Ui r\ Uj is always a simple convex set and such that Ût is always compact. 
Then define II = {{p, q)\ p 9e q and both points belong to a common Ui}. 
The external a(p, q) and indefinite distance p(p, q) are as previously defined. 

COROLLARY 7. / / M is a two-dimensional pseudo-Riemannian space, then 
locally M is a doubly timelike surface. 

5. The Minkowski case. If M is the space of real w-tuples and L depends 
only on y and not on x, the space is called a Minkowski space. The extremals 
are the ordinary straight lines (even in the non-symmetric case). 

Since F and L only depend on y, we write F{y) and L(y). Let z denote the 
origin and identify the tangent space at z with M. Consider F to be a function 
from M to the non-negative reals. If p and q are points of M, then 

p(P,q) =fF(x)dt= F{q-p). 

Here the integral is from p to q along the segment a(p, q). 
Using the above identification, it is clear that F(x) isjustp(s, x), the distance 

from z to x. The unit sphere K is {x\ F(x) = 1} and the light cone C is 
{x\ F(x) = 0}. The light cone must consist of a union of half lines from z. 

LEMMA 8. If x0 G C — z, then x0 and (Lxi(x0), . . . , Lxn(x0)) are linearly 
independent. 

Proof. Let H(h) = gvMhW. Then 

~~dh~ = ~~d7~~ = 2 ^ ( x ° ) X o ' 

Therefore, (Lxi(x0), . . . , Lzn(x0)) ^ 0. By Euler's Theorem we have 

Lxi (x0)xoi = 2L(x0) = 0. 

This establishes the lemma. 

It now follows that if n = 2, the light cone consists of only a finite number 
of half lines. These half lines separate the space into open components 
Si, . . . , Sr. Exactly one component of K lies in each S{. We may assume that 
the components St are labeled consecutively around z. If St and Si+i are 
adjacent components, then, by Lemma 8, L(x) is positive on one and negative 
on the other. Traversing a circle about z, the function L(x) must alternate each 
time a half line of C is crossed. Consequently, there must be an even number of 
components St. 

https://doi.org/10.4153/CJM-1970-119-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-119-7


INDEFINITE FINSLER SPACES 1039 

THEOREM 9. Let M be Minkowskian and n = 2. Then the unit sphere K has 
an even number r of components. Furthermore, if L(—x) = —L{x), then r is 
not divisible by 4. If L( — x) = L(x), then r is divisible by 4. 

Proof. The fact that r is even follows from the above remarks. Let t = \r + 1. 
Let L( — x) = — L(x). If Si is a component on which L(x) > 0, then 

L(x) < 0 on St and \r must be odd. By similar reasoning, if L{ — x) = L(x), 
then \r is even. 

We now give two examples which are neither pseudo-Riemannian nor 
Minkowskian general G-spaces; compare [1]. They are both two-dimensional. 

Example 1. Let 
/ 1\3 _ 1 / 2x2 

T (<v\ — ^ t X [X ) 

Then L( — x) = —L(x). The unit sphere K has six components. 

Example 2. Let 

/ 1\3 2 _ 1 / 2 \ 3 

{X ) + {X ) 
Then L( — x) = L(x). The unit sphere X has eight components. 
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