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INDEFINITE FINSLER SPACES AND TIMELIKE
SPACES

JOHN K. BEEM

1. Introduction. In this paper we investigate indefinite Finsler spaces in
which the metric tensor has signature » — 2. These spaces are a generalization
of Lorentz manifolds. Locally a partial ordering may be defined such that the
reverse triangle inequality holds for this partial ordering. Consequently, the
spaces we study may be made into what Busemann [3] terms locally timelike
spaces. Furthermore, sufficient conditions are obtained for an indefinite
Finsler space to be a doubly timelike surface (see [2; 4]). In particular, all
two-dimensional pseudo-Riemannian spaces are shown to be doubly timelike
surfaces.

2. Indefinite Finsler spaces. Let M be a connected paracompact
differentiable manifold of dimension # and class C*. Denote the local coordinates
of a point x on M by x%, x2,...,x" In the tangent space 1'(x) at x we take a
natural frame and denote the components of a vector v in 7'(x) by 3%, ..., y"
Let L(x, y) be a function on the tangent bundle 7°(M) of M which has the
following properties:

(A) The function L(x, y) is of class C* whenever y # 0;

(B) L(x, ky) = k*L(x,v) for all £ > 0;

(C) The metric tensor gy(x,y) = $(82L/dy*dy’) has n — 1 positive

eigenvalues and one negative eigenvalue for all (x, y) with y = 0.

If M is a Lorentz manifold with ds® = g;;(x)dx'dx’, then L(x,y) =
g:;(x)yty? satisfies the above conditions.

For each fixed (x,y) the tangent vectors # at x are separated into three
classes, spacelike, null, and timelike according to whether g;;(x, y)u'u? is
(respectively) positive, zero or negative.

Define F(x,y) = |L(x,y)|". Then F(x,v) is of class C* if L(x,y) 5 0.
In general, F(x,y) is not differentiable when L(x,y) = 0. If F(x, —y) =
+ F(x, y), then F is called symmetric.

For fixed x and a non-zero constant ¢ let.S be a component of {y| L(x, ¥) =c}.
Then S is an (z — 1)-dimensional surface in the tangent space 7'(x). Let
yo € S and define H(y) = g;;(x, y0)y™y?. Then H(y) = =c consists of two
conjugate quadrics. Let Sy be the component of H(y) = ¢ that contains y,.
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Because of the homogeneity of g;;(x, ¥) in the second variable we have

0gi;(x, yo)yo’ _
3y )
Therefore,
0H (yo) _ 9L (x, yo)
3" 9y*

= 2g ik (xy yO)yO i.

Consequently, S and .S; have a common tangent hyperplane P at y,. Let y be a
vector parallel to P. Let dH/dy? = H,; and dL/dy* = L,;. Then

H,i(yo)y" = Lyi(x, y0)y* = 0.
The normal curvature of .S in the direction y is
B o= 2245, ¥0)y"y’ _ 2H (y) .
[22 O Ly (e v 122 01X Ly (e, 0)

LeMMA 1. Let S be a component of {y| L(x,y) = ¢ with ¢ < 0}. Then S is a
strictly convex surface whose principal curvatures are all positive.

Proof. Using the above notation let yo € Sand let y be parallel to the tangent
plane P at yo. Then H(y) > 0 and hence &, > 0. Therefore, all of the principal
curvatures of S at y, are positive.

LetS° = {y|y = M for X = 1and « € S}. Then S°is closed, connected, and
strongly locally convex. Consequently, S° is convex. The set S is the boundary
of S° and must be strictly convex. If # = 2, then S is a strictly convex curve
with non-zero curvature at each point.

By consideration of the normal curvature as in Lemma 1 we can establish
the following result.

LeEMMA 2. Let S be a component of {y| L(x,y) = ¢ and ¢ > 0}. Then at each
point, S has one megative principal curvature and n — 2 positive principal
curvatures.

3. The extremals. In this section and the next let F be symmetric. The
Christoffel symbols are defined by

ij v
; _ 27| ogns | Ogu _ agh.k]
Yh k(xr 3’) - 2 [635}‘ axh axt ’
where the tensor g#(x, y) is determined by g%g;; = §,% The extremals are
given by
d’’ ; dx" dx”
) asT T s T

This defines a space of paths. Consequently, simple convex neighbourhoods
exist in which every pair of distinct points x, y determine a unique solution
of (x); see [5]. If U(xo) is a simple convex neighbourhood about x, and
P, q € Ul(xo), let a(p, ¢) denote the unique extremal in U(x,) from p to g.
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Let %o be given with L(x,, ) = —1. Construct a simple convex neighbour-
hood U(x,) in M such that for all x € U(x,) we have L(x, %) < 0. Let K;(x)
be the component of {y| L(x,y) = —1} that contains \%, for some \ > 0.

Define B(x) = {6y|y € Ki(x) and 6 > 0}.

An indefinite metric is defined on U(x,) by p(p, q¢) = f(l, F(x, x) dt, where
x(¢) representsa(p, ¢) withx(0) = pand x(1) = q. Since F(x, —y) = F(x, ),
it follows that p(p, ¢) = p(q, p).

The Weierstrass E-function for the above integral is given by

E(x,x,u) = F(x,u) — u'F;i(x, ).

LEMMA 4. Let x € U(xy) and %, u € B(x). Then E(x, %, u) < 0and equality
holds if and only if u = \%.

Proof. The Weierstrass E-function is homogeneous in both % and %. Without
loss of generality we may assume that £ € K;(x) and « is in the tangent plane
to Ki(x) at %. Then

Fpi(xe,*)(u* — %) =0 and F(x, %) = 1.
Since K;(x) is convex, we have F(x, u) < 1. Thus,

E(x,%,u) = F(x,u) — 1 <0.

4. Timelike spaces. For p, ¢ € U(x,) define p < ¢ if there is a solution
x(s) of (%) in U(xy) with x(0) = p, x(s0) = ¢, and x'(0) € B(p).

THEOREM 5. The relation < is a partial ordering. Furthermore, if p < q < 7,
then p(p,7) = p(p, q) + p(q, r) and equality holds if and only if q € a(p, 7).

Proof. Let p < gand g < r. Itis necessary to show that p < r. Consider the
Meyer field obtained by taking the extremals through p. This field covers a
convex neighbourhood of U(p) and covers U(p) — p simply. We may assume
that ¢, 7 € U(p). At each point v € a(qg, ) there is a tangent vector v, to
a(p, v) determined by the field. Traversing a(q, 7) from ¢ toward » we obtain
a tangent vector v, to a(q, 7) at v. For v close to ¢ we have v,, v, € B(v). Thus,

E(v, vp,v,) = 0.

Consequently, p(p,v) = p(p, ¢) + p(g,v) with equality if and only if
q € a(p, v). It follows that p(p, v) is non-decreasing as v traverses a(q, 7) from
g to r. Therefore, p < r and the theorem is established.

This theorem states that locally a timelike space can be obtained from an
indefinite Finsler space of signature n — 2.

In the special case of # = 2, Lemma 1 holds for components of {y| F(x, y) =
1}. Using this it is not hard to show the following theorem.
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TueorEM 6. Let M be a two-dimensional space and let F(x,y) be symmetric.
If at each point of M there are exactly two (linearly independent) null directions,
M s a doubly timelike surface.

It is only necessary to prove Theorem 6 locally for simple convex sets U.,.
Then we cover M with sufficiently small convex neighbourhoods U, such that
U; N U, is always a simple convex set and such that U, is always compact.
Then define I = {(p, q)| p # ¢ and both points belong to a common U,}.
The external a(p, ¢) and indefinite distance p(p, ¢) are as previously defined.

COROLLARY 7. If M is a two-dimensional pseudo-Riemannian space, then
locally M is a doubly timelike surface.

5. The Minkowski case. If 1/ is the space of real n-tuples and L depends
only on y and not on x, the space is called a Minkowski space. The extremals
are the ordinary straight lines (even in the non-symmetric case).

Since F and L only depend on v, we write F(y) and L(y). Let z denote the
origin and identify the tangent space at z with M. Consider F to be a function
from M to the non-negative reals. If p and ¢ are points of M, then

p(p,q) = [ F(&)dt = F(g — p).

Here the integral is from p to ¢ along the segment a(p, ¢).

Using the above identification, it is clear that F(x) is just p(z, x), the distance
from z to x. The unit sphere K is {x| F(x) = 1} and the light cone C is
{x| F(x) = 0}. The light cone must consist of a union of half lines from z.

LeEmMMA 8. If %9 € C — 2, then xo and (L,1(x0), ..., Lin(x0)) are linearly
independent.

Proof. Let H(h) = g;;(x0)k*h?. Then

oH oL :
agﬁo) = aixko) = 2gik(x0)x0 .

Therefore, (L;1(x0), ..., Lsn(xe)) # 0. By Euler's Theorem we have
in (OCo)OC()i = 2L(x0) = 0.
This establishes the l[emma.

It now follows that if # = 2, the light cone consists of only a finite number
of half lines. These half lines separate the space into open components
Si, . .., S Exactly one component of K lies in each S;. We may assume that
the components S; are labeled consecutively around z. If S; and S,y; are
adjacent components, then, by Lemma 8, L(x) is positive on one and negative
on the other. Traversing a circle about z, the function L (x) must alternate each
time a half line of C is crossed. Consequently, there must be an even number of
components .S;.
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THEOREM 9. Let M be Minkowskian and n = 2. Then the unit sphere K has
an even number v of components. Furthermore, if L(—x) = —L(x), then r is
not divisible by 4. If L(—x) = L(x), then r is divisible by 4.

Proof. The fact that 7 is even follows from the above remarks. Let ¢ = 47 + 1.

Let L(—x) = —L(x). If S; is a component on which L(x) > 0, then

L(x) < 0onS;and 47 must be odd. By similar reasoning, if L(—x) = L(x),
then 37 is even.

We now give two examples which are neither pseudo-Riemannian nor
Minkowskian general G-spaces; compare [1]. They are both two-dimensional.
Example 1. Let
(x1)3 _ xl(xZ)Z

L(x) = 545938 -«
© =167 T @
Then L(—x) = —L(x). The unit sphere K has six components.
Example 2. Let
1,3 2 1, 2.3

@)+ (")’
Then L(—x) = L(x). The unit sphere K has eight components.

Acknowledgement. 1 wish to thank Calvin D. Ahlbrandt for some valuable
suggestions.
REFERENCES

. J. K. Beem, Indefinite Minkowski spaces, Pacific J. Math. 33 (1970), 29-42.

. J. K. Beem and P. Y. Woo, Doubly timelike surfaces, Mem. Amer. Math. Soc. No. 92, 1969.

. H. Busemann, Timelike spaces, Dissertationes Math. Rozprawy Mat. §3 (1967), 52 pp.

. H. Busemann and J. K. Beem, Axioms for indefinite metrics, Rend. Circ. Mat. Palermo
(2) 15 (1966), 223-246.

. J. H. C. Whitehead, Convex regions in the geometry of paths—Addendum, Quart. J. Math.
Oxford Ser. 4 (1933), 226-227.

W

3]

University of Missours,
Columbia, Missours

https://doi.org/10.4153/CJM-1970-119-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-119-7

