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Supergranule aggregation: a Prandtl
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Supergranule aggregation, i.e. the gradual aggregation of convection cells to horizontally
extended networks of flow structures, is a unique feature of constant heat flux-driven
turbulent convection. In the present study, we address the question if this mechanism
of self-organisation of the flow is present for any fluid. Therefore, we analyse
three-dimensional Rayleigh–Bénard convection at a fixed Rayleigh number Ra ≈ 2.0 ×
105 across 4 orders of Prandtl numbers Pr ∈ [10−2, 102] by means of direct numerical
simulations in horizontally extended periodic domains with aspect ratio Γ = 60. Our
study confirms the omnipresence of the mechanism of supergranule aggregation for the
entire range of investigated fluids. Moreover, we analyse the effect of Pr on the global heat
and momentum transport, and clarify the role of a potential stable stratification in the bulk
of the fluid layer. The ubiquity of the investigated mechanism of flow self-organisation
underlines its relevance for pattern formation in geophysical and astrophysical convection
flows, the latter of which are often driven by prescribed heat fluxes.

Key words: turbulent convection, pattern formation, buoyancy-driven instability

1. Introduction

Buoyancy, i.e. the interplay of gravity with mass density inhomogeneities that are typically
caused by thermal heterogeneities, is, howsoever introduced, the essential mechanism
that drives heat transport in many natural flows. Examples for such natural convection
processes can be found on Earth throughout its layers from mantle convection (Christensen
1995) over deep ocean convection (Maxworthy & Narimousa 1994) up to convection in its
atmosphere (Atkinson & Wu Zhang 1996), eventually determining local and global aspects
of weather and climate.
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Natural thermal convection flows reveal often a hierarchy of different flow structures
such as clusters of clouds over the warm ocean in the tropics of Earth (Mapes & Houze
1993). The probably most prominent and thoroughly studied example of a hierarchy
formation might be given by the solar convection zone in the outer 30 % of the Sun
(Schumacher & Sreenivasan 2020). In this case, so-called granules are superposed to
larger flow structures termed supergranules: although both of them are driven by the heat
flux at the solar surface (Rincon & Rieutord 2018; Schumacher & Sreenivasan 2020), they
offer very different lifetimes and horizontal extensions. Unfortunately, our understanding
of such hierarchies’ origins is still far from complete (Hanson et al. 2020) and simpler
set-ups of convection become necessary to improve it systematically.

Rayleigh–Bénard convection represents the simplest conceivable set-up and, thus, the
paradigm of naturally forced, thermally driven turbulence. Here, a fluid layer of thickness
H is confined between a heated horizontal plane at the bottom and a cooled one at the
top: because of the variation of density with temperature, the layer becomes unstable once
subjected to gravity. As a result of intense research over the past decades, it is well-known
that such convection systems organise themselves even in the fully turbulent regime into
prominent long-living large-scale flow structures. Although clearly distinguishable from
the universal smaller-scale turbulence or fluctuations on significantly shorter time scales,
the nature of these large-scale flow structures is complex and depends instead on various
external factors such as the strength of the thermal driving, the working fluid or the
presence of additional physical mechanisms (Vieweg 2023).

Interestingly, only very recent research identified thermal boundary conditions
as the key factor in determining the nature of these long-living large-scale flow
structures given a horizontally extended domain. In a nutshell, either so-called turbulent
superstructures with characteristic horizontal extensions of Λ ∼ O(H) form (Pandey,
Scheel & Schumacher 2018; Stevens et al. 2018; Krug, Lohse & Stevens 2020; Käufer
et al. 2023), or a so-called gradual supergranule aggregation takes place that might result
in a domain-sized flow structure with Λ � O(H) if not being interrupted by additional
mechanisms such as rotation around the vertical axis (Vieweg, Scheel & Schumacher
2021a; Vieweg et al. 2022). Although the former establish whether the horizontal planes
offer uniform temperatures (so-called Dirichlet conditions), the latter correspond to planes
that prescribe a uniform vertical temperature gradient or, in other words, a spatially
constant heat flux (Neumann conditions). Furthermore, the supergranules are superposed
to significantly smaller (yet large-scale) granule-like flow structures, so a hierarchy of
different horizontally extended flow structures may establish even in a simple turbulence
configuration. This effect of thermal boundary conditions extends also to the Lagrangian
material transport and the present coherent features in the flow (Vieweg et al. 2021b;
Schneide et al. 2022; Vieweg et al. 2024). Remarkably, these different self-organisations
of the flows persist across the entire numerically accessible range of Rayleigh numbers
Ra � 108 (which quantify the strength of the thermal driving) (Vieweg et al. 2021a, 2022).
Hence, the way how buoyancy effects are prescribed at the planes or boundaries seems to
eventually determine the large-scale nature of the flows in between.

Exceeding a critical value of thermal driving, the buoyancy-induced destabilisation
leads to an onset of convection. Although this critical value depends on the thermal
boundary conditions, the latter modify in particular the horizontal extension of the
emerging flow structures. In more detail, this primary instability leads to the emergence of
convection rolls that exhibit predominantly one particular horizontal extension: depending
on the mechanical boundary conditions, the corresponding critical wave numbers are
kh,crit = [2.22, 3.13] (Rayleigh 1916; Pellew & Southwell 1940) or kh,crit = 0 (Hurle et al.

980 A46-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.56


Supergranule aggregation: a Pr-independent feature

t = 0 t = 250 t = 500 t = 1000 t = 2000 t = 5575
(a) (b) (c) (d) (e) ( f )

–
2
.6

0
.5

3
.6

T 
(x

, 
y,

 z 0
, 
t)

Secondary instabilities (Chapman & Proctor 1980) drive the

formation of large-scale flow structures in constant heat flux-driven

convection flows even in the turbulent regime (Vieweg et al. 2021).

Figure 1. Gradual supergranule aggregation. Although secondary instabilities are essential for the transient
growth of the supergranules, the final flow resembles a state described by the primary instability (Hurle,
Jakeman & Pike 1967). This time series visualises a flow at Pr = 10−2 (table 1) across the entire horizontal
cross-section of aspect ratio Γ = 60 at z0 = 1 − δT/2 with the thermal boundary-layer thickness δT =
1/(2Nu).

1967) for applied uniform temperatures or vertical temperature gradients, respectively.
This latter value is further supported by the secondary instability slightly above the onset
of convection, revealing that ‘each mode is unstable to one of longer wavelength than
itself, so that any long box will eventually contain a single roll’ (Chapman & Proctor
1980). In other words, any convection roll (of arbitrary size) is, at least slightly above the
onset of convection, unstable to a more extended convection roll if buoyancy is introduced
via a constant heat flux. Given that this result is obtained from a nonlinear evolution
equation for the two-dimensional leading-order temperature perturbation, it is remarkable
that a three-dimensional leading Lyapunov vector stability analysis discovered for a
Prandtl number Pr = 1 (which defines the working fluid) that the gradual supergranule
aggregation is, even far beyond the onset of convection, driven by such secondary
instabilities (Chapman & Proctor 1980; Vieweg et al. 2021a), see also figure 1. Once
the numerically finite horizontal extent of the domain is reached, the final statistically
stationary state resembles essentially a finite-size relic of critical mode and thus shares
similarities with the primary instability. Crucially, the latter is independent of the working
fluid, whereas secondary and subsequent instabilities depend at least in the classical case
of prescribed temperatures strongly on the working fluid (Busse 1978, 2003). In the case
of a prescribed heat flux, the authors studying secondary instabilities stated that their
‘results hold quite generally for all Prandtl numbers’ (Chapman, Childress & Proctor
1980) but simultaneously ‘do not expect the theory to remain accurate for very small Pr’
(Chapman & Proctor 1980). As the final supergranule results from the preceding transient
supergranule aggregation, clarifying this uncertainty becomes crucial especially due to the
strongly varying Prandtl numbers in geophysical and astrophysical flows.

In the present work, we conduct direct numerical simulations across an extended range
of fluids applicable to geophysical and astrophysical convection systems while prescribing
constant vertical temperature gradients at the horizontal top and bottom planes. Providing
extraordinarily long evolution times of up to the order of O(104) convective time units,
we confirm that supergranule aggregation is an omnipresent feature independently of
the working fluid. Despite its involved hierarchy of different large-scale flow structures,
the global heat and momentum transport of the flows shares clear analogies with the
complementary turbulent superstructures that manifest in the case of applied constant
temperatures. Interestingly, the bulk stratification might manifest qualitatively differently
depending on the working fluid.
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2. Numerical method

We consider the simplest conceivable scenario of convection based on the
Oberbeck–Boussinesq approximation (Oberbeck 1879; Boussinesq 1903) where the key
idea is that the dependence of material parameters on ‘pressure is unimportant and that
even the variation with temperature may be disregarded except in so far as it modifies the
operation of gravity’ (Rayleigh 1916). As a consequence, the mass density ρ becomes a
linear function of only the temperature when it acts together with gravity but is constant
or incompressible otherwise.

The three-dimensional equations of motion are solved by the spectral-element method
Nek5000 (Fischer 1997; Scheel, Emran & Schumacher 2013). The equations are made
dimensionless based on the layer height H and the applied constant vertical temperature
gradient β at the plates, resulting in βH as the characteristic temperature scale. Together
with the free-fall inertial balance, the free-fall velocity Uf =

√
gαβH2 and free-fall time

scale τf = 1/
√

αgβ establish as characteristic units. Here, α is the volumetric thermal
expansion coefficient at constant pressure and g the acceleration due to gravity. This
translates the equations eventually into

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇p +
√

Pr
Ra

∇2u + Tez, (2.2)

∂T
∂t

+ (u · ∇)T = 1√
RaPr

∇2T (2.3)

with u, T and p representing the velocity, temperature and pressure field, respectively. The
relative strength of the individual terms in these equations is controlled by the Rayleigh
and Prandtl number,

Ra := αgβH4

νκ
and Pr := ν

κ
, (2.4a,b)

only. The quantities ν and κ denote the viscosity and thermal diffusivity, respectively, and
thus define the strength of molecular diffusion processes.

Independently of Ra and Pr, (2.1)–(2.3) are complemented by a three-dimensional
domain with a square horizontal cross-section A = Γ × Γ and an aspect ratio Γ :=
L/H = 60 where L is the horizontal periodic length of the domain. We apply at the top
and bottom planes mechanical free-slip boundary conditions

uz(z ∈ {0, 1}) = 0,
∂ux,y

∂z
(z ∈ {0, 1}) = 0, (2.5a,b)

as well as thermal constant heat flux boundary conditions

∂T
∂z

(z ∈ {0, 1}) = −1. (2.6)

In spite of our interest in large-scale flow structures, our direct numerical simulations
resolve all dynamically relevant scales of the flows ranging from the domain size down to
the dissipation scales based on a (refined) Grötzbach criterion (Scheel et al. 2013). These
dissipation scales are given by the so-called Kolmogorov and Batchelor scale (Batchelor

980 A46-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.56


Supergranule aggregation: a Pr-independent feature

Pr Ne N tr[τf ] tr[τν ] tr[τκ ] ΛT Nu Re 〈ηK〉V,t 〈ηB〉V,t

0.01 8302 × 16 13 5575 1.2 123.6 59.7 3.17 2063.0 5.2 × 10−3 5.2 × 10−2

0.1 4002 × 8 9 4250 3.0 29.8 59.7 4.94 433.0 1.6 × 10−2 5.0 × 10−2

1 2002 × 4 11 6500 14.4 14.4 59.7 6.74 81.4 4.9 × 10−2 4.9 × 10−2

7 2002 × 4 7 4000 23.5 3.4 59.8 7.21 16.2 1.3 × 10−1 4.9 × 10−2

10 2002 × 4 7 6000 42.1 4.2 59.8 7.13 11.7 1.5 × 10−1 4.9 × 10−2

100 2002 × 4 7 14 000 310.3 3.1 59.8 7.02 1.1 4.9 × 10−1 4.9 × 10−2

Table 1. Simulation parameters of the direct numerical simulations at different Prandtl numbers Pr: the
Rayleigh number Ra = 203, 576, aspect ratio Γ = 60 and free-slip as well as constant heat flux boundary
conditions are applied for all runs. The table also contains the total number of spectral elements Ne in the
simulation domain, the polynomial order N on each spectral element, the total runtime of the simulation tr in
units of the corresponding free-fall times τf , a subsequent translation of these runtimes into vertical diffusion
times τν,κ , as well as the resulting integral length scale ΛT of the temperature field at midplane, Nusselt number
Nu, Reynolds number Re and the mean Kolmogorov and Batchelor scale, 〈ηK〉V,t and 〈ηB〉V,t, respectively. ΛT ,
Nu, Re, 〈ηK〉V,t and 〈ηB〉V,t are obtained from the last 500τf (5τf for Pr = 10−2, 1000τf for Pr = 102) of each
simulation run.

1959; Kolmogorov 1991; Sreenivasan 2004),

ηK := Pr3/8

Ra3/8ε1/4
and ηB := ηK√

Pr
, (2.7a,b)

for the velocity and scalar temperature field, respectively, where ε := (1/2)
√

Pr/Ra[(∇u)

+ (∇u)T]2 represents the kinetic energy dissipation rate. Note that whereas the Batchelor
scale ηB ≤ ηK applies for Pr ≥ 1, the Corrsin scale ηC := ηK/Pr3/4 (Corrsin 1951) is here
not of particular interest as it applies only at Pr ≤ 1 where ηC ≥ ηK .

3. Results

In contrast to our previous work (Vieweg et al. 2021a), we fix here the Rayleigh number
Ra ≈ 2.0 × 105 but vary instead the Prandtl number Pr ∈ [10−2, 102] across 4 orders of
magnitude centred around Pr = 1. The precise parameters are summarised for all our
simulation runs in table 1.

3.1. Ubiquitous gradual supergranule aggregation
Initialised with its fluid at rest possessing a randomly perturbed linear diffusive
equilibrium profile, i.e. u(t = 0) = 0 and T(t = 0) = Tlin + Ψ together with Tlin := 1 − z
and 0 ≤ Ψ (x) ≤ 10−3 (Vieweg 2023; Vieweg et al. 2024), every simulation is run as long
as necessary to indicate a stationarity of the large-scale flow structure formation. This can
be captured, for instance, by (i) the thermal variance Θrms with the temperature deviation
Θ = T − Tlin or (ii) the integral length scale (Parodi et al. 2004) of the temperature field

ΛT(z0, t) := 2π

∫
kh

[ETT(kh, z0, t)/kh] dkh

∫
kh

ETT(kh, z0, t) dkh

(3.1)

based on the azimuthally averaged Fourier energy spectrum at midplane, ETT(kh, z0 =
0.5, t), as shown in Vieweg et al. (2022). Note here that neither the Reynolds nor the
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Figure 2. Signs of the transient supergranule aggregation. (a) While neither Nu nor Re are affected
significantly, (b) ΛT and Θrms do indicate the transient supergranule aggregation. The data correspond to
Pr = 10−2, see also figure 1.

Nusselt number (see (3.2) and (3.3), respectively) reflect the transient large-scale structure
formation properly (Vieweg et al. 2021a, 2022). Running our simulations reveals two
particularly interesting results.

First, the gradual supergranule aggregation, first reported by Vieweg et al. (2021a), sets
in even beyond Pr = 1 at all accessible Prandtl numbers as both Θrms and ΛT increase
over time, see also figure 2. Yet, the varying diffusivities affect the pace of the dynamics
and thus the necessary simulation runtime tr to reach a statistically stationary large-scale
pattern size, see table 1. Although tr is by far largest for the upper investigated limit
of Pr, we find a similar trend in the opposing lower limit. This observation confirms
that the efficiency of the aggregation process depends on the interplay of the velocity
and temperature field, being in line with our previous results (Vieweg et al. 2022)
which trace the (thermal) supergranule aggregation basically back to an advective transfer
of thermal variance. Consequently, these runtimes do not support any relation to the
diffusive time scales τν = H2/ν ≡ √

Ra/Prτf and τκ = H2/κ ≡ √
RaPrτf as contrasted

in table 1. Interestingly, while more simulations are required to draw firm conclusions on
the interplay of diffusion processes concerning the pace of the aggregation process, the
increase of necessary runtime is clearly larger in the direction Pr → ∞.

Second, this process ceases, independently of Pr, only once the horizontal domain size
is reached, implying that thermal variance has significantly aggregated on the scale of
the horizontal domain size. Consequently, the integral length scale ΛT converges in any
simulation run towards Γ as indicated by table 1 and figure 2(b). Figure 3 visualises
the temperature and vertical velocity field in horizontal planes within the upper thermal
boundary layer for these final states of the flows. In particular, figure 3(a,i,k,o,q) depict
the temperature fields across the entire horizontal cross-sections of the domains, whereas
figure 3(c, f,m,p,r) exemplary contrast them to the velocity field with respect to its vertical
component. The circumstance that the supergranules grow in every run without any upper
physical limit confirms that the secondary instability mechanism (Chapman et al. 1980;
Chapman & Proctor 1980) rules the formation of long-living large-scale flow structures
even far beyond the onset of convection independently of Pr.

Albeit the gradual supergranule aggregation seems to be a ubiquitous feature across all
covered fluids, the variation of the Prandtl number still modifies other aspects of the flow.
While they display well-ordered stems of localised up- and down-flow regions for large
Pr, they become increasingly disordered for increasingly smaller Pr due to the reduced
importance of molecular friction. Consequently, the ranges of observable scales or details
diverge when comparing the temperature and vertical velocity field: this is highlighted in
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Figure 3. Supergranulation across four orders of Prandtl numbers. Although the velocity field exhibits
successively smaller features for decreasing Prandtl numbers Pr, the supergranule aggregation can still easily be
observed in the temperature field. Panels (a,c, f,i,k,m,o,p,q,r) visualise the entire cross-section at z0 = 1 − δT/2.
To highlight the vast scale-separation between the temperature and (vertical) velocity field for small Pr, panels
(b,d,g, j,l,m) show enlarged regions of interest of size 15 × 15. Panels (e,h) underline this fact by additional
magnifications of regions of size 4 × 4.
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figure 3 by magnifications of fractions of the flows. In the case of Pr = 1, both fields
offer an equivalent richness of details which is shown in figure 3(l,n). This changes
once the Prandtl number moves off unity and the diffusivities of momentum and the
scalar temperature or the mean Kolmogorov (Kolmogorov 1991) and Batchelor (Batchelor
1959) scales differ. On the one hand, the temperature field becomes successively diffuse
or imprecise for increasingly smaller Pr, cf. figure 3(b, j,l). On the other hand, the
velocity field becomes simultaneously successively more chaotic as directly contrasted
in figure 3(d,g,n). The tremendous scale separation between the two fields is ultimately
highlighted by further magnifications of even smaller regions in figure 3(e,h), underlining
the vast complexity of low-Pr thermal convection flows. Table 1 quantifies this visual scale
separation by including the mean Kolmogorov and Batchelor scale for each simulation.

The increasing local disparity of the temperature and velocity field due to the different
time scales of the underlying diffusion processes indicates that the impact of a variation of
Pr on the global transport of momentum and heat should be investigated in the following.

3.2. Global transport properties and the role of stratification
An alternative perspective on the response of the dynamical system on its
buoyancy-induced forcing is provided by its global momentum and heat transport as can
be measured by the Reynolds and Nusselt number, respectively. While the former is given
by

Re(t) :=
√

Ra
Pr

urms with urms :=
√

〈u2〉V , (3.2)

the latter quantifies the strength of convective heat transport, by comparing the total heat
transport across the fluid layer to a state of pure heat conduction, and results (in the present
case of an applied constant heat flux) in (Otero et al. 2002)

Nu(t) = 1
ΔTN

with ΔTN := 〈T(z = 0) − T(z = 1)〉A ≤ 1, (3.3)

where ΔTN is the dynamically manifesting mean temperature drop across the fluid layer.
Figure 4 visualises via dark markers the dependence of these global transport measures

on the Prandtl number for the final flow states, see again figure 3. On the one hand, the
Reynolds number can be found to increase steadily when the Prandtl number is decreased.
This is in accordance with the vanishing role of viscous diffusion, allowing for higher
velocities and leading to successively more inertial flows. As this holds for the entire
range of covered Prandtl numbers, it implies that the flow laminarises for Pr � 1. On
the other hand, the Nusselt number shows a more complex behaviour. For decreasing
Prandtl numbers in the range Pr � 1, thermal diffusion gains relevance as the disorder
in the flow intensifies (see Re). In contrast, Nu stagnates for Pr � 1: this effect might be
induced by the full nesting of the thermal boundary layer into the viscous one (Chillà
& Schumacher 2012) (the latter of which might be estimated to be δu ∼ PrδT based
on diffusion arguments), so buoyancy effects are suppressed or protracted by viscous
diffusion and thermal plumes detach less frequently.

Thermal plume detachments are fundamentally caused by the applied (inverse or)
unstable density stratification introduced at the heated bottom and cooled top plane. These
ascending and descending plumes leave consequently the boundary layers and travel,
driven by buoyancy, into or even through the bulk, leading to turbulent mixing once the
flow is sufficiently inertial. Remarkably, our previous study (Vieweg et al. 2021a) observed
a slightly stable density stratification for any constant heat flux-driven convection flow in
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Figure 4. Global momentum and heat transport for different fluids. (a) While the global momentum transport
increases with decreasing Pr, (b) the convective heat transport loses importance (relative to purely diffusive
heat transport) only for Pr � 1. The dark markers correspond to supergranule data from the late state of this
study’s flows as described by table 1. In contrast, the bright markers represent turbulent superstructure data (i.e.
different thermal boundary conditions) as outlined in the discussion. In a nutshell, the present study differs from
‡ (Pandey et al. 2022) as follows: thermal Neumann boundary conditions vs Dirichlet conditions, horizontally
periodic domain of Γ = 60 vs closed box of Γ = 25, mechanical free-slip boundary conditions at the top
and bottom planes vs no-slip conditions. Note that the series at Ra ≈ 2.0 × 105 and RaD = 105 can be related
(Vieweg 2023).

the bulk region independently of Ra given Pr = 1. In other words, the flow structures
established a density stratification that was counter-directed to the applied one. Although
the strength of this stratification decreased with increasing Ra, it remained stable for all
accessible Ra � 108. In the following, we address the question of whether such a stable
stratification is a unique feature of every flow that exhibits the effect of supergranule
aggregation.

Therefore, we contrast the temperature profiles of all present runs in figure 5(a). Note
that the temperature fields are re-scaled here via Trs = (T − 〈T〉V)/ΔTN + 〈T〉V (which
does not affect the stratification properties) to allow for a direct comparison. Unlike in our
previous study, we find here stably as well as unstably stratified bulks despite the presence
of supergranules for any Pr. While it is stable for Pr ≥ 1 and converges for Pr � 7, it
is increasingly unstable for successively smaller Prandtl numbers Pr < 1. Interestingly,
these trends coincide with the above findings regarding the scaling of Nu(Pr), suggesting
a relation of the bulk stratification with plume detachments. Hence, a stable stratification
in the bulk is no omnipresent result of the emergence of supergranular flow structures,
while the potentially forming local peaks in the temperature profile can be seen as the
consequence of a competition between the protracted overshooting thermal plumes and
the opposite boundary layers close to the top and bottom plane.

4. Discussion and perspective

Introducing buoyancy in a simple Rayleigh–Bénard convection configuration via a
constant heat flux at the top and bottom planes leads without any additional physics to
the emergence of a hierarchy of different long-living large-scale flow structures (Vieweg
et al. 2021a; Vieweg 2023). While this hierarchy consists of so-called granules and
supergranules as separate stages, the latter are driven by secondary instabilities and might
grow until the horizontal domain size is reached (see again § 1 and figure 1). The present
study raises the question if mechanisms similar to this secondary instability in constant
heat flux-driven Rayleigh–Bénard convection (Chapman et al. 1980; Chapman & Proctor
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Figure 5. Stratification and the dominance of supergranular flow structures in different fluids. (a) A stable
stratification in the bulk is no omnipresent result of (or necessity for) the emergence of the supergranule but
rather related to plume detachments. (b) Simultaneously, the supergranules at kh,min = 2π/Γ ≈ 0.1 become,
evaluating here the midplane, weaker relative to smaller-scale structures (such as granules) for decreasing Pr.
The temperature fields are re-scaled as described in the text, and both data correspond to the late state of the
flows as described in the caption of table 1.

1980) act beyond Pr = 1 (Vieweg et al. 2021a) independently of the working fluid and, in
particular, even down to very small Prandtl numbers such as found in the solar convection
zone (Rincon & Rieutord 2018; Schumacher & Sreenivasan 2020). We therefore conducted
a series of simulations across four orders of Pr given a fixed thermal driving in a
horizontally extremely extended periodic domain of Γ = 60. We confirmed the presence
of the gradual supergranule aggregation as a particular mechanism of self-organisation of
long-living large-scale flow structures in naturally forced convection flows independently
of the working fluid. Our observations thus suggest that these secondary instabilities
dominate any basic heat flux-driven convection flow, leading to a robust hierarchy of
different large-scale flow structures.

This omnipresent appearance is in accordance with the accessibility of large-scale
kz = 0 spectral modes in the temperature field for this particular thermal boundary
condition. Note that these modes are not accessible in the classical case of applied constant
temperatures (Vieweg et al. 2022). As the present configuration corresponds to a ratio
of thermal diffusivities κf /κs → ∞ between the fluid and the above or below solid,
this mechanism can be seen as the result of a relaxation of thermal perturbations that
happens much quicker in the fluid compared to in the solid plates (Hurle et al. 1967;
Käufer et al. 2023). Moreover, the strength of buoyancy effects is in the heat flux-driven
scenario not limited by prescribed temperatures at the boundaries but instead via only
the less-restrictive mixing of fluid in between. Hence, these arguments allow and demand
eventually the formation of horizontally extended flow structures that might even span
across the entire domain to advectively transfer the thermal variance.

Given the fact that the variation of the working fluid affects the relative strength
of thermal diffusion as described by (2.4a,b), one might expect a decrease of thermal
variance for decreasing Pr due to an increase of κ . However, it turns out that the thermal
variance increases: this is also indicated by the colour scales in figure 3. This observation
can be explained as follows: smaller Pr result in larger Re and thus in an increased local
mixing (with κ acting also locally). As the flow is increasingly disordered, the large-scale
supergranule becomes less dominant compared with smaller-scale velocity structures
which is confirmed by the spectral analysis captured in figure 5(b). Consequently, the
horizontal mixing on large scales (see also the previous paragraph) becomes successively
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less effective for smaller Pr, leading eventually to an increased thermal variance in the
horizontally extended domain. As becomes clear when contrasting the present results with
Vieweg et al. (2021a), (i) the vanishing stable stratification is not an effect of the increased
Reynolds number and (ii) the relative heat transport of supergranules compared with
smaller-scale structures (such as granules) loses similarly importance when increasing Re
via Ra given a fixed Pr.

Interestingly, despite the fundamentally different long-living large-scale flow structures
between the cases of applied constant temperatures and vertical temperature gradients
(see again § 1), their response on a variation of the working fluid shares clear analogies:
compare therefore the bright and dark markers in figure 4, respectively. Note here
that while the Rayleigh number RaD := αgΔTH3/(νκ) in case of an applied constant
temperature difference ΔT , this is related via RaD ≡ Ra/Nu (Otero et al. 2002; Foroozani,
Krasnov & Schumacher 2021; Vieweg et al. 2021a) to (2.4a,b). In particular, this allows to
relate the present Pr = 1 run to the corresponding no-slip and RaD = 105 one from Pandey
et al. (2022) as described in Vieweg (2023). Thus, the particular kind of thermal boundary
condition seems not to be of great significance when it comes to qualitative trends of
the classical global measures of heat and momentum transport with respect to Pr. In other
words, different large-scale flow structures respond qualitatively similarly on a variation of
the working fluid if judged via global measures of heat or momentum transport. Moreover,
this underlines that diffusion processes are primarily locally important and do not rule the
large-scale pattern formation.

The omnipresence of supergranule aggregation across all accessible Rayleigh and
Prandtl numbers highlights the importance of an understanding of secondary (and
subsequent) instabilities (Chapman et al. 1980; Chapman & Proctor 1980) slightly above
the onset of convection. It is intriguing that such mechanisms survive even into the fully
turbulent states of the flows (Vieweg et al. 2021a) where patterns are typically highly
susceptible to the influence of instabilities and defects on each other (Busse 1978, 2003).
Moreover, additional physical mechanisms are required to stop the gradual supergranule
aggregation before reaching the numerically finite domain size. Weak rotation around the
vertical axis has turned out to effectively interrupt this process in the turbulent regime
(Vieweg et al. 2022) while also the primary instability changes qualitatively with kh,crit >

0 once rotation is sufficiently strong (Dowling 1988; Takehiro et al. 2002). Interestingly,
the ratio of thermal diffusivities κf /κs seems to promise similar effects (Hurle et al.
1967). This is of particular importance to better resemble the motivating geophysical and
astrophysical flows and will be addressed in future studies.
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