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The response of lake levels to an

unsteady wind stress

B.J. Noye

This paper presents a theoretical investigation into the forced

oscillations produced in an elongated lake by wind stresses

varying in time. Analysis of the appropriate hydrodynamical

equations of motion, in the absence of friction, and the equation

of continuity give an estimate of the response function of the

longitudinal component of the wind stress onto water level. Two

mathematical models are used, one giving an analytical solution

and the other requiring numerical methods for solution. The

first model assumes that the lake is a homogeneous rectangular

body of water and the second uses the mean depth h(x) and area

of cross section A(x) , considered as functions of distance x

directed along the longitudinal axis of the lake.

1. Introduction

There exist many investigations of wind effects on water levels in

enclosed basins. For instance, the steady state response of a homogeneous

rectangular lake to a uniform steady wind has been treated in [3], [4],

[6], [9], 1102, L111. For constant surface wind stress tg , the surface

slope of the water is given by

(1.1)

where

£ is surface displacement from the undisturbed level,
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T, i s the magnitude of the shearing stress exerted by the water

on the lake f loor ,

H i s the constant depth,

p i s the water density,

g i s the acceleration of gravity.

As a ru le , i t is assumed that T, = rrn where the constant m « 1 .
b s

For perfect streamline flow, Keulegan [4] has shown that the theoretical

value of m is 0.5 • Thus
T

(1.2) C(a;) = - ^ (x-L/2) ,

where L is the length of the rectangular basin and

(1.3) T, = (1+OT)T .

A typical analyt ica l solution for response of the surface of an

elongated lake to uniformly osci l la t ing wind stress in the absence of

f r i c t iona l effects i s given by Haurwitz [2] . The steady-state response of

a rectangular basin to the surface wind stress

(1.1*)

T(X, t) = x.coscot , t i O ,

= TQ , t < 0

is obtained in the form

(1.5) C(x, t) = Y° I 2\
 12 2 l ( c o s e / " "I COSU4C°8 I T

2 n=l(2)°° K |I-3; ; /UJ2 l n uT >

where 3 = rmVgH/L . This formula involves considerable computational

effort when i t i s required to find the lake level at any given position as

a function of time. A similar result to (1.5) was obtained by Saito [8]

but h is work, printed in Japanese, has been overlooked by most western

workers. As an a l te rna t ive , a much simpler expression for C,(x, t) from

which one may immediately deduce most features evident in water level data,

i s derived in Section 3.

A second model, considered in Section 4, assumes that the lake may

have gradually varying cross-sections. This model uses the mean depth
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h(x) and area of cross-section A(x) , considered as functions of distance

x directed from one end of the lake along i ts longitudinal axis, and is

solved by a special finite difference scheme. Criteria for the numerical

stability of this scheme are also derived.

2. Hydrodynamic equations for an elongated lake

The linearised equations of motion and continuity for flow in a

channel of gradually'varying cross-section are, in the absence of

frictional damping,

(2.1) | f = -gbh | | |

where

x is the coordinate along the lake,

Q{x, t) the volume transport through a vertical section,

t,(x, t) the mean level across the section relative to the

undisturbed level,

b(x) the width of the surface of the section,

h(x) the mean depth across the section, and

T(X, t) is the longitudinal wind stress.

(See, for example, [2].)

Let

(2.3)

T(X, t) =

C(«, t) =

, t) = Q(x)lm{eitJit} .

Then (2.1) and (2.2) yield

where A{x) = b(x)h(x) . Obviously, at the ends of the lake x = 0 and
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x = L , one has Q = 0 .

3. Response function for a rectangular lake of constant depth B

dQ
Differentiating (2.5) with respect to a; and substituting ^r from

{2.k), one obtains the equation

(3.1) 2 • laM * °

with o = gH and boundary conditions

(3.2) dx
x=O,L pa

2 T0 "

The general solution of (3 .1) ,

(3.3) C(sr) = i4cos

gives with (3-2) ,

-ff}

A =

B =

0 I
pew \"pew \ sin(oi^/c)

pciu

Thus, f inal ly , one arrives at the solution of the problem

which displays several interest ing features.

(1) Resonance occurs for

(3.6) (^ = (2n+l)irl"1»^H , 71 = 0 , 1 , 2 , . . . ,

tha t i s , at the odd harmonics of the fundamental seiching frequency, namelj

, p = 1, 2 , 3, . . . ,

(see [7]) with nodes in the middle of the lake and out-of-phase antinodes

0) =
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at the ends.

This explains the nature of the resul ts obtained during experiments

involving wat̂ er level measurements in lakes; levels at opposite ends move

out of phase with pract ical ly no movement of water levels at f ield stations

near the middle.

(2) At any ins tant , the surface is sinusoidal in shape. For

instance, at t = 0 , we obtain

(3) Hie wind effect increases with decreasing depth. For example, at

x = L ,

tanjgjc(3.8) C(L. t ) = - ^ tanjgjcosut ,

which increases as a - -/gE decreases. One would therefore expect

Australia's lakes, a l l of which are very shallow, to show marked wind

effects.

(4) The steady-state solution for a constant uniform wind is obtained

as a) •+ 0 , in equation (3.5), which gives

(3.9) C(*) = 2
pa

that i s , equation (1.2) .

U-ft ,

(5) The response function T (u) at x is given by

s i n { -

(3.10) T (u>) = H(x

_ (1+m)

the gain by

(3.11) Gx(<o) = Ir^oi) | ,

and the phase by

(3.12) 6 (̂01) = Arglr^G))} .

However, the response function T (a)) is real, so the gain is equal to the
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numerical value T (u>) and the phase is zero, when T (<*>) is posi t ive ,

and 7T when i t i s negative.
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Figure 1. Theoretical response function of wind stress to water level,

using constant depth rectangular basin approximation for a

lake with B = 1.3m , L = 50km , x = O.75£ , and using actual

areas and mean depths of cross sections for a real lake with

the same length and mean depth.

Figure 1 shows the theoretical response function for a rectangular

lake of constant depth H = 1.3m and length L = 50km , the water-level

being considered three-quarters the way along the lake, namely at
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x = 0.75-k • The f i r s t resonance frequency of this mathematical model is

approximately 3 cycles/day, corresponding to a period of 8 hours. The

next resonance period is 2.7 hours. In Figure 1 the magnitude of the

gain is indicated by a solid l ine when the water-level osci l la t ion is in

phase with the wind-stress osc i l la t ion , for example, in the range 0-3

cycles/day, and by a dashed l ine when these quantities are out of phase,

for example between 3 and 9 cycles/day.

4. Numerical solution for the case of gradually varying cross-sections

The derivatives -r- and -jz in (2.U) and (2.5) may be replaced by

centred f in i te differences and X, and Q evaluated at a l ternate sections

* = i { 2 ) 2 k -

2Ax g ' A * pgh. '
*J H

- 2{2)2K ~ 2

where L =

(U.3)
J

The boundary conditions then "become

3 =

C.U)

Hence

fl0 = Q2k= 0 .

= 1{2)2k -

0A.

Given TQ and u , the evaluation of Q and

- 2 •

commences with j = 1 in

equation (*t.5), which requires that values of QQ and C be known.

Q = 0 , but C-. is unknown and is found by a process similar to the

method of combination of solutions used to solve second-order l inear

ordinary different ial equations with given boundary conditions (see p. 105,

[J ] ) - Assigning a value to Z, , say ci = 0 , Q- is computed, then
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i; and so on u n t i l Q , is reached. I f Q , + 0 then the t rue value

of C. must be est imated. To do t h i s , i t i s noted tha t equations (h.5)

and C».6) are l i n e a r , so the dependence of <2O, on £. i s of the form

C*-7) Q2k[^ = C * D^ .

Clearly

(U.8) C = fl*°} •

The value of D is found by passing through the grid a second time to find

Qzk f o r ^ = 1 ' w h e n

A third pass through the grid with

(l».10) Z± = -C/D

yields the proper distribution of values of Q and £ at alternate grid-

points. I t is clear from (it.5) and (h.6) that the depths are only required

for o - 2(2)2k - 2 , that i s , at the even grid-points.

Stability cr i ter ia for this particular numerical scheme are found by

introducing a small error at one step of the computation of Q (or C )

and choosing Ax so that this error diminishes in magnitude as values of

Q (or £ ) are computed at further steps. For instance, we may assume

that an error of AS . has occurred in the computation of Q • •, >
j—J. J—-L

yielding instead

Substitution of Q*. .. for Q. n in equation {h.6) yields

(fc.12) c*• = Cj - {ztw&j.i/gAj) .

instead of ? . . Putting ?J for C,- and Q*. , for 6 • -, in equation

(U.5) then gives
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(U.13)

The error introduced at this step diminishes if, for all succeeding values

of j ,

(U.U.)

that is, if

(U.15)

1 -

Ax

< 1 ,

for m >

Choosing Ax smaller than (2io)~W2gh , where h = min [h .) , therefore
3

implies numerical stability for a given value of to . The same criterion

is found when an error of A£ . is introduced in the computation of C . .
3 3

Using the values of C at the gridpoint corresponding to a; = 0.75-k

the response function for wind stress to water level was calculated for a

real lake of the same average dimensions considered in Section 3 (Figure

l). This more complicated model increased the number of resonance

frequencies in the range 0-12 cycles/day from two to four. The first

resonance frequency occurs now at 3 cycles/day (8 hours period), the

second near 7 cycles/day (about 3-5 hours period), with further

harmonics at 9 cycles/day (2.7 hours period) and 11 cycles/day (2.2

hours period), and so on, the phase either being zero or IT .

5. Conclusion

The response to unsteady wind stresses of the constant depth lake in

the absence of frictional dissipation has been found in an analytic form

involving only trigonometrical functions. This result is clearly better

than the ones previously found in terms of infinite series; many of the

observed properties of movements of water levels in lakes are immediately

evident from this analytic solution. Extending the model to include a

slowly varying cross-section indicates, to some degree, the manner in which

variations in depth and breadth may alter this transfer function.

A common feature of the response functions computed using these two

models is the general fall in gain as the frequency increases, except at
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the resonance frequencies. These resonance frequencies correspond to those

of the odd harmonics of the fundamental natural frequency of the lake. The

response function for each model gives a low frequency gain of approximate

approximately 0.8 , with negligible phase lag. This corresponds to the

steady-state response of the rectangular lake to a constant wind of unit

stress, described by equation (1.2).

The results for the lake response indicate that the hydrodynamic model

chosen may be deficient in some respects. At resonance frequencies, the

gain is unbounded and the phase restricted to 0 or I , features which

are typical of mathematical models of dynamical systems in which frictional

damping is ignored (see [5], p. 13^). Inclusion of a frictional damping

term in equation (2.1) should lead to more realistic theoretical results;

one would expect the discontinuity in the gain to become a peak and the

phase to vary over a whole cycle.
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