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INFORMATION-THEORETIC CONVERGENCE OF EXTREME VALUES
TO THE GUMBEL DISTRIBUTION
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Abstract

We show how convergence to the Gumbel distribution in an extreme value setting can be
understood in an information-theoretic sense. We introduce a new type of score function
which behaves well under the maximum operation, and which implies simple expres-
sions for entropy and relative entropy. We show that, assuming certain properties of the
von Mises representation, convergence to the Gumbel distribution can be proved in the
strong sense of relative entropy.
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1. Introduction and notation

It is well known that convergence to the Gaussian distribution in the central limit theorem
regime can be understood in an information-theoretic sense, following the work in [6, 8, 27],
and in particular [3], which proved convergence in relative entropy (see [15] for an overview
of this work). While a traditional characteristic function proof of the central limit theorem
may not give a particular insight into why the Gaussian is the limit, this information-theoretic
argument (which can be understood to relate to Stein’s method [28]) offers an insight on this.

To be specific, we can understand this convergence through the (Fisher) score function
with respect to location parameter ρX(x) = fX ′(x)/fX(x) = (log fX(x))′ of a random variable X
with density fX , where ′ represents the spatial derivative. Two key observations are (i) that a
standard Gaussian random variable Z is characterized by having linear score ρZ(x) = −x, and
(ii) there is a closed-form expression for the score of the sum of independent random variables
as a conditional expectation (projection) of the scores of the individual summands (see, e.g.,
[6]). As a result of this, the score function becomes ‘more linear’ in the central limit theorem
regime (see [16, 17]). Similar arguments can be used to understand ‘law of small numbers’
convergence to the Poisson distribution [18].

However, there exist other kinds of probabilistic limit theorems which we would like to
understand in a similar framework. In this paper we will consider a standard extreme value
theory setup [25]: we take independent and identically distributed (i.i.d.) random variables
X1, X2, . . . ∼ X and define Mn = max(X1, . . . , Xn) and Nn = (Mn − bn)/an for some normal-
izing sequences an and bn. We want to consider whether Nn converges in relative entropy
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Information-theoretic convergence of extremes 245

to a standard extreme value distribution. This type of extreme value analysis naturally arises
in a variety of contexts, including the modelling of natural hazards, world record sporting
performances, and applications in finance and insurance.

In this paper we show how to prove convergence in relative entropy for the case of a Gumbel
(type I extreme value) limit, by introducing a different type of score function, which we refer
to as the max-score �X , and which is designed for this problem. Corresponding properties
to those described above hold for this new quantity: (i) a Gumbel random variable X can be
characterized by having linear max-score �X (see Example 1.1), and (ii) there is a closed-form
expression (Lemma 1.1) for the max-score of the maximum of independent random variables.

In Section 2 we show that the entropy and relative entropy can be expressed in terms of the
max-score, in Section 3 we show how to calculate the expected value of the max-score in the
maximum regime, and in Section 4 we relate this to the standard von Mises representation (see
[25, Chapter 1]) to deduce convergence in relative entropy in Theorem 4.1

Our aim is not to provide a larger class of random variables than papers such as [11, 12,
21] for which convergence to the Gumbel takes place, but rather to use ideas from information
theory to understand why this convergence may be seen as natural, and to prove convergence
in a strong (relative entropy) sense. So while, for example, it is known that the standardized
maximum converges in total variation (see, e.g., [24, p. 159]) convergence in relative entropy
is stronger. This follows, for example, by Pinsker’s inequality (see, e.g., [20]) for densities f
and g,

‖f − g‖2
TV ≤ 2D(f ‖ g) = 2

∫
f (x) log

(
f (x)

g(x)

)
dx,

where here and throughout we write log for the natural logarithm. Further, relative entropy
(also known as Kullback–Leibler or KL divergence) is a valuable object of study in its own
right, since the logarithm term can be thought of as log-likelihood for comparing two densities.
As a result, D provides many fundamental limits in statistical estimation, classification, and
hypothesis testing problems; see, for example, [10, Chapter 12] for a general survey, or [2] for
an application in machine learning.

We briefly remark that entropy was studied in the Gumbel convergence regime in [23, 26]
using direct computation based on the density. For example, [23, Theorems 2.1, 2.3] are proved
by writing the entropy as an integral, decomposing that integral into regions, and using a variety
of techniques to bound the resulting terms, using formulas arising from the density being in the
domain of attraction, and dealing with tail terms appropriately. In contrast with their work, the
aim of this paper is to give an elementary and direct proof under relatively simple conditions
which hopefully gives some insight into why convergence to the Gumbel takes place, rather
than to necessarily provide the strongest possible result.

The standard Fisher score was used in an extreme value context in [4] in a version of Stein’s
method. Extreme value distributions were considered in the context of Tsallis entropy in [5].
However, this particular max-score framework is new, to the best of our knowledge.

Definition 1.1. For an absolutely continuous random variable Z ∈R we write the distribution
function as FZ(z) = P(Z ≤ z), the tail distribution function as FZ(z) = P(Z > z) = 1 − FZ(z),
the density as fZ(z) = FZ

′(z), and the hazard function as hZ(z) = fZ(z)/FZ(z). We define the
max-score function as

�Z(z) := log(fZ(z)/FZ(z)) = log hZ(z) + log(1 − FZ(z)) − log FZ(z), (1.1)

where the second result follows on rearranging.
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We can express the max-score as �Z(z) = log(τZ(z)), where τZ(z) = fZ(z)/FZ(z) =
(d/dz) log FZ(z) is the reversed hazard rate from [7]. Since FZ(∞) = 1, we can write

FZ(x) = exp

(
−
∫ ∞

x
τZ(z) dz

)
= exp

(
−
∫ ∞

x
e�Z (z) dz

)
, (1.2)

so the max-score function defines the distribution function.
We now remark that the Gumbel distribution has a linear max-score function.

Example 1.1. A Gumbel random variable Y with parameters μ and β has distribution
function FY (y) = exp(−e−(y−μ)/β ), so, in the notation above, τY (y) = (d/dy) log FY (y) =
exp(− (y − μ)/β)/β and a Gumbel random variable has max-score

�Y (y) = log τY (y) = − log β − (y − μ)

β
.

Indeed, using (1.2), we can see the property of having a linear max-score �Y characterizes the
Gumbel.

For future reference in this paper, note that (see [19, (1.25)]) EY = μ + βγ , where γ is
the Euler–Mascheroni constant, and the moment-generating function is MY (t) = eμt�(1 − βt)
(see [19, (1.23)]).

We can further state how the max-score function behaves under the maximum and rescaling
operations.

Lemma 1.1. If we write Mn = max(X1, . . . , Xn) and Nn = (Mn − bn)/an, then

�Nn(z) = log(nan) + �X(anz + bn), (1.3)

�Nn (Nn) = log(nan) + �X(Mn). (1.4)

Proof. As usual (see, e.g., [25, Section 0.3]), we know that, by independence,

FMn (x) = P(max(X1, . . . , Xn) ≤ x) = P

(
n⋂

i=1

{Xi ≤ x}
)

= FX(x)n, (1.5)

so that FNn (x) = FMn (anx + bn) = FX(anx + bn)n. This means that fNn(x) = nanFX(anx +
bn)n−1fX(anx + bn), so fNn(x)/FNn (x) = nanfX(anx + bn)/FX(anx + bn), and (1.3) follows on
taking logarithms. The second result, (1.4), follows by direct substitution using the fact that
Mn = anNn + bn. �

Example 1.2. In particular, if X is exponential with parameter λ, so, with an = 1/λ and bn =
log n/λ,

�X(z) = log

(
λe−λz

1 − e−λz

)
,

this gives

�Nn (z) = log(n/λ) + log

(
λe−z/n

1 − e−z/n

)
= −z − log(1 − e−z/n).

Hence, letting n → ∞, we know that �Nn(z) converges pointwise to −z, which is the max-score
of the standard Gumbel (with parameters μ = 0 and β = 1); see Example 1.1.

However, while this gives us some intuition as to why the Gumbel is the limit in this
case, pointwise convergence of the score function does not seem a particularly strong sense
of convergence. We now discuss the question of convergence in relative entropy.
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2. Max-score function and entropy

We next show that we can use the max-score function to give an alternative formulation
for the entropy of a random variable, which allows us to quickly find the entropy of a Gumbel
distribution. We first state a simple lemma, which follows directly from the fact that both FX(X)
and 1 − FX(X) are uniformly distributed.

Lemma 2.1. For any continuous random variable X with distribution function FX,
E log FX(X) =E log(1 − FX(X)) = −1.

Proposition 2.1. For an absolutely continuous random variable X with max-score function
�X, the entropy H(X) satisfies H(X) = 1 −E�X(X).

Proof. The key observation is that log fX(x) = log FX(x) + �X(x), so

H(X) = −
∫ ∞

−∞
fX(x) log fX(x) dx

= −
∫ ∞

−∞
fX(x) log FX(x) dx −

∫ ∞

−∞
fX(x)�X(x) dx (2.1)

= 1 −E�X(X),

where we apply Lemma 2.1 to find the first term of (2.1). �

In particular, we recover the entropy of Y , a Gumbel distribution (see, e.g., [22,
Theorem 1.6(iii)]).

Example 2.1. For Y , a Gumbel distribution with parameters μ and β, using Example 1.1,

H(Y) = 1 −E

(
−log β − Y − μ

β

)
= 1 + log β + γ,

since EY = μ + βγ .

We can use similar arguments to give an expression for the relative entropy D(X ‖ Y) where
Y is Gumbel.

Proposition 2.2. Given absolutely continuous random variables X and Y, we can write the
relative entropy from X to Y as

D(X ‖ Y) =E(�X(X) − �Y (X)) +E(−log FY (X) − 1). (2.2)

In particular, if Y is a Gumbel random variable with parameters μ and β, then

D(X ‖ Y) =
(
E�X(X) + log β + EX − μ

β

)
+ (Ee−(X−μ)/β − 1), (2.3)

assuming both sides of the expression are finite.

Proof. We can write D(X ‖ Y) as∫
fX(x) log

(
fX(x)

fY (x)

)
dx = −H(X) −

∫
fX(x) log fY (x) dx

= (E�X(X) − 1) −
∫

fX(x) log FY (x) dx −
∫

fX(x)�Y (x) dx,
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using Proposition 2.1, which implies (2.2). We deduce (2.3) using the values of FY and �Y

from Example 1.1. �

Observe that in the case of X itself Gumbel with the same parameters as Y , both brack-
eted terms in (2.3) vanish. We can rewrite the first term as E(�X(X) − �Y (X)), using the value
of the max-score in the Gumbel case (Example 1.1). This suggests that (as in [15]) we may
wish to consider this term as a standardized score function with the relevant linear term sub-
tracted off. We can rewrite the second term in (2.3) as eμ/βMX( − 1/β) − 1, where MX(t)
is the moment-generating function. Since (see Example 1.1) the moment-generating function
of a Gumbel random variable is MY (t) = eμt�(1 − βt), we know that in the Gumbel case
eμ/βMX( − 1/β) − 1 = eμ/βe−μ/β�(2) − 1 = 0.

3. Expected max-score of the standardized maximum

We now consider the behaviour of the expected max-score of the standardized maximum
Nn = (Mn − bn)/an, using the representation (1.1). We first state a technical lemma which holds
for all continuous random variables X.

Lemma 3.1. For Mn the maximum of n independent copies of absolutely continuous random
variable X:

(i) The expected value EFX(Mn) = −1/n is the same for all FX.

(ii) The expected value E log(1 − FX(Mn)) = −Hn is the same for all FX, where we write
Hn := 1 + 1

2 + 1
3 + · · · + 1

n to be the nth harmonic number.

Proof. Part (i) is a simple corollary of Lemma 2.1 Recalling from (1.5) that FMn (x) = FX(x)n,
we know from Lemma 2.1 that −1 =E log FMn (Mn) = nE log FX(Mn), and the result follows
on rearranging.

Part (ii) requires a slightly more involved calculation. By standard manipulations, we
know that − log(1 − FX(X)) is exponential with parameter 1. Now, since − log(1 − FX(t)) is
increasing in t, we can write

− log(1 − FX(Mn)) = − log
(

1 − FX

(
max

1≤i≤n
Xi

))
= max

1≤i≤n
− log(1 − FX(Xi)) ∼ max

1≤i≤n
Ei,

where the Ei are independent exponentials with parameter 1. It is well known that the expected
value of max1≤i≤n Ei = Hn, the nth harmonic number. The simplest proof of this is to write
max1≤i≤n Ei =∑n

i=1 Ui, where the Ui are independent exponentials with parameter n − i + 1.
(This follows from the memoryless property of Ei, by thinking of U1 as the time for the first
exponential event to happen, U2 as the time for the second, and so on.) Since EUi = 1/(n −
i + 1), the result follows. �

We can put this together to deduce the following result.

Lemma 3.2. For any absolutely continuous X, writing Nn = (Mn − bn)/an for any sequence
of norming constants an, bn, we deduce that

E�Nn (Nn) = ( log an +E log hX(Mn)) + ( log n − Hn) + 1

n
.
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Proof. Using the representation in (1.4) of the score in Lemma 1.1 and the expression in
(1.1), we know that

E�Nn(Nn) = log(nan) +E�X(Mn)

= log(nan) +E log hX(Mn) +E log(1 − FX(Mn)) −E log FX(Mn)

= ( log an +E log hX(Mn)) + ( log n − Hn) + 1

n
,

using the two parts of Lemma 3.1. �

Note that only the first bracketed term of Lemma 3.2 depends on the particular choice of X.

4. Von Mises representation and convergence in relative entropy

We will demonstrate convergence of relative entropy in a restricted version of the domain
of maximum attraction. In order to work in terms of relative entropy, we need to assume that
X is absolutely continuous. Additionally, we recall the definition of a distribution function FX

having a representation of von Mises type [25, (1.5)].

Definition 4.1. Assume that the upper limit of the support of X is x0 := sup{x : FX(x) < 1}
(which may be finite or infinite) and

FX(x) = 1 − c(x) exp

(
−
∫ x

z0

1

g(u)
du

)
= 1 − c(x) exp(− G(x)), (4.1)

for some auxiliary function g such that g′(x) → 0 as x → x0, and limx→x0 c(x) = c > 0.

Assuming the von Mises representation (4.1) holds, we can write the density as fX(x) =
(c(x)G′(x) − c′(x)) exp(−G(x)), or on dividing by 1 − FX(x) = c(x) exp(−G(x)) we can deduce
that the hazard function satisfies

hX(x) = 1

g(x)
− c′(x)

c(x)
. (4.2)

The canonical choice of norming constants is given in [25, Proposition 1.1(a)] (see also [13,
Table 3.4.4]) as (an, bn) satisfying 1/n = F(bn) and an = g(bn). Note that (see [25, Proposition
1.4]) the normalized maximum Nn = (Mn − bn)/an converges in distribution to the Gumbel
if and only if the representation (4.1) holds. See [13, Table 3.4.4] for a list of eight types of
distributions whose standardized maximum converges to the Gumbel, some of which we give
as examples below.

Example 4.1. We can illustrate the representation in (4.1) as follows:

• For the exponential we can take c(x) = 1, z0 = 0, x0 = ∞, g(u) = 1/λ, and bn = log n/λ.

• For the gamma distribution with shape parameter α and rate parameter β we can take
c(x) = 1, z0 = 0, x0 = ∞, and g(u) = �(α, βu)/(β(βu)α−1 exp(−βu)), where �(·, ·) is
the upper incomplete gamma function. Note that as u → ∞ we know that g(u) → 1/β.

• For the standard Gaussian distribution, we can take g(x) = (1 − 
(x))/φ(x) (for φ and

 the standard normal density and distribution functions), and note that the Mills ratio
g(x) 
 1/x as x → ∞.
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• For the ‘Weibull-like’ distribution of [13, Table 3.4.4] with F ∼ Kxα exp(−cxτ ) (with
τ > 0 and α ∈R), we can take G(x) = cxτ − α log x, so that g(x) = x/(τcxτ − 1).

• For the Benktander type II distribution of [13, Table 3.4.4], with

F(x) = xβ−1 exp(−α(xβ − 1)/β),

for α > 0, 0 < β < 1, we can take c(x) = 1, z0 = 1, and g(x) = x/(1 − β + αxβ ).

• For the example of FX(x) = 1 − exp(−x/(1 − x)) given in [14] (see also [25, p. 39]) we
can take c(x) = 1, z0 = 0, x0 = 1, g(u) = (1 − u)2, and bn = log n/(1 + log n). This is an
example of ‘exponential behaviour at x0’ in the sense of [13, Table 3.4.4], where we can
take g(x) = (x0 − x)2/α.

We now state a restricted technical condition that we can use to give a simple proof of
convergence in relative entropy.

Condition 4.1.

(i) Assume �(t) := 1 − c′(t)g(t)/c(t) → 1 as t → x0.

(ii) Assume there exists a constant σ < 1 such that log(g(x)/xσ ) is bounded and continuous,
and that γ := limx→x0 g(x)/xσ is finite and non-zero.

(iii) Assume that
∫ 0
−∞ |x|k dFX(x) < ∞ for all k.

Note that Condition 4.1 (i) holds automatically with equality when c(x) is constant, which
is the restricted version of the von Mises condition stated as [25, (1.3)], and which includes all
but the Weibull-like part of Example 4.1. Note that Condition 4.1 (ii) is satisfied for the first five
examples in Example 4.1 (taking σ = 0 for the exponential and gamma examples, σ = −1 for
the Gaussian, σ = 1 − τ for the Weibull-like distribution, and σ = 1 − β for the Benktander
type II distribution). We discuss how the analysis can be adapted in the final example in
Remark 4.2.

Note that we would ideally like to weaken Condition 4.1 (ii) to allow g(x)/xσ to be slowly
varying at x0 (for g to be regularly varying with index −σ ); however, we leave this as future
work.

Lemma 4.1. Under Condition 4.1 (iii):

(i) The mean ENn converges to the Euler–Mascheroni constant γ .

(ii) By Taylor’s theorem, the moment-generating function converges as follows:

lim
n→∞ MNn (t) = �(1 − t). (4.3)

Proof. Note that (see [25, Proposition 2.1]) under Condition 4.1 (iii) the kth moment of Nn

converges:

lim
n→∞ E(Nn)k = (−1)k�(k)(1), (4.4)

where �(k)(x) is the kth derivative of the � function at x.
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We deduce convergence of the moment-generating function by Taylor’s theorem:

lim
n→∞ MNn (t) = lim

n→∞

∞∑
r=0

trE(Nn)r

r! = lim
n→∞

∞∑
r=0

trE(Nn)r

r!

=
∞∑

r=0

( − t)r�(r)(1)

r! = �(1 − t). �

Theorem 4.1. If the distribution function of X satisfies the von Mises representation (4.1) with
x0 = ∞ and Condition 4.1 holds, there exist norming constants an and bn satisfying 1/n =
F(bn) and an = g(bn) such that Nn = (Mn − bn)/an satisfies limn→∞ D(Nn ‖ Y) = 0, where Y is
a standard Gumbel distribution (with β = 1 and μ = 0).

Proof. We use the norming constants from [25, Proposition 1.1(a)] (see also [13, Table
3.4.4]). We can write the first term in the relative entropy expression (2.3) in the case μ = 0
and β = 1 using Lemma 3.2 as

E�Nn (Nn) +ENn = ( log an +E log hX(Mn)) + ( log n − Hn) + 1

n
+ENn. (4.5)

We can consider the behaviour as n → ∞ of the four terms in (4.5) separately:

(i) We can write the first term in (4.5) in terms of the σ of Condition 4.1(ii) as

log an +E log hX(Mn) = log g(bn) +E log hX(Mn)

= log

(
g(bn)

bσ
n

)
−E log

(
g(Mn)

Mσ
n

)

− σE log

(
Mn

bn

)
+E log(g(Mn)hX(Mn)). (4.6)

(a) Since bn → x0 and Mn → x0 in distribution, we know that the first two terms of
(4.6) tend to log γ − log γ = 0, using the portmanteau lemma.

(b) We can control the third term of (4.6) by writing Mn = bn + anNn (and recalling
that an = g(bn)) to obtain

E log

(
Mn

bn

)
=E log

(
1 + anNn

bn

)
=

∞∑
k=1

( − 1)k

k

(
an

bn

)k

ENk
n,

and we can use the facts that an/bn = g(bn)/bn ∼ γ bσ−1
n → 0 and (by (4.4)) that

ENk
n converges to a finite constant to deduce that this term tends to zero.

(c) Using the representation of the hazard function in (4.2) we know that the
fourth term of (4.6) equals E log(1 − c′(Mn)g(Mn)/c(Mn)) =E log �(Mn), so,
since Mn → x0 in distribution, we know that E log(g(Mn)hX(Mn)) → log �(x0) =
0, by the portmanteau lemma.

Hence, overall, the first term of (4.5) tends to zero.

(ii) It is a standard result that log n − Hn is a monotonically increasing sequence that
converges to −γ .
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(iii) Clearly, the third term in (4.5) converges to zero.

(iv) Lemma 4.1 tells us that the final term converges to γ .

Putting this all together, we deduce that (4.5) converges to 0 − γ + 0 + γ = 0.
In the case μ = 0 and β = 1, the second term in the relative entropy expression (2.3)

becomes Ee−Nn − 1 =MNn ( − 1) − 1 → �(2) − 1 = 0, by (4.3).

Corollary 4.1. Assume that the distribution function FX has a von Mises representation
(4.1) whose auxiliary function g satisfies Condition 4.1. Then the entropy of the normalized
maximum Nn = (Mn − bn)/an satisfies limn→∞ H(Nn) = 1 + γ , which is the entropy of the
corresponding Gumbel distribution.

Proof. By Proposition 2.1, H(Nn) = 1 −E�Nn (Nn) = (1 +ENn) −E(�Nn (Nn) + Nn). The
first term converges to 1 + γ by Lemma 4.1, and the second term is precisely (4.5) and
converges to zero as described in the proof of Theorem 4.1. �

Remark 4.1. Note that, for the exponential case of Example 4.1, Condition 4.1 is satisfied,
so we can deduce convergence in relative entropy. Indeed, since g is constant in this case, the
first term of (4.5) vanishes, meaning that we can deduce that E�Nn(Nn) = log n − Hn + 1/n
and the entropy is exactly H(Nn) = 1 + Hn − log n − 1/n, which value may be of independent
interest. Using the fact that Hn = log n + γ + 1/(2n) + O(1/n2), we can deduce that H(Nn) =
1 + γ − 1/(2n) + O(1/n2). In the spirit of [17] and other papers, it may be of interest to ask
under what conditions the convergence in Corollary 4.1 is at rate O(1/n) in this way.

Theorem 4.1 shows that convergence in relative entropy occurs for a range of random vari-
ables that are ‘well behaved’ in some sense. However, observe that the Gnedenko example
g(u) = (1 − u)2 from Example 4.1 does not satisfy Condition 4.1(ii), so Theorem 4.1 cannot be
directly applied in this case. However, it is possible to deduce convergence in relative entropy
in this example too, using a relatively simple adaptation of the argument to a class of random
variables with finite x0 such that the following replacement for Condition 4.1(ii) holds.

Condition 4.2. Assume there exists a constant σ > 1 such that log(g(x)/(x0 − x)σ ) is bounded
and continuous, and that γ := limx→x0 g(x)/(x0 − x)σ is finite and non-zero.

Remark 4.2. The only place where we need to adapt the proof of Theorem 4.1 is in the
decomposition of the first term in (4.5), where we can instead use the decomposition

log

(
g(bn)

(x0 − bn)σ

)
−E log

(
g(Mn)

(x0 − Mn)σ

)
− σE log

(
x0 − Mn

x0 − bn

)
.

As before, the first two terms tend to log γ − log γ = 0 by the portmanteau lemma. We can use
a similar Taylor expansion,

E log

(
x0 − Mn

x0 − bn

)
= −

∞∑
k=1

1

k

(
an

x0 − bn

)k

ENk
n,

and deduce convergence in relative entropy since an/(x0 − bn) = g(bn)/(x0 − bn) 
 γ (x0 −
bn)1−σ → 0.

We have shown that there is a natural information-theoretic interpretation of convergence in
relative entropy of the standardized maximum to the Gumbel distribution, and provided simple
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conditions under which this occurs. It would be of interest to provide a similar analysis for the
other extreme value distributions (as proved for example using different methods in [23])—the
Fréchet (Type II) and Weibull (Type III) distributions—which remains an interesting problem
for future work, as does the question of the optimal rate of convergence in relative entropy.

We note that a similar function to the max-score can be used to evaluate the entropy of
more general order statistics, as studied recently in [9] (see also [29]). That is, given an i.i.d.
sample X1, X2, . . . , Xn from FX , if we write the order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n) then it
is well known (see, e.g., [1, (2.2.2)]) that the density of X(r) is fX(r) (x) = cn,rfX(x)FX(x)r−1(1 −
FX(x))n−r, where cn,r = n!/(r − 1)!/(n − r)!. Hence, we can provide analysis similar to that
based on Proposition 2.1 for the maximum, by writing H(X(r)) as

−
∫

fX(r) (x)( log cn,r + log fX(x) + (r − 1) log FX(x) + (n − r) log(1 − FX(x))) dx

= − log cn,r −EhX(X(r)) −
∫

fX(r) (x)((r − 1) log FX(x) + (n − r − 1) log(1 − FX(x))) dx

= − log cn,r −EhX(X(r)) −
∫

cn,rur−1(1 − u)n−r((r − 1) log u + (n − r − 1) log(1 − u)) du

= − log cn,r −EhX(X(r)) − ((r − 1)(Hr−1 − Hn) + (n − r − 1)(Hn−r − Hn)) du,

where the final result comes from taking u = FX(x) and using standard results about beta inte-
grals. Essentially, we recover [9, Lemma 3] in the case of uniform FX , since hX(x) = 1/(1 − x).
Again, most of the terms do not depend on FX itself, so by bounding the hazard function we
can control the behaviour of the entropy.
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