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Abstract

Birth–death processes form a natural class where ideas and results on large deviations
can be tested. We derive a large-deviation principle under an assumption that the rate
of jump down (death) grows asymptotically linearly with the population size, while the
rate of jump up (birth) grows sublinearly. We establish a large-deviation principle under
various forms of scaling of the underlying process and the corresponding normalization
of the logarithm of the large-deviation probabilities. The results show interesting features
of dependence of the rate functional upon the parameters of the process and the forms
of scaling and normalization.
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1. Introduction and definitions

A birth–death process is a continuous-time Markov process with states x ∈Z
+ :=

{0, 1, 2, . . .} (representing the population size) and with transitions occurring between neigh-
boring states. The class of birth–death processes exhibits a remarkable balance between
simplicity, allowing for analytical solutions, and complexity, showcasing a diverse range of
interesting phenomena. Its versatility is accentuated by the possibility of exploring various
jump rates, drawing attention from multiple research areas. Furthermore, birth–death processes
find applications across diverse fields, such as information theory (involving encoding and
storage of information [26, 28]), population biology, genetics, ecology (reviewed in [19, 24]),
chemistry (modeling growth and extinction in systems with multiple components [11, 15, 27]),
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economics (modeling competitive production and pricing [17, 34]) and queueing system theory
(explored, for example, in [22]).

In particular, birth–death processes are instrumental in exploring various aspects of large-
deviation theory, which is the focus of this paper. Apart from that, we also mention connections
between birth–death processes and orthogonal polynomials, as detailed in [29, 30].

In this paper we work under the assumption that the rate λ(x) of jump x → x + 1 and the rate
μ(x) of jump x → x − 1 obey the condition (1.2): μ(x) grows with x asymptotically linearly,
while λ(x) grows asymptotically sublinearly. This assumption ensures positive recurrence of
the process (cf. [9]). Such processes find an application in population dynamics [10, 12];
they are also relevant in models of market interaction between ask–bid sides of a limit order
book [17], energy-efficient schemes for cloud resources [23], and scenarios with an increasing
number of available servers in stations [22].

Let us provide formal definitions. We consider a continuous-time Markov process ξ (t),
t ≥ 0, on the state space Z

+, starting at point 0. The process dynamics is as follows. We are
given two functions, λ : Z+ → (0,∞) giving the rate of upward jumps, and μ : Z+ → [0,∞)
giving the rate of downward jumps, with μ(0) = 0 and μ(x)> 0 for x ≥ 1. We set η= λ+μ

for the combined jump rate. Given that ξ (t) = x for some t ≥ 0 and x ∈Z
+, the value of the

process remains unchanged for an exponentially distributed random time τx of rate η(x). At
time t + τx the process jumps to either x + 1 or x − 1 with the probabilities

P(ξ (t + τx) = x + 1) = λ(x)

η(x)
, P(ξ (t + τx) = x − 1) = μ(x)

η(x)
. (1.1)

For the case where x = 0, the only feasible transition is to site 1. The key assumption is that
there exist constants P,Q> 0 and l ∈ [0, 1) such that

lim
x→∞

λ(x)

xl
= P, lim

x→∞
μ(x)

x
= Q. (1.2)

We focus on the large-deviation principle (LDP) for the family of processes

ξT (t) = ξ (tT)

ϕ(T)
, 0 ≤ t ≤ 1, (1.3)

for subexponential (1.4), exponential (1.5), or superexponential (1.6) growth of the value ϕ(T).
Here, T > 0 is a time-scaling parameter, and ϕ : (0,∞) → (0,∞) is a Lebesgue-measurable
function referred to as a scaling function. We assume that limT→∞ ϕ(T) = ∞.

The space where we will establish the large-deviation principle is L=L1[0, 1], with
the standard metric ρ(f , g) = ∫ 1

0 |f (t) − g(t)| dt, f , g ∈L. Let B=B(L,ρ) denote the Borel
σ -algebra in (L, ρ); for a set B ∈B, cl(B) and int(B) stand for the closure and the interior
of B, respectively.

Recall the notions and definitions we need (see, for more details, [5–7, 25, 31, 32]). In
Definitions 1.1 and 1.2 we attempt to cover a variety of situations occurring in the context of
the current paper. In these definitions we use a Lebesgue-measurable function ψ : (0,∞) →
(0,∞) satisfying limT→∞ ψ(T) = ∞, and a B-measurable functional I : G→ [0,∞] where
G⊆L and G ∈B. Given A⊆G such that A ∈B, we set I(A) = infy∈A I(y), with I(∅) = ∞.
Furthermore, ψ is referred to as a normalizing function and I as a large-deviation (LD) rate
functional.

Definition 1.1. Let G⊆L and G ∈B. Let a family of random processes ξT (·), T > 0,
be defined as in (1.3) for some scaling function ϕ. We say that this family satisfies a
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(G,L, ρ)-local large-deviation principle ((G,L, ρ)-LLDP) with an LD functional I : G→
[0,∞] and the normalizing function ψ if, for all f ∈G,

lim
ε→0

lim sup
T→∞

1

ψ(T)
ln P(ξT (·) ∈Uε(f )) = lim

ε→0
lim inf
T→∞

1

ψ(T)
ln P(ξT (·) ∈Uε(f )) = −I(f ),

where Uε(f ) = {g ∈L : ρ(f , g)< ε}.
Definition 1.2. Let ξT (·), T > 0, be family of random processes defined as in (1.3) for some
scaling function ϕ. We say that this family satisfies an (L, ρ)-LDP with a normalizing function
ψ and an LD functional I : L→ (0,∞] if, whenever set B⊆L and B ∈B,

lim sup
T→∞

1

ψ(T)
ln P(ξT (·) ∈B) ≤ −I(cl(B)),

lim inf
T→∞

1

ψ(T)
ln P(ξT (·) ∈B) ≥ −I(int(B)).

Definition 1.3. Let ξT (·), T > 0, be family of random processes defined as in (1.3) for some
scaling function ϕ. We say that this family is exponentially tight (ET) on (L, ρ) with a
normalizing function ψ if, for any C> 0, there exists a compact set KC ⊆L such that

lim sup
T→∞

1

ψ(T)
ln P(ξT (·) 	∈KC) ≤ −C.

If a family ξT (·), T > 0, and a functional I satisfy Definitions 1.2 and 1.3 (in particular, if
family ξT (·), T > 0, is ET) then, for all c ≥ 0, the set {f ∈L : I(f ) ≤ c} is compact in (L, ρ). In
this case, we say that I is a ‘good rate functional’ (cf. [5, Section 1.2], [7, Section 2.2]). In this
paper the ET property is established in Lemma A.6. It is known (see, for example, [20]) that
if the trajectories of random processes ξT (·) belong to a Polish space then the ET property is a
necessary condition for the goodness of functional I. Note that this holds true in our setting.

[33] established an LLDP for a family of processes (1.3) with the scaling function ϕ(T) = T ,
while [13] did so for the case of subexponential asymptotics of ϕ(T) when

lim
T→∞

ln ϕ(T)

T
= 0. (1.4)

In this latter case, the family (1.3) is not ET (we discuss this in Section 4). Consequently, the
LDP is not available in the whole of (L, ρ).

In the present paper we consider two complementary conditions:

there exists a constant k ∈ (0,∞) such that lim
T→∞

ln ϕ(T)

T
= k; (1.5)

lim
T→∞

ln ϕ(T)

T
= ∞. (1.6)

The form of the LD functional depends on which condition is assumed, (1.5) or (1.6), cf.
Section 2, Theorems 2.1 and 2.2. An emerging question is why the scalings (1.5) or (1.6) lead
to the large-deviation principle, while the scaling (1.4) does not. We explain this in Section 4.

Let us discuss what is currently known outside condition (1.2); cf. [13]. Suppose that λ(x) ∼
Pxl and μ(x) ∼ Qxm, where 0 ≤ l<m. If m ∈ (0, 1) then three cases emerge, depending on a
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condition upon scaling function ϕ, and the form of the rate functional is different in each of
these cases. If we assume that m> 1 then only an LLDP will take place, so the three cases
will be reduced to one. Also, from [13] it follows that an LLDP holds true when rates λ(x) and
μ(x) are regularly varying functions. Separately, notice the case where λ(x) = P and μ(x) = Q
where P and Q are positive constants. Here, process ξ (t) is compound Poisson, for which the
LD asymptotics are well known [3, 14, 16].

This paper contains four sections. In Section 2 we state our main result, Theorem 2.2, and
a trio of auxiliary assertions (Lemmas 2.1–2.3). Section 3 is dedicated to the derivation of
Theorem 2.2 from Lemmas 2.1–2.3 and the proofs of these lemmas. Section 4 contains a
discussion of the results obtained. Finally, in the Appendix we prove some additional technical
assertions (Lemmas A.1–A.6) used in the proof or interpretation of the obtained results.

A commemorative note It is with great sadness and sorrow that the rest of the authors report
of the loss of our remarkable collaborator and friend Nikita Vvedenskaya (1930–2022). Until
her last days she actively worked on this project, and her contribution was essential and
irreplaceable. We will miss her dearly.

2. Notation, and the main result

We denote by V=V[0, 1] the set of non-negative measurable functions f : [0, 1] �→ [0,∞)
of a finite variation. Given f ∈V, let Var f be the total variation of f .

Next, C=C[0, 1] is the space of continuous functions on [0, 1]. From now on we let G be
the set of functions f ∈C such that f (0) = 0 and f (t)> 0 for t> 0.

The following result follows from [13].

Theorem 2.1. Assume conditions (1.2) and (1.4). Then the family ξT (·), T > 0, defined as in
(1.3) satisfies a (G,L, ρ)-LLDP with the normalizing function ψ(T) = Tϕ(T) and the LD
functional I(f ) = Q

∫ 1
0 f (t) dt.

Given f ∈V, we use the following decomposition into monotone increasing and decreasing
components:

f (t) = f +(t) − f −(t), f +(0) = f (0), f −(0) = 0; Var f = Var f + + Var f −. (2.1)

Such a decomposition is unique (cf. [21, Chapter 1, §4]).
Denote by D=D[0, 1] the space of càdlàg functions on [0,1) with left limits at t = 1.

Observe that for every f ∈V there exists a function fD ∈D such that ρ(f , fD) = 0.
We now introduce the main result of this paper.

Theorem 2.2. Assume condition (1.2).

(i) Under condition (1.5) the family ξT (·), T > 0, defined as in (1.3) satisfies an (L, ρ)-
LDP with the normalizing function ψ(T) = ϕ(T) ln ϕ(T) and the good LD functional
I : L→ [0,∞] where

I(f ) =
⎧⎨⎩

Q

k

∫ 1

0
f (s) ds + (1 − l)f +

D
(1), f ∈V,

∞, f /∈V.
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(ii) Under condition (1.6) the family ξT (·), T > 0, defined as in (1.3) satisfies an (L, ρ)-
LDP with the normalizing function ψ(T) = ϕ(T) ln ϕ(T) and the good LD functional
I : L→ [0,∞] where

I(f ) =
⎧⎨⎩(1 − l)f +

D
(1), f ∈V,

∞, f /∈V.

Before we pass to the proof, let us make some comments. Note that the LDP in the space of
right-continuous functions with the Skorokhod metric is not obtained since the set of functions
with total variation bounded by a constant is non-compact in this space. On the other hand, it
seems that the results of this paper will hold for the space of functions without second-kind
discontinuities equipped with the Borovkov metric (cf. [1, 2, 4]). It is also worth mentioning
that, in contrast with the classical results, in our case the LD functional I(f ) does not contain
the integral of the convex function of the derivative of the absolutely continuous component of
the function f .

The proof of Theorem 2.2 uses the auxiliary assertions on Lemmas 2.1–2.3. Let us intro-
duce some additional notions. Given T > 0, denote by XT the set of right-continuous functions
u : [0, T] →Z

+, with u(0) = 0, having a finite number of jumps n (u), where every jump has
size ±1. This gives the set of trajectories for the birth–death process ξ (t), t ∈ [0, T]. We speak
below of measures on (XT ,XT ), where XT is a standard Borel σ -algebra in XT .

Next, consider a continuous-time Markov process ζ (t), t ∈ [0, T], on the state space Z, with
the full jump rate 1, jump size ±1, and probabilities of jumps 1/2. There is a positive proba-
bility that this process lives in XT . In Lemma 2.1 and later we refer to the two processes as ξ
and ζ .

Lemma 2.1. (cf. [17, 33].) The distribution of the random process ξ on XT is absolutely con-
tinuous with respect to that of a process ζ . The corresponding Radon–Nikodym density p = pT
on XT has the form

p(u) =

⎧⎪⎪⎨⎪⎪⎩
2n(u)

( n(u)∏
i=1

e−(η(u(ti−1))−1)τiν(u(ti−1), u(ti))

)
e−(η(u(tn(u))−1))(T−tn(u)), n(u) ≥ 1,

e−(η(0)−1)T , n(u) = 0,

where η(x) = λ(x) +μ(x), x ∈Z
+; cf. (1.1). Here we suppose that the function u ∈XT has

jumps at time points 0< t1 < · · ·< tn(u) < T and set τi = ti − ti−1, with t0 = 0. Further, the
value ν(u(ti−1), u(ti)) is given by

ν(u(ti−1), u(ti)) =
⎧⎨⎩λ(u(ti−1)), u(ti) − u(ti−1) = 1;

μ(u(ti−1)), u(ti) − u(ti−1) = −1.

Let NT (ζ ) be the number of jumps in process ζ (t) on the interval [0,T]. The claim of
Lemma 2.1 is equivalent to the fact that, for any measurable set H⊆XT ,

P(ξ ∈H) = eT
E
[
e−AT (ζ ) exp{BT (ζ ) + NT (ζ ) ln 2}1(ζ ∈H)

]
. (2.2)
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Here,

AT (ζ ) :=
∫ T

0
η(ζ (t)) dt =

⎧⎪⎪⎨⎪⎪⎩
NT (ζ )∑
i=1

η(ζ (ti−1))τi + η
(
ζ
(
tNT (ζ )

))(
T − tNT (ζ )

)
, NT (ζ ) ≥ 1,

η(0)T, NT (ζ ) = 0;

(2.3)

BT (ζ ) :=

⎧⎪⎪⎨⎪⎪⎩
NT (ζ )∑
i=1

ln (ν(ζ (ti−1), ζ (ti))), NT (ζ ) ≥ 1,

0, NT (ζ ) = 0.

The symbols 1(·) and 1[ · ] represent indicators of events in the σ -algebra B.
The representation in (2.2) is used in the analysis of the value ln P(ξT (·) ∈Uε(f )). We set

ζT (t) := ζ (tT)/ϕ(T), t ∈ [0, 1]. In what follows, we write ξT , ζT instead of ξT (·), ζT (·), and AT ,
BT , NT instead of AT (ζ ), BT (ζ ), NT (ζ ).

The proof of Theorem 2.2 is based on the analysis of pT . This is a common method in
LD theory, particularly, in the specification of an LD functional. Namely, we analyze the
Radon–Nikodym density pT on the event {ζT ∈Uε(f )} and prove a (V,L, ρ)-LLDP by using
the independence of increments in process ζT , together with the Stirling formula and properties
of the functional space (L, ρ); see also Lemmas 2.2 and 2.3 and their proofs in the Appendix.
Next, we prove that the family ξT is ET (cf. Lemma A.6). Then, by using a standard impli-
cation LLDP plus ET ⇒ LDP (cf. [5, Lemma 4.1.23], [20]), we obtain an (L, ρ)-LDP for
processes ξT .

Lemma 2.2. Assume condition (1.2) and one of conditions (1.5) or (1.6). Then, for all f ∈V

with ρ(f , 0)> 0,

lim
ε→0

lim sup
T→∞

ln E[exp{BT + NT ln 2}1(ζT ∈Uε(f ))]

ϕ(T) ln ϕ(T)
≤ (1 − l)f +

D
(1).

Lemma 2.3. Assume condition (1.2) and one of conditions (1.5) or (1.6). Then, for all f ∈V

with ρ(f , 0)> 0,

lim
ε→0

lim inf
T→∞

ln E[exp{BT + NT ln 2}1(ζT ∈Uε(f ))]

ϕ(T) ln ϕ(T)
≥ (1 − l)f +

D
(1).

3. Proofs of Theorem 2.2 and Lemmas 2.2 and 2.3

Proof of Theorem 2.2. First, consider the case where ρ(f , 0) = 0. Obviously,

lim
ε→0

lim sup
T→∞

1

ϕ(T) ln ϕ(T)
ln P
(
ξT ∈Uε(f )

)≤ 0 = I(f ).

It is easy to see that

lim
ε→0

lim inf
T→∞

1

ϕ(T) ln ϕ(T)
ln P
(
ξT ∈Uε(f )

)≥ lim
ε→0

lim inf
T→∞

1

ϕ(T) ln ϕ(T)
ln P

(
sup

t∈[0,1]
ξT (t) = 0

)

= lim
ε→0

lim inf
T→∞

1

ϕ(T) ln ϕ(T)
ln e−λ(0)T = 0.
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Now, suppose that ρ(f , 0)> 0. We start by evaluating AT . As follows from (2.3),

AT :=
∫ T

0
η(ζ (t)) dt = T

∫ 1

0
η(ϕ(T)ζT (s)) ds. (3.1)

Condition (1.2) implies that, for any given ε, γ ∈ (0, 1), for T large enough,

Q(1 − γ ) ≤ η(ϕ(T)(ζT (s) ∨ ε))
ϕ(T)(ζT (s) ∨ ε) ≤ Q(1 + γ ). (3.2)

Here and below, a ∨ b = max (a, b). Furthermore, the values ε and γ will tend to zero.
Let us upper-bound the integral in (3.1). Suppose ζT ∈Uε(f ). Then the right bound in (3.2)

implies that, for any ε, γ ∈ (0, 1), if T is large enough, we have the inequalities∫ 1

0
η(ϕ(T)ζT (s)) ds ≤

∫ 1

0
η(ϕ(T)(ζT (s) ∨ ε)) ds

≤ ϕ(T)(1 + γ )Q
∫ 1

0
(ζT (s) ∨ ε) ds

≤ ϕ(T)(1 + γ )Q
∫ 1

0
(|ζT (s) − f (s)| + f (s) + ε) ds

≤ ϕ(T)(1 + γ )Q
∫ 1

0
f (s) ds + 2ϕ(T)(1 + γ )Qε. (3.3)

Next, consider a lower bound for the integral in (3.1). Due to the asymptotic character of
condition (1.2), we need some caution when dealing with the regions where the scaled process
approaches level zero. We set

H := {t ∈ [0, 1] : f (t)> 0}, Hε := {t ∈ [0, 1] : f (t) ≥ ε+ √
ε
}
, (3.4)

Gε := {t ∈ [0, 1] : ζT (t)< ε, f (t) ≥ ε+ √
ε
}
. (3.5)

If ζT ∈Uε(f ), the left-hand bound in (3.2) implies that, once more, for any given small ε and γ
within the interval (0,1), and with a sufficiently large value of T , we have∫ 1

0
η(ϕ(T)ζT (s)) ds ≥ ϕ(T)(1 − γ )Q

∫
Hε\Gε

ζT (s) ds

≥ ϕ(T)(1 − γ )Q
∫

Hε\Gε
f (s) ds − ϕ(T)(1 − γ )Q

∫
Hε\Gε

|ζT (s) − f (s)| ds

≥ ϕ(T)(1 − γ )Q
∫

Hε\Gε
f (s) ds − ϕ(T)(1 − γ )Qε. (3.6)

If ζT ∈Uε(f ), the Lebesgue measure of the set Gε defined by (3.5) has the following upper
bound. Since f (s) − ζT (s) ≥ √

ε for all s ∈ Gε we have

L(Gε) =
∫

Gε
ds ≤
∫ 1

0

|ζT (s) − f (s)|√
ε

ds = ρ(ζT , f )√
ε

≤ √
ε. (3.7)
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By virtue of (2.2), (3.1), (3.3), and (3.6), we obtain that, for T large enough,

exp

{
T − Tϕ(T)(1 − γ )Q

∫
Hε\Gε

f (s) ds + Tϕ(T)(1 − γ )Qε

}
E[exp{BT + NT ln 2}1(ζT ∈Uε(f ))]

≥ P(ξT (·) ∈Uε(f ))

≥ exp

{
T − Tϕ(T)(1 + γ )Q

∫ 1

0
f (s) ds − 2Tϕ(T)(1 + γ )Qε

}
E[exp{BT + NT ln 2}1(ζT ∈Uε(f ))].

(3.8)

The bounds in (3.8) conclude an initial part of the proof of Theorem 2.2. Subsequent parts
establish assertions (i) and (ii) based on (3.8), while assuming conditions (1.5) and (1.6),
respectively.

First, assume condition (1.5). According to the upper bound in (3.8), for any ε, γ ∈ (0, 1),

lim sup
T→∞

1

ϕ(T) ln ϕ(T)
ln P(ξT (·) ∈Uε(f ))

≤ −Q(1 − γ )

k

∫
Hε\Gε

f (s) ds + Q(1 − γ )

k
ε

+ lim sup
T→∞

1

ϕ(T) ln ϕ(T)
ln E[exp{BT + NT ln 2}1(ζT ∈Uε(f ))]. (3.9)

Because of (3.7), limε→0 L(Gε) = 0, and, by the definition of H and Hε (see (3.4)), Hε ⊆ H
and limε→0 L(H \ Hε) = 0,∫ 1

0
f (s) ds =

∫
H

f (s) ds +
∫

[0,1]\H
f (s) ds =

∫
H

f (s) ds.

From this and (3.9), for any γ ∈ (0, 1),

lim
ε→0

lim sup
T→∞

ln P(ξT (·) ∈Uε(f ))

ϕ(T) ln ϕ(T)

≤ −Q(1 − γ )

k

∫
H

f (s) ds + lim
ε→0

lim sup
T→∞

ln E[exp{BT + NT ln 2}1(ζT ∈Uε(f ))]

ϕ(T) ln ϕ(T)

= −Q(1 − γ )

k

∫ 1

0
f (s) ds + lim

ε→0
lim sup

T→∞
ln E[exp{BT + NT ln 2}1(ζT ∈Uε(f ))]

ϕ(T) ln ϕ(T)
.

Passing to the limit γ → 0 and using Lemma 2.2, we get, for f ∈V,

lim
ε→0

lim sup
T→∞

ln P(ξT (·) ∈Uε(f ))

ϕ(T) ln ϕ(T)
≤ −Q

k

∫ 1

0
f (s) ds − (1 − l)f +

D
(1).

Because of the lower bound in (3.8), and using an argument similar to the one above, together
with Lemma 2.3, we obtain, for f ∈V,

lim
ε→0

lim inf
T→∞

ln P(ξT (·) ∈Uε(f ))

ϕ(T) ln ϕ(T)
≥ −Q

k

∫ 1

0
f (s) ds − (1 − l)f +

D
(1).

This completes the proof of (V,L, ρ)-LLDP in assertion (i).
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Now, assume condition (1.6). Then the bound in (3.8), along with Lemmas 2.2 and 2.3,
implies that

lim
ε→0

lim sup
T→∞

ln P(ξT (·) ∈Uε(f ))

ϕ(T) ln ϕ(T)
= lim
ε→0

lim inf
T→∞

ln P(ξT (·) ∈Uε(f ))

ϕ(T) ln ϕ(T)
= −(1 − l)f +

D
(1).

This completes the proof of (V,L, ρ)-LLDP in assertion (ii).
Furthermore, Lemma A.6 implies the ET property for the family ξT (·), T > 0, and the fact

that I(f ) = ∞ for f ∈L \V under any of the conditions in (1.5) or (1.6). As a result, we get an
LDP under each of conditions (1.5) and (1.6). �

The proofs of Lemmas 2.2 and 2.3 are based on upper and lower bounds for the expected
value E := E( exp{BT + NT (ζ ) ln 2}1[ζT ∈Uε(f )]).

Proof of Lemma 2.2. Given a ∈ (0,∞), let Va be the set of functions f ∈V with 0 ≤ f (0) ≤ a
and Var f ≤ a. Next, given C ∈ (0,∞), define the set KC := Va(C) with a(C) := 3C/(1 − l).
According to Lemma A.1, KC is compact in (L, ρ). We write E ≤ E1 + E2, where

E1 := E
(
exp{BT + NT (ζ ) ln 2}1[ζT ∈Uε(f ) ∩KC

])
,

E2 := E
(
exp{BT + NT (ζ ) ln 2}1[ζT ∈K

c
C

])
,

and K
c
C represents the complement of set KC.

Let us upper-bound the term E1. Obviously, process ζ (t) can be represented as ζ (t) =
ζ+(t) − ζ−(t), where ζ+ and ζ− are independent Poisson processes of rate 1

2 , with E(ζ+(t)) =
E(ζ−(t)) = t/2. Note that if ζT ∈KC then, by virtue of (1.2), for any γ ∈ (0, 1) and T large
enough, we can upper-bound BT as follows:

BT =
NT (ζ )∑
i=1

ln
(
ν(ζ (ti−1), ζ (ti)

)
≤ ζ−(T) ln

(
Qϕ(T)a(C)(1 + γ )

)+ ζ+(T) ln
(
Pϕl(T)a(C)(1 + γ )

) =: B−
T + B+

T . (3.10)

Recall that the processes ζ− and ζ+ are independent and non-decreasing. Also note that
NT (ζ ) ≤ a(C)ϕ(T). Because of this, and due to representation in (3.10), Lemmas A.4 and A.5
imply that

E1 ≤ ea(C)ϕ(T) ln 2
E

(
eBT 1
[
ζ−

T (1) ≥ f −
D

(1) − δ(ε)
]
1
[
ζ+

T (1) ≥ f +
D

(1) − δ(ε)
])

≤ ea(C)ϕ(T) ln 2
E

(
eB−

T 1
[
a(C) ≥ ζ−

T (1) ≥ f −
D

(1) − δ(ε)
])

E

(
eB+

T 1
[
ζ+

T (1) ≥ f +
D

(1) − δ(ε)
])

.

(3.11)

Here, limε→0 δ(ε) = 0, and ζ+
T (t) := ζ+(tT)/ϕ(T), ζ−

T (t) := ζ−(tT)/ϕ(T).
Observe that, as ρ(f , 0)> 0, for ε > 0 small enough, f +

D
(1) − δ(ε)> 0. By utilizing the def-

inition of B−
T in (3.10) and once more taking advantage of the boundedness of the total number

of jumps NT (ζ ) ≤ a(C)ϕ(T), we can deduce, for sufficiently large values of T , that

E

(
eB−

T 1
[
a(C) ≥ ζ−

T (1) ≥ f −
D

(1) − δ(ε)
])

≤
�ϕ(T)a(C)�∑

k=0

exp{k ln (Qϕ(T)a(C)(1 + γ ))}e−T/2(T/2)k

k!

≤ exp{�ϕ(T)a(C)� ln (Qa(C)(1 + γ ))}
�ϕ(T)a(C)�∑

k=0

ek ln ϕ(T) e−T/2(T/2)k

k! , (3.12)
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where �b� denotes the integer part of b. To streamline the upcoming calculations, we write
g1(T) := �ϕ(T)a(C)� ln (Qa(C)(1 + γ )).

According to Lemma A.7, the terms in the last sum in (3.12) constitute an increasing
sequence for T large enough (specifically, when T > 2a(C)), and their maximum value is
attained in the final term:

max
0≤k≤�ϕ(T)a(C)� ek ln ϕ(T) e−T/2(T/2)k

k! = exp{�ϕ(T)a(C)� ln ϕ(T)}e−T/2(T/2)�ϕ(T)a(C)�

�ϕ(T)a(C)�! .

Therefore, continuing from (3.12), for a sufficiently large T we obtain

E

(
eB−

T 1
[
a(C) ≥ ζ−

T (1) ≥ f −
D

(1) − δ(ε)
])

≤ (�ϕ(T)a(C)� + 1)
exp{�ϕ(T)a(C)� ln ϕ(T) + g1(T) + g2(T)}

�ϕ(T)a(C)�! , (3.13)

where g2(T) := �ϕ(T)a(C)� ln (T/2) − T/2. Finally, the fact that g1(T) + g2(T) =
o(ϕ(T) ln ϕ(T)), together with the Stirling approximation, guarantee that the right-hand
side of (3.13) is

(�ϕ(T)a(C)� + 1)
exp{�ϕ(T)a(C)� ln ϕ(T) + g1(T) + g2(T)}

�ϕ(T)a(C)�! = eo(ϕ(T) ln ϕ(T)) (3.14)

as T → ∞.
By the definition of B+

T in (3.10), the expected value E

(
eB+

T 1
[
ζ+

T (1) ≥ f +
D

(1) − δ(ε)
])

in

(3.11) is bounded in the following manner. For T large enough,

E

(
eB+

T 1
[
ζ+

T (1) ≥ f +
D

(1) − δ(ε)
])

≤
∞∑

k=
⌊
ϕ(T)
(

f +
D

(1)−δ(ε)
)⌋ exp

{
k ln
(
Pϕl(T)a(C)(1 + γ )

)}e−T/2(T/2)k

k!

≤
∞∑

k=
⌊
ϕ(T)
(

f +
D

(1)−δ(ε)
)⌋ exp

{
k ln
(
Pϕl(T)a(C)(1 + γ )

)− k ln k + k ln (eT/2)
}

≤
∞∑

k=
⌊
ϕ(T)
(

f +
D

(1)−δ(ε)
)⌋ exp{lk ln ϕ(T) − k ln k + 2k ln (eT/2)}

≤
∞∑

k=
⌊
ϕ(T)
(

f +
D

(1)−δ(ε)
)⌋ exp

{
lk ln ϕ(T) − k ln (�ϕ(T)

(
f +
D

(1) − δ(ε)
)�) + 2k ln (eT/2)

}

≤
∞∑

k=
⌊
ϕ(T)
(

f +
D

(1)−δ(ε)
)⌋ exp{−(1 − l)k ln ϕ(T) + 3k ln (eT/2)}

=
∞∑

k=
⌊
ϕ(T)
(

f +
D

(1)−δ(ε)
)⌋ exp{−k

(
(1 − l) ln ϕ(T) − 3 ln (eT/2)

)}
= exp

{−�ϕ(T)
(
f +
D

(1) − δ(ε)
)�((1 − l) ln ϕ(T) − 3 ln (eT/2))

}
1 − exp{−(1 − l) ln ϕ(T) + 3 ln (eT/2)} . (3.15)
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From the bounds in (3.11), (3.14), and (3.15) we get that, for T large enough,

E1 ≤ exp
{−(1 − l)

(
f +
D

(1) − δ(ε)
)
ϕ(T) ln ϕ(T) + o(ϕ(T) ln ϕ(T))

}
. (3.16)

Further, Lemma A.6 implies that, for T large enough,

E2 ≤ exp{−Cϕ(T) ln ϕ(T) + o(ϕ(T) ln ϕ(T))}. (3.17)

Choosing C> (1 − l)
(
f +
D

(1) − δ(ε)
)

and using the inequalities E ≤ E1 + E2, (3.16), and (3.17),
we obtain

lim
ε→0

lim sup
T→∞

ln E

ϕ(T) ln ϕ(T)

≤ lim
ε→0

lim sup
T→∞

ln (2 exp{−(1 − l)
(
f +
D

(1) − δ(ε)
)
ϕ(T) ln ϕ(T) + o(ϕ(T) ln ϕ(T))})

ϕ(T) ln ϕ(T)

≤ − lim
ε→0

(1 − l)
(
f +
D

(1) − δ(ε)
)= −(1 − l)f +

D
(1).

�

Proof of Lemma 2.3. Here the goal is to establish a lower bound for E. As usual, obtaining
lower bounds is a more difficult task. Let us outline the idea of the proof. The main step is to
extract from the event {ζT ∈Uε(f )} a smaller event:

{ζT ∈Uε(f )} ⊃
{ ∫ �

0
|ζT (t) − g̃ε(t)| dt< ε/4, sup

t∈[�,1]
|ζT (t) − g̃ε(t)|< ε/8

}
.

Here, � is a constant that depends on ε, and g̃ε is a continuous function such that:

• g̃ε is close to f in the ρ metric (in the proof, ρ(f , g̃ε)< 3ε/4);

• the variation Var g̃ε is close to the variation of f ;

• g̃ε is equal to a small constant δ on the interval [0, �] (in the proof, δ = ε/4) and g̃ε is
greater than δ on [�, 1].

Then the expected value E will be lower-bounded by a product E+E− (see (3.24)), where
E+ (respectively, E−) controls the variations of ζ+ and g̃+

ε (respectively, ζ− and g̃−
ε ). Finally,

the quantity E+ will give us the bound (3.27) claimed in the lemma.
Let us proceed with the formal proof. First, consider the case where Var fD > 0. We start

by proving the existence of the function g̃ε. We construct g̃ε by using an auxiliary func-
tion g (see below). From the point of view of future arguments, it is convenient to set
2� := sup{t : Var fD ≤ ε/2}. Observe that since Var fD > 0, we have 2�< 1 for ε > 0 small
enough and, as fD is right-continuous at 0, we also have that 2�> 0.

Define

g(t) :=
⎧⎨⎩
ε

4
∨ f (0), t ∈ [0, 2�),

f (t) + ε

2
, t ∈ [2�, 1],

Recall that a ∨ b = max (a, b). It is easy to see that ρ(f , g) ≤ ε/2. Note that function g is
convenient because it does not vanish on [0, 1].

https://doi.org/10.1017/jpr.2023.75 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.75


792 A. LOGACHOV ET AL.

Let us decompose gD into an increasing and a decreasing component:

gD(t) = g+
D

(t) − g−
D

(t), Var gD = Var g+
D

+ Var g−
D
,

g+
D

(t) = ε

4
∨ f (0) for t ∈ [0, 2�),

g−
D

(t) = 0, for t ∈ [0, 2�).

From the definition of the constant 2� it follows that

0 ≤ Var f +
D

− Var g+
D

≤ ε

2
. (3.18)

The functions g+
D

and g−
D

are monotone and continuous on [0, 2�) and left-continuous at the
end point 1. Also,

inf
t∈[0,2�)

(
g+
D

(t) − g−
D

(t)
)= ε

4
∨ f (0), inf

t∈[2�,1]

(
g+
D

(t) − g−
D

(t)
)≥ ε

2
.

Hence, there exist monotone continuous functions g̃+
ε and g̃−

ε such that

g̃+
ε (t) = g+

D
(t) = ε

4
∨ f (0), g̃−

ε (t) = g−
D

(t) = 0 if t ∈ [0, �],

g̃+
ε (t) ≥ g+

D
(t), g̃−

ε (t) ≤ g−
D

(t) if t ∈ (�, 1),

g̃+
ε (1) = g+

D
(1), g̃−

ε (1) = g−
D

(1), and ρ
(̃
g+
ε , g+

D

)+ ρ
(̃
g−
ε , g−

D

)
< ε/4. Let g̃ε := g̃+

ε − g̃−
ε . Then

ρ (̃gε, g)< ε/4 and

inf
t∈[0,1]

g̃ε(t) = inf
t∈[0,1]

(̃
g+
ε (t) − g̃−

ε (t)
)≥ inf

t∈[0,1]

(
g+
D

(t) − g−
D

(t)
)≥ ε

4
.

Using the decomposition ζ (t) = ζ+(t) − ζ−(t), we have, for T large enough,

E := E( exp{BT + NT (ζ ) ln 2}1[ζT ∈Uε(f )])

≥E

(
eBT 1
[

sup
t∈[0,�)

ζT (t)< g̃ε(�), sup
t∈[�,1]

|ζT (t) − g̃ε(t)|< ε

8

])
≥E

(
eBT 1
[
ζ−(�T) = 0, ζ+(�T) = �ϕ(T )̃gε(�)�, sup

t∈[�,1]
|ζT (t) − g̃ε(t)|< ε

8

])
. (3.19)

Write

W1 :=
{

sup
t∈[�,1]

∣∣ζ−
T (t) − g̃−

ε (t)
∣∣< ε

16

}
,

S1 := {ζ−(�T) = 0},
W2 :=

{
sup

t∈[�,1]

∣∣ζ+
T (t) − ζ+

T (�) − (̃g+
ε (t) − g̃+

ε (�)
)∣∣< ε

16

}
,

S2 := {ζ+(�T) = ⌊ϕ(T )̃gε(�)
⌋}

.

From the bound in (3.19) it follows that

E ≥E
[
eBT 1(W1 ∩W2 ∩ S1 ∩ S2)

]
. (3.20)
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Let us first estimate BT from below. According to the definition of ν in Lemma 2.1, the sum
BT can always be separated into two sums: the one over negative jumps,

∑
(−), and the one

over positive jumps,
∑

(+):

BT =
NT (ζ )∑
i=1

ln (ν(ζ (ti−1), ζ (ti))

=
NT (ζ )∑
i=1

ln (ν(ζ (ti−1), ζ (ti))1[ζ (ti−1)> ζ (ti)] +
NT (ζ )∑
i=1

ln (ν(ζ (ti−1), ζ (ti))1[ζ (ti−1)< ζ (ti)]

=:
∑
(−)

+
∑
(+)

.

The lower bound for
∑

(−) is constructed in the following way. Note that, according to S1,
there are no negative jumps of the process ζ during the time interval [0, T�] and, according to
W1 ∩W2, the process belongs to an ε/8 neighborhood (in the uniform metric) of the function
g̃ε. Then, due to (1.2), for any γ ∈ (0, 1) and T sufficiently large we obtain

∑
(−)

≥ ζ−(T) ln

(
εQϕ(T)(1 − γ )

8

)
. (3.21)

Let us bound sum
∑

(+) from below. Note that, for each r> 1, any trajectory from the event
S1 ∩ S2 ∩W2 has ζ+(T) − �ϕ(T )̃gε(�)/r� positive jumps, when the trajectory is not lower
than ε/8r. Thus, on these jumps, for any γ ∈ (0, 1) and T sufficiently large, ν(ζ (ti−1), ζ (ti)) ≥
εPϕl(T)(1 − γ )/8r.

On the remaining �ϕ(T )̃gε(�)/r� positive jumps, ν(ζ (ti−1), ζ (ti)) ≥ λmin; here, λmin :=
minx∈Z+ λ(x). Finally,

∑
(+)

≥
(
ζ+(T) −

⌊
ϕ(T )̃gε(�)

r

⌋)
ln

(
εPϕl(T)(1 − γ )

8r

)
+
⌊
ϕ(T )̃gε(�)

r

⌋
ln λmin. (3.22)

The new parameter r introduced will further tend to infinity, r → ∞.
Thus, on the event W1 ∩W2 ∩ S1 ∩ S2, due to (3.21) and (3.22), we obtain that, for any

γ ∈ (0, 1), r> 1, and T large enough,

BT =
NT (ζ )∑
i=1

ln (ν(ζ (ti−1), ζ (ti)))

≥ ζ−(T) ln

(
εQϕ(T)(1 − γ )

8

)
+
⌊
ϕ(T )̃gε(�)

r

⌋
ln λmin

+
(
ζ+(T) −

⌊
ϕ(T )̃gε(�)

r

⌋)
ln

(
εPϕl(T)(1 − γ )

8r

)
≥ ζ−(T) ln (Jϕ(T)) +

⌊
ϕ(T )̃gε(�)

r

⌋
ln λmin +

(
ζ+(T) −

⌊
ϕ(T )̃gε(�)

r

⌋)
ln (Jϕl(T)),

(3.23)
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where J := min (εP(1 − γ )/8r, εQ(1 − γ )/8). From (3.20), (3.23), and the independence of
processes ζ+ and ζ−, we get

E ≥E

(
exp

{(
ζ+(T) −

⌊
ϕ(T )̃gε(�)

r

⌋)
ln (Jϕl(T)) +

⌊
ϕ(T )̃gε(�)

r

⌋
ln λmin

}
1(S2 ∩W2)

)
×E( exp{ζ−(T) ln (Jϕ(T))}1(S1 ∩W1)) =: E+E−. (3.24)

Let us lower-bound the value E+. Consider a partition �= t0 < t1 < · · ·< tm = 1 such that
maxi=1,...,m

(̃
g+
ε (ti) − g̃+

ε (ti−1)
)≤ ε/32 and mini=1,...,m

(̃
g+
ε (ti) − g̃+

ε (ti−1)
)
> 0. By virtue of

the independence of increments in process ζ+, for T large enough,

E+ ≥E

(
exp

{(
ζ+(T) −

⌊
ϕ(T )̃gε(�)

r

⌋)
ln (Jϕl(T)) +

⌊
ϕ(T )̃gε(�)

r

⌋
ln (λmin)

}
× 1[ζ+(�T) = �ϕ(T )̃gε(�)�]

×
m∏

i=1

1[ζ+(Tti) − ζ+(Tti−1) = ⌊(̃g+
ε (ti) − g̃+

ε (ti−1)
)
ϕ(T)
⌋

]

)
≥E

(
exp

{
�ϕ(T )̃g+

ε (1)� ln (Jϕl(T)) − 2

⌊
ϕ(T )̃gε(�)

r

⌋
ln (Jϕl(T))

}
× 1[ζ+(�T) = �ϕ(T )̃gε(�)�]

×
m∏

i=1

1
[
ζ+(Tti) − ζ+(Tti−1) = ⌊(̃g+

ε (ti) − g̃+
ε (ti−1)

)
ϕ(T)
⌋])

= exp

{
�ϕ(T )̃g+

ε (1)� ln (Jϕl(T)) − 2

⌊
ϕ(T )̃gε(�)

r

⌋
ln (Jϕl(T))

}
× P(ζ+(�T) = �ϕ(T )̃gε(�)�)

×
m∏

i=1

P
(
ζ+(Tti) − ζ+(Tti−1) = ⌊(̃g+

ε (ti) − g̃+
ε (ti−1)

)
ϕ(T)
⌋)

. (3.25)

With the help of the Stirling formula, we get, for T large enough,

P(ζ+(�T) = �ϕ(T )̃gε(�)�)
m∏

i=1

P
(
ζ+(Tti) − ζ+(Tti−1) = ⌊(̃g+

ε (ti) − g̃+
ε (ti−1)

)
ϕ(T)
⌋)

= e−T�/2(T�/2)�̃gε(�)ϕ(T)�

�̃gε(�)ϕ(T)�!
m∏

i=1

e−T(ti−ti−1)/2(T(ti − ti−1)/2)
⌊(̃

g+
ε (ti)−̃g+

ε (ti−1)
)
ϕ(T)
⌋

⌊(̃
g+
ε (ti) − g̃+

ε (ti−1)
)
ϕ(T)
⌋!

≥
m∏

i=1

exp

{
−T(ti − ti−1)

2
− (̃g+

ε (ti) − g̃+
ε (ti−1)

)
ϕ(T) ln (

(̃
g+
ε (ti) − g̃+

ε (ti−1)
)
ϕ(T))

}
× exp

{
−T�

2
− g̃ε(�)ϕ(T) ln (̃gε(�)ϕ(T))

}
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≥
m∏

i=1

exp

{
−T(ti − ti−1)

2
− (̃g+

ε (ti) − g̃+
ε (ti−1)

)
ϕ(T) ln

(̃
g+
ε (1)ϕ(T)

)}
× exp

{
−T�

2
− g̃+

ε (�)ϕ(T) ln
(̃
g+
ε (1)ϕ(T)

)}
≥ exp

{−T − g̃+
ε (1)ϕ(T) ln

(̃
g+
ε (1)ϕ(T)

)}
. (3.26)

From the bounds in (3.25) and (3.26), it follows that, for T large enough,

E+ ≥ exp

{
−̃g+

ε (1)ϕ(T)(1 − l) ln ϕ(T)

− T − ϕ(T )̃g+
ε (1)| ln (J)| − 3

⌊
ϕ(T )̃gε(�)

r

⌋
ln
(
Jϕl(T)

)}
. (3.27)

Next, let us lower-bound the quantity E−. If g̃−
ε (1) = 0 then

E− ≥ P(ζ−(T) = 0) = e−T/2. (3.28)

If g̃−
ε (1)> 0 then we consider the partition �= t0 < t1 < · · ·< tm = 1 such that

maxi=1,...,m (̃g−
ε (ti) − g̃−

ε (ti−1)) ≤ ε/32 and mini=1,...,m (̃g−
ε (ti) − g̃−

ε (ti−1))> 0. By using the
independence of increments in process ζ− and the Stirling formula, for T large enough,

E− ≥E

(
eζ

−(T) ln (Jϕ(T))1(ζ−(�T) = 0)

×
m∏

i=1

1
[
ζ−(Tti) − ζ−(Tti−1) = ⌊(̃g−

ε (ti) − g̃−
ε (ti−1))ϕ(T)

⌋])
≥ exp{ϕ(T )̃g−

ε (1) ln (Jϕ(T)) − m ln (Jϕ(T))}P(ζ−(�T) = 0)

×
m∏

i=1

P
(
ζ−(Tti) − ζ−(Tti−1) = �(̃g−

ε (ti) − g̃−
ε (ti−1))ϕ(T)

⌋)
≥ exp

{
ϕ(T )̃g−

ε (1) ln (Jϕ(T)) − m ln (Jϕ(T))
}

× exp
{−T − g̃−

ε (1)ϕ(T) ln
(̃
g−
ε (1)ϕ(T)

)}
= exp

{−T − g̃−
ε (1)ϕ(T) ln g̃−

ε (1) + g̃−
ε (1)ϕ(T) ln J − m ln (Jϕ(T))

}
. (3.29)

From (3.20) and (3.27)–(3.29) we obtain that, for any r> 1 and ε > 0 small enough,

lim inf
T→∞

ln E

ϕ(T) ln ϕ(T)
≥ −̃g+

ε (1)(1 − l) − 3l̃gε(�)

r
.

Passing to the limit r → ∞ yields

lim inf
T→∞

ln E

ϕ(T) ln ϕ(T)
≥ −̃g+

ε (1)(1 − l).

By definition, g̃+
ε (1) = g+

D
(1). Also, by virtue of (3.18), |g+

D
(1) − f +

D
(1)| ≤ ε/2. This gives

lim
ε→0

lim inf
T→∞

ln E

ϕ(T) ln ϕ(T)
≥ −(1 − l)f +

D
(1).
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Therefore, Lemma 2.3 has been proven when Var fD > 0.
In the case where Var fD = 0, we have fD(t) = f (0)> 0, t ∈ [0, 1]. It is easy to see that {ζT ∈

Uε(f )} ⊇O, where

O :=
{
ζ+
(

ε

2f (0)
T

)
= �f (0)ϕ(T)�, ζ+(T) − ζ+

(
ε

2f (0)
T

)
= 0, ζ−(T) = 0

}
.

The rest of the proof is reduced to a lower bound for BT on event O, which essentially repeats
the above argument. For brevity, we omit it here. �

4. Discussion

It is instructive to discuss Theorems 2.1 and 2.2 in connection with the question mentioned
in Section 1: why under condition (1.4) do we get only an LLDP whereas (1.5) or (1.6) lead
to an LDP? Consider an example where λ(x) = P, μ(x) = Qx. In this case we can write down a
probability distribution for process ξ at the time point T explicitly [8]:

P(ξ (T) = x) = (a(T))x

x! e−a(T), x ∈Z
+,

where a(T) = (P/Q)
(
1 − e−QT

)
. Following on from this, if f (1)> 0 then

lim
ε→0

lim
T→∞

1

ϕ(T) ln ϕ(T)
ln P(ξT (1) ∈ [f (1) − ε, f (1) + ε]) = −f (1)

under any of conditions (1.4)–(1.6).
Consequently, under condition (1.4) the normalizing function ψ(T) = ϕ(T) ln ϕ(T) in the

LDP on the state space Z
+ is different from the function ψ(T) = Tϕ(T) figuring in the LLDP

on the functional space L. In other words, for any càdlàg function f 	≡ 0 we have

lim
ε→0

lim
T→∞

1

ϕ(T) ln ϕ(T)
ln

P(ξT ∈Uε(f ))

P(ξT (1) ∈ [f (1) − ε, f (1) + ε])
= −∞.

This is why under condition (1.4) the family of processes ξT (·), T > 0, lacks the ET property
in any reasonable functional space.

However, under condition (1.5) or (1.6) the normalizing functions coincide, and we manage
to get an LDP in the functional space (L, ρ) as stated in Theorem 2.2.

Also, note that Theorem 2.2 allows us to get a rough asymptotic for the probability that a
trajectory of ξT crosses a level a> 0. Indeed, with the help of (2.2) and an argument similar to
the one used in the proof of (3.15) we have that, under any of conditions (1.5) and (1.6),

lim sup
T→∞

1

ϕ(T) ln ϕ(T)
ln P

(
sup

t∈[0,1]
ξT (t) ≥ a

)
≤ lim sup

T→∞
1

ϕ(T) ln ϕ(T)
ln

(
eT
E

(
e−AT (ζ ) exp{BT (ζ ) + NT (ζ ) ln 2}1

(
sup

t∈[0,1]
ζT (t) ≥ a

)))
≤ lim sup

T→∞
1

ϕ(T) ln ϕ(T)
ln E( exp{BT (ζ ) + NT (ζ ) ln 2}1(ζ+

T (1) ≥ a)) ≤ −(1 − l)a.
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Since process ξT is càdlàg, and the set {f ∈L : ess supt∈[0,1] f (t)> a} is open, Theorem 2.2
implies that, under (1.5) or (1.6),

lim inf
T→∞

1

ϕ(T) ln ϕ(T)
ln P

(
sup

t∈[0,1]
ξT (t) ≥ a

)
≥ lim inf

T→∞
1

ϕ(T) ln ϕ(T)
ln P

(
sup

t∈[0,1]
ξT (t)> a

)
= lim inf

T→∞
1

ϕ(T) ln ϕ(T)
ln P

(
ess sup

t∈[0,1]
ξT (t)> a

)
≥ − inf

f : ess supt∈[0,1] f (t)>a
I(f )

= − inf
f : ess supt∈[0,1] f (t)>a

(1 − l)f +
D

(1) = −(1 − l)a.

Thus,

lim
T→∞

1

ϕ(T) ln ϕ(T)
ln P

(
sup

t∈[0,1]
ξT (t) ≥ a

)
= −(1 − l)a.

Appendix A. Auxiliary results

In this section we establish some auxiliary assertions.

Lemma A.1. For any fixed C> 0 the set VC is compact in (L, ρ).

Proof. The Helly theorem [18] implies that from every sequence fn ∈VC we can extract a
subsequence fnk convergent as k → ∞ almost surely to some f ∈VC. Applying the Lebesgue
dominated convergence theorem yields

lim
k→∞

∫ 1

0
|fnk (t) − f (t)| dt =

∫ 1

0
lim

k→∞ |fnk (t) − f (t)| dt = 0. �

Let M=M[0, 1] denote the set of non-decreasing functions on [0, 1].

Lemma A.2. Suppose that the function f ∈V is represented as f (t) = g1(t) − g2(t), where
g1, g2 ∈M. Then, for any 0 ≤ t1 < t2 ≤ 1, g1(t2) − g1(t1) ≥ f +(t2) − f +(t1).

Proof. Assume the opposite; then there exist 0 ≤ t1 < t2 ≤ 1 such that g1(t2) − g1(t1)<
f +(t2) − f +(t1). Observe that we will then also have g2(t2) − g2(t1)< f −(t2) − f −(t1).

Let Var[t1,t2] stand for the variation on [t1, t2]. Since the variation of a sum does not exceed
the sum of the variations, we obtain

Var[t1,t2]g1 + Var[t1,t2]g2 = g1(t2) − g1(t1) + g2(t2) − g2(t1) ≥ Var[t1,t2]f .

On the other hand,

g1(t2) − g1(t1) + g2(t2) − g2(t1)< f +(t2) − f +(t1) + f −(t2) − f −(t1) = Var[t1,t2]f .

The contradiction completes the proof. �

Let K be a compact set in (L, ρ). Consider a family of functions uT (t), t ∈ [0, 1], T > 0,
such that uT (t) := u+

T (t) − u−
T (t), where u+

T , u−
T ∈M∩K for all T . Given f ∈M, set

Bf := {g ∈L : g(t2) − g(t1) ≥ f (t2) − f (t1) for all 0 ≤ t1 < t2 ≤ 1}.
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The following lemma then holds.

Lemma A.3. Suppose that, for f ∈V,

lim
T→∞

∫ 1

0
|uT (t) − f (t)| dt = 0. (A.1)

Then, for the functions f ± ∈M figuring in decomposition (2.1),

lim
T→∞ inf

g∈Bf +

∫ 1

0
|u+

T (t) − g(t)| dt = 0, lim
T→∞ inf

g∈Bf −

∫ 1

0
|u−

T (t) − g(t)| dt = 0.

Proof. Let us prove that limT→∞ infg∈Bf +
∫ 1

0 |u+
T (t) − g(t)| dt = 0. Suppose the oppo-

site; then there exists γ > 0 such that, for any M > 0, there exists T >M such that
infg∈Bf +

∫ 1
0 |u+

T (t) − g(t)| dt ≥ γ . Since the functions u+
T lie in a compact interval, this inequal-

ity implies that there exists a subsequence TM and a function g̃ such that

lim
M→∞

∫ 1

0
|u+

TM
(t) − g̃(t)| dt = 0, inf

g∈Bf+

∫ 1

0
|g̃(t) − g(t)| dt ≥ γ,

and g̃D ∈M because the functions u+
TM

, M = 1, 2, . . ., are monotone in t.

Therefore, it follows from (A.1) that limM→∞
∫ 1

0 |u−
TM

(t) − (g̃(t) − f (t))| dt = 0. Then, since
u−

T ∈M, from this it follows that ĝD(t) := g̃D(t) − fD(t) also belongs to M. Hence, fD(t) =
g̃D(t) − ĝD(t), where g̃D 	∈ Bf + and ĝD ∈M, which contradicts Lemma A.2.

In a similar fashion we can prove that limT→∞ infg∈Bf −
∫ 1

0 |u−
T (t) − g(t)| dt = 0. �

The following result is a direct corollary of Lemma A.3.

Lemma A.4. Let K be a compact set in (L, ρ). There exists δ(ε)> 0 such that lim
ε→0

δ(ε) = 0

and for every u ∈K∩Uε(f ) and u+, u− from the decomposition u = u+ − u− (cf. (2.1)) the
distances between u± and Bf ± satisfy

ρ
(
u+,Bf +

)
< δ(ε), ρ(u−,Bf − )< δ(ε).

Lemma A.5. Suppose the function u ∈V is increasing on [0, 1]. Let Bε := {g ∈M : ρ(g, u)<
ε}. Then there exists δ(ε)> 0 such that infg∈Bε g(1) ≥ uD(1) − δ(ε) and limε→0 δ(ε) = 0.

Proof. Since uD is increasing and left-continuous at t = 1, there exists a function γ (�)> 0
such that lim�→0 γ (�) = 0 and supt∈[1−γ (�),1] (uD(1) − uD(t))<�. Let us choose �(ε) so
that �(ε)γ (�(ε)) ≥ ε and limε→0 �(ε) = 0. Put δ(ε) := 3�(ε). Suppose that infg∈Bε g(1)<
uD(1) − δ(ε). Then the condition infg∈Bε ρ(g, u)< ε implies that there exists a function g ∈Bε

such that

ε >

∫ 1

1−γ (�(ε))
|g(t) − uD(t)| dt ≥

∫ 1

1−γ (�(ε))
(|g(t) − uD(1)| − |uD(1) − uD(t)|) dt

>

∫ 1

1−γ (�(ε))
|g(t) − uD(1)| dt −�(ε)γ (�(ε))

≥
∫ 1

1−γ (ε)
|g(1) − uD(1)| dt −�(ε)γ (�(ε))

> 2γ (�(ε))�(ε) −�(ε)γ (�(ε))> ε.

This contradiction completes the proof of the lemma. �
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Lemma A.6. (The ET property) Let condition (1.5) or (1.6) be satisfied. Then, for any C> 0,
there exists a set KC ⊂L, compact in (L, ρ), such that

lim sup
T→∞

1

ψ(T)
ln P
(
ξT (·) ∈K

c
C

)≤ −C,

where K
c
C =L \KC and ψ(T) = ϕ(T) ln ϕ(T).

Proof. Take KC := Va(C), where a(C) := 3C/(1 − l). Then

P(ξT ∈K
c
C) ≤ eT

E

(
exp{BT + NT ln 2}1

[
ζT ∈K

c
C, inf

t∈[0,1]
ζT (t) ≥ 0

])
≤ eT

E

(
exp{BT + NT ln 2}1

[
NT ≥ a(C)ϕ(T), inf

t∈[0,1]
ζT (t) ≥ 0

])
= eT

∞∑
r=�a(C)ϕ(T)�

E

(
exp{BT + NT ln 2}1

[
NT = r, inf

t∈[0,1]
ζT (t) ≥ 0

])

≤ eT
∞∑

r=�a(C)ϕ(T)�
E

(
exp{BT + NT ln 2}1

[
NT = r, ζ+(T) ≥ r

2

])
, (A.2)

where the first inequality comes from (2.2), removing the AT ; the second inequality comes
from the observation that the process should have at least a(C)ϕ(T) jumps during time interval
[0, T] to belong to the set Kc

C. The last inequality means that if the number of jumps in the time
interval [0, 1] is r, then to guarantee the inequality inft∈[0,1] ζT (t) ≥ 0 the number of positive
jumps should be at least r/2.

Let us upper-bound BT on the event {ω : NT = r, ζ+(T) ≥ r/2} with r ≥ �a(C)ϕ(T)�. From
condition (1.2) it follows that, for any γ > 0 and T large enough,

BT =
r∑

i=1

ln (ν(ζ (ti−1), ζ (ti))) ≤ ζ−(T) max
1≤i≤r

ln (μ(i)) + ζ+(T) max
1≤i≤r

ln (λ(i))

≤ ζ−(T) ln ((1 + γ )Qr) + ζ+(T) ln ((1 + γ )Prl)

= ζ−(T) ln r + lζ+(T) ln r + r ln M

= (r − (1 − l)ζ+(T)) ln r + r ln M

≤ r

2
(1 + l) ln r + r ln M. (A.3)

Here, M := (1 + γ )2(Q ∨ 1)(P ∨ 1).
By using (A.2), (A.3), and the Stirling formula, we obtain that, for r ≥ �a(C)ϕ(T)� and T

large enough,

E

(
exp{BT + NT ln 2}1

[
NT = r, ζ+(T) ≥ r

2

])
≤ exp

{
r

2
(1 + l) ln r + r ln (2M)

}
P(NT = r)

≤ e−T exp

{
r

2
(1 + l) ln r − r ln r + r ln (2TMe)

}
= e−T exp

{
− r

2
(1 − l) ln r + r ln (2TMe)

}
≤ e−T exp

{
− r

3
(1 − l) ln r

}
, (A.4)
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where the last inequality is a consequence of the fact that under any of the conditions (1.5) or
(1.6) the term r ln (2TMe) is o((r/2)(1 − l) ln (r)) as T tends to infinity. The inequalities (A.2)
and (A.4) imply that

lim sup
T→∞

1

ψ(T)
ln P
(
ξT ∈K

c
C

)
≤ lim

T→∞
1

ϕ(T) ln ϕ(T)
ln exp

{
−�a(C)ϕ(T)�

3
(1 − l) ln ϕ(T)

}
= −C.

�

Set gk := ek ln ϕ(T)e−T/2(T/2)k/k!.
Lemma A.7. For any C> 0 and T > 2C, max0≤k≤Cϕ(T) gk = g�Cϕ(T)�.

Proof. Given 1 ≤ k ≤ �Cϕ(T)� where T > 2C, we have

gk

gk−1
= eln ϕ(T) T/2

k
= ϕ(T)T

2k
≥ ϕ(T)T

2�Cϕ(T)� > 1.

Thus, the sequence gk increases for 0 ≤ k ≤ �Cϕ(T)�. �
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