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L-INDISTINGUISHABILITY FOR SL(2)
J-P. LABESSE AND R. P, LANGLANDS

1. Introduction. The notion of L-indistinguishability, like many others
current in the study of L-functions, has yet to be completely defined, but it is
in our opinion important for the study of automorphic forms and of representa-
tions of algebraic groups. In this paper we study it for the simplest class of
groups, basically forms of SL(2). Although the definition we use is applicable
to very few groups, there is every reason to believe that the results will have
general analogues [12].

The phenomena which the notion is intended to express have been met—
and exploited—by others (Hecke [5] § 13, Shimura [17]). Their source seems
to lie in the distinction between conjugacy and stable conjugacy. If Fis a field,
G a reductive algebraic group over F, and I the algebraic closure of I then
two elements of G (/) may be conjugate in G(F) without being conjugate in
G (F). In addition, if Fis alocal field then in many cases there is a rough duality
between conjugacy classes in G (/) and equivalence classes of irreducible repre-
sentations of G(F), and one might expect the coarse classification of stable
conjugacy to lead to a grouping of these equivalence classes. One of the groups
is now called an L-packet and the elements in it are said to be L-indistinguish-
able because in the cases that are understood they have the same L-functions.

It was the L-packets with which we started. If G is GL(2), or even GL (n),
then stable conjugacy is the same as conjugacy and the L-packets will consist
of a single element, and there is no need to introduce them. They do not appear
in [6]. The group GL(2, F) actson SL(2, F) by ¢ : h — h? = g~'hg and, if Fis
a local field, on the irreducible representations of SL(2, F) by = — ¢ with
w’(h?) = w(h). Two elements of SL(2) are stably conjugate if and only if they
lie in the same orbit under GL (2, F) and it is expedient to define two irreducible
representations of SL(2, I) to be L-indistinguishable if they lie in the same orbit
under GL (2, IF), or, more precisely, if the induced representations of the Hecke
algebra lie in the same orbit. This definition can only be provisional but it will
serve our purpose, which is to explore the notion for SL(2) and some related
groups thoroughly, attempting to formulate and verify theorems which are
likely to be of general validity.

Our original purpose was more specific. Suppose F is a global field and
T = @m,, the product being taken over all places of F, is an automorphic
representation of SL(2, 4Ar). If for each v we choose a 7,/ which is L-indistin-
guishable from =, and equivalent to it for almost all » then 7' = ®=,” might
or might not be an automorphic representation. We wished to show that it is,
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except for a very special class of , those associated to characters of the group
of idéles of norm one in a quadratic extension, and this we could do without
too much difficulty. The problem was posed and solved in the spring of 1971
while we were together at the Mathematical Institute in Bonn in the Sonder-
forschungsbereich Theoretische Mathematik, and the paper could have been
written then, except that we could not formulate the results in a satisfying
fashion. For this the groups H of [12] are needed, for which an adequate general
definition was found only after many conversations with Shelstad, as well as
the groups .S and S° whose introduction was suggested by the work of Knapp-
Zuckerman [7].

Because we had some specific applications in mind we have considered groups
slightly more general than twisted forms of SL(2), but they can be left to the
body of the paper. If G is SL(2) or a twisted form then the L-group *G can,
for the present purpose, be taken to be PGL(2, C). If F is a local field and ¢
a homomorphism of the Weil group W, into G there is in general (cf. [18]) an
associated L-packet II(¢), and according to the results of § 3 it will contain
only finitely many equivalence classes. If S, is the centralizer of o(W ) in *G
and S, the connected component of the identity in .S, then, as will be seen in
§ 6 and § 7, there is a pairing (s, =) between S,°\S, and TI(¢) which is often
but not always a duality.

This local pairing is of interest in itself, and is also of some significance in
global multiplicity questions. To form a global L-packet II one chooses local
L-packets II,, such that II, contains the unramified representation w,° for
almost all v, and takes II to be the collection

I={r=Qm|m, € I, for all v and =, = #,° for almost all v}.

Some of the = may be automorphic and others not. It is shown in § 6 and § 7
that they are automorphic simultaneously unless II is the L-packet II(¢p)
associated to a homomorphism ¢ : W, — G = PGL(2, C) obtained from an
irreducible induced two-dimensional representation of Wp. If ¢, is the restric-
tion of ¢ to the decomposition group at v and 7 = Q®m, lies in I (¢) then =,
lies in II{¢,) and S, C S,,, S,° € S,.°. We may define (s, v) to be II,(s, 7,).
One of the principal conclusions of this paper is that the multiplicity with which
7 occurs in the space of cusp forms is

1
1S, : S¢0] ses:L:‘\sw s .
One hopes that a similar result is valid for every L-packet containing an auto-
morphic representation, but even its formulation would demand the introduc-
tion of the problematical group Gn(r)y of § 2 of [15].

Although the main results of the paper are in § 6 and § 7, the technical
burden is carried by § 5, in which the analysis of the trace formula suggested
in [12] is carried out at length. The trace formula seldom functions without
some local harmonic analysis, but usually with much less than appears neces-
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sary at first sight, and once it is primed it will start to pump out many local
results. Since we are dealing with an easy group for which we could establish
many of the local results directly, we have done so. For other groups,
where local information is harder to come by, it will be necessary to bring
the trace formula into play sooner, and so the reader who has his eye on
generalizations should not spend too much time on the details of § 2, § 3, and
§ 4. The critical observations are that the function ®7'(f) : v = ®7'(y, f) is
smooth and that the map on distributions dual to f — ®7'(f) sends a character
to a difference of characters.

Finally we observe that [8] and [16] serve to some extent as introductions
to this paper and that to avoid technical complications we have confined
ourselves to fields of characteristic zero.

2. Local theory. Let F be a local field of characteristic zero and G the
group SL(2). Let 17" be a Cartan subgroup of G defined over F. Since G is simply-
connected and

H'(F, G) = {1}
the two sets D(7") and € (7") introduced in [12] are equal to each other and to
HYW(F, T).
Let G be Ehe group GL(2). Then the centralizer T of T in G is a Cartan sub-
group of G. Since

HY(FT) =1
any g in %(7") ([12]) may be written as a product sk with s € T(F) and % in
G (F). Conversely any & in G (F) is a product s~'g with ¢ € G(F) and s € T(F).
The element g must lie in A (7") for
hlth = g7ty t € T(F).
If L is the centralizer of 7°(F) in the algebra of 2 X 2 matrices over F then
{det t|t € T(F)} = {Nmy, mx|x € LX}

and
g — det A mod Nm, »L*

yields an isomorphism
@(7‘) = G(T) ~ FX/NIHL/FLX.

More generally we could suppose that F was an extension of some field E
and then consider a group G’ over E with
Res;, xG C G’ C Resy, zG.
Thus G’ is defined by a subgroup 4 of Res, xG, and
G'(F) = {g € G(F)|det g € A(E)}.
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If 77 is the centralizer of Resz z1 in G’ then one shows, just as above, that
D(T") = D(T'/E) ~ F*/A(E) Nmy, pzL*.
For our purposes it is best simply to take a closed subgroup 4 of F*¥and to let
G = {g ¢ G(F)|detg ¢ A};

so that G’ may no longer be the set of points on an algebraic group rational
over some field. 7" will be the intersection of G’ with T(F) and we set

D(T) = T(PNG(F)/G ~ F</A Nmy,»L*.

It is a group, and is either trivial or of order two.

We return for a moment to G. Suppose, as in [12], that « is a homomorphism
of X4(7T") into C* that is invariant under the Galois group. There are two
possibilities.

a) T issplitand the Galois group acts trivially. Then « is any homomorphism
of X4 (7T') into C*. On the other hand X, (7") has no elements of norm 0,
D(T) is trivial, and so « restricted to D(7") is also trivial.

b) 7" is not split. Then the action of the Galois group factors through
&(L/F) = {1, ¢} and ¢ acts as —1. Thus « is of order 2, every element is of
norm 0, and

DT) = Xu(1)/2X (1)

is of order 2. Since neither root «* lies in 2X4(7), «(a*) # —1 if and only if
K 1s not trivial.

The group H associated to the pair 7, k ([12]) is either G or 7', and we shall
only be interested in the case that it is 7. Yet in the following discussion it is
the restriction of x to ©(7") which plays a role, and this is not enough to deter-
mine H. What we do is introduce a character «” of ©(7”) and assume that if T
is not split then «’ is not trivial.

We fix Haar measures on G’ and 7" and let v be a regular element in 7”. If
h € G(F) we may transfer the measure from 7" to A~17”h. If f is a smooth func-
tion on G’ with compact support and § is the image of 2 in D(7”) we set

(v, f) = fhﬂlhm,f(gflh'lvhg)dg

We are going to introduce a function d(y) on the set of regular elements of 77
and will set

T (y, f) = @7 (v, f) = d(v) XK' (8) @ (v, f).
Let v; and v, be the eigenvalues of v. If T is split

d(y) = [(v1 — v2) 2/ vy 2

If d is not split the definition is more complicated, and requires several choices
to be made. «’ may now be regarded as the non-trivial character of 7/Nm LX,
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Let 7° be a fixed regular element in 7'(F) and let ¢ be a fixed non-trivial addi-
tive character of F. The factor

NL/F, ¥)

has been introduced in [13]. Moreover, an order on the eigenvalues v,°, v2° of
- . ’ ™
v° determines an order 7y, y» on those of y. Set

1/2

) = o8 oy (7)1 =

Different choices of ¢ and y° lead either to d(y) once again or to —d(vy). The
change of sign is not important.

LeEmmA 2.1. We may extend

y = @7 (v, f)
to a smooth function on 1" with compact support.

What we must do is define ®7' (v, f) when v is a scalar matrix in G’ and show
that the resultant function is smooth in the neighbourhood of such a . This
is not difficult but some care must be taken with the normalization of measures.
The coset space 7'\G’ is open in T(F)\G(F) and the given measure on 7'\G’
defines one on T(F)\G(F). We may write

" (y,f) = d(v) fm)/am S(g vg) (det g)dg.

It is enough to prove the lemma for one choice of the measure on T (F)\G (F).
For a given regular v, T'(F)\G (F) may be identified with the orbit O(y) of v
on G (F) under conjugacy. We may assume that the measure on T (F)\G (F) is

PRV —
if wis defined as in Lemma 6.1 of [9] and w, as on p. 77 of the same paper. Then

1
i’Yl‘Yz

7 _ . A vi— v ~
¢ (77f) - X(L/ﬁr ¢)K (7 0 ) |1/2 f()(‘y) €<h)f<h)|w7|

0
1 — Y2
if
e(g7lvg) = «(det g).

It is understood that

ANL/F, ¢)K'(7—71<1r}1—20) =1
if T is split.
If a« € F¥let

ol 1)

The form w,(, is still defined on O(y(a)).

https://doi.org/10.4153/CJM-1979-070-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-070-3

L-INDISTINGUISHABILITY FOR SL(2) 731

Definition 2.2. If T is split and « lies in the centre of 7" set

1

l(l| oy (1)

®T (a,f) = fh)dh.

If 77 is defined by a quadratic extension L, we may regard G(F) as the
group of invertible linear transformations of L. Then T(F) = LX, the elements
acting by multiplication. Choose a basis {1, 7} for L over F and let

2 = ur + v.

Let v = a + br lie in T(F) or LX. Its eigenvalues are then y; = a + br,
ve = a + b7, and

Y1 — Y2 = [)(T — 7).

Moreover, v corresponds to the matrix

(a by )
b a+ bu)’

If

; — ((11 bl)

£= C1 d]
then

—b NmL/I"(bl + dl‘v)
*
1 det g
h=¢ e bNmy z(a1 + c17)
det g *
If
_|a 1)2)

h = (62 dg

then

Y1 — Y2 T— 7 T— T
K'(—o——-——a) =« (__U‘_‘__ﬁ) K (c2) = « (“W*’“G) ' (—by).
Y1 — Y2 Y1 T Yo Y1 — Y2

However, an element on O(y(a)) has the form

)

_ * detg (a b)
1 . _ (a2 D2
g v(@)g=a ) o )
detg  *

If both b, and ¢, are not zero then their quotient is a square. Moreover, one
of them is always different from zero, so

e(h) = «'(c2) = «'(=b2)

is a well-defined function on O(y(«a)).
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Definition 2.3. 1f T is not split and «a lies in the centre of 7" set

o 1) = @/ () [ el
i =2/ lal Y onw

We have not mentioned it before but we identify G (F) with a set of linear
transformations of L by choosing a vector x in F? and identifying L with F?
by means of v — yx. The standard basis of F? then yields a basis of L. It is
understood in the above discussion that {1, 7} can be obtained from this basis
by an element of G'.

With these definitions the function ®”'(y, f) is certainly smooth when the
support of f does not meet the set of scalar matrices. To prove it in general we
have only to show that there exists a function ¢(a) on F*X so that ®7'(-, f)
extends to a smooth function on 7”7 which equals

C((l) N c'(h)f(h) tw‘r(a)'

O(y(a

on F*, Here e(h) is to be identically 1 if T is split.

For split T this is a well-known and basic fact about orbital integrals. If F is
R but 7' is not split it follows readily from Harish-Chandra’s study of orbital
integrals for real groups (cf. [4]). For non-archimedean fields and non-split T°
we carry out the necessary calculation.

Again we regard G (F) as the group of invertible linear transformations of L.
At a cost of no more than a change of sign for ®7'(-, f) we may suppose that
{1, 7} is a basis over O of the ring of integers O in L. Let G(O) be the
stabilizer of O, in G(F). Replacing f by

£ f f('gk)«' (det k)dk
G(Op)

if necessary, we may assume that
fk7igk) = & (detk)f(e) k€ G(Og).

The calculation now proceeds along the lines of the proof of Lemma 7.3.2 of

[6]. If w is a generator of the maximal ideal of O then every double coset in
T(F)\G(F)/G(0) contains a g so that

gOL = O}:' + ‘UmepT m g 0.

In other words it contains a representative

10) -
(o o) 20

It is clear that m is uniquely determined.
If m is unramified the index

5 = [T(F) ((1) a?’")g(OF) :FXG(OF)]
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is given by
60 = 1

b= g+ Dt "7
If L is ramified
Om = 2q™.

Here ¢ is the number of elements in the residue field. Moreover, apart from a
constant that does not depend on f or on v the function ®7' (v, f) is given by

(2.1) Z x'(bw"")lblémf((b,:w abj—w:u))

me0
if vy =a+ br.

If L is unramified then apart from a factor 2 the index 6, is |o™|. If |b] =
|w[Y the above sum is twice

fmz rmNK’(x)f( (Z ab?_/;i) )dx.

If v is close to a scalar @, and N therefore very large then

|02 /x| < |w|¥|v]
e ) == 0)

(2.2) ﬁz|<Jm|N ' (x)dx = 0

and
Since

the above integral equals

Jeest(i 2))ee

The desired assertion now follows from simple, standard integration formulae.
If L is unramified the sum (2.1) is equal to

o[y, )+ (+])

T et )

The second term is equal to

(1 + é) f|z|21mrl| K’(x)f((i abiz})-/lgfu))dx'
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We argue as before except that (2.2) is replaced by
fl e, K@) = 2 K a™)be"] = K G) /(A + g7
r|<|w— —

There is a supplement to the lemma which we will have to take account.
Suppose f is the restriction to G’ of the characteristic function of G(Or)
divided by its measure. It is clear that

" (v,f) =0
if L is ramified. If L is unramified and 7'(F) intersected with G (O), which we
denote T(Op), corresponds to the units of O, then ®7'(y, f) is 0 unless v is
a unit, but then, if |o| = |=|*, it is given by

(meas T(0p))~H (=1)"¢™" + (1 4 ¢71) 2= (=1)"""g""}

= (meas T(0))"
The map
fo@" (L, f) = 27 (f)

induces an adjoint map on distributions. We want to examine its effect on
characters. If T is split then every character 6’ of T’ defines a principal series
representation (") of G’ and it is easily seen that

0" — xx(6)

if xx(0r) is the character of 7 (6"). Before considering T that are not split we state
and prove some simple lemmas.

LemMMA 2.4. If & is an irreducible admissible representation of G(F) then the
restriction of @ to G’ is the direct sum of finitely many irreducible representations.

LemMa 2.5, If 7' is an irreducible admissible representation of G’ then there
extsts an irreducible admassible representation @ of G (F) which contains «'.

More general forms of the first lemma are known, but we are dealing with a
very simple sitvation. We may replace G’ by F*G’ and hence suppose that

G(F)/G' ~ Ty

with some integer %, for we have assumed that F is of characteristic 0. If the
obvious induction is applied, it is enough to prove the two lemmas with G (F)
replaced by G/, where G’ € G” € G(F) and

G"/G" ~17,.

7 is replaced by #”’. Suppose 7'’ acts on V. The restriction of 7'’ to G’ is admis-
sible. If it is irreducible the first lemma is valid for #’’. Otherwise V contains
a non-trivial invariant subspace W. If g € G"" — G’ then

V=W4 QW
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and
Wz (o)W

is invariant under G’’. Thus it must be 0 and
V=W (gW.

It is clear that G’ must act irreducibly on the two summands.
To prove the second lemma we start from 7’ and consider

o = Ind(G", G, 7).
If g € G — G and
h— 7' (g 1hg) heG

is not equivalent to 7’ then ¢ is irreducible and contains #’. Otherwise if =’
acts on W then

7' (g7 hg) =+A"'7'(h)A h€G.

We may assume that
4t = ()

and then extend 7’ to a representation 7'/ of G’ on W satisfying
7' (g) = A.

The map from W to the space of ¢ which takes w to

g— 7" (gw

yields 7/ as a component of ¢. Indeed if w is the non-trivial character of

G /G’ it is clear that
c~7" ® (7 ® w).

LEMMA 2.6. The restriction of & to G' contains no representation n’ with multi-
plicity greater than one.

This lemma is known for archimedean fields. We verify it only for non-
archimedean. We may certainly suppose that 7 is not one-dimensional, and
hence that it is infinite-dimensional and possesses a Whittaker model [6].

We also assume once again that G’ 2 FX. We start from a given infinite-
dimensional 7’ and consider

o = Ind(G(F), G, ).
By the Frobenius reciprocity law, 7’ is contained in a representation # with

the same multiplicity that 7 is contained in o.
Suppose ¢ is a given non-trivial additive character of F and thus of

N(F) = {((1) ’lc) x € F}.
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To say that # has a Whittaker model is to say that it is contained in
Ind(G(F), N(F), ¥).
However
N(F) € G S G(F)
and every coset of G’ in G (F) is represented by a matrix of the form
(a 0)
0 8/°
Since these matrices normalize N (F) we infer from Lemma 2.5 that for some
non-trivial character ¢/ of F the representation =’ is a constituent of
Ind(G', N(F), ¥).

The transitivity of induction and the uniqueness of the Whittaker model imply
that 7 is contained at most once in o.
We associate to 7’ the group G(7’) of all g € G(F) for which

h— 7’ (g he) heG

is equivalent to 7' and we associate to # the set X (#) of all characters w of

G(F)/G’ for which
T Q w™~T.
Any o in X (7) is trivial on squares and hence of order two.

COROLLARY 2.7. Suppose 7' is a component of Ind(G’, N(F), ¢'). Then 1t is
also a component of Ind(G’, N(F), ") if and only if Y.’ (x) = ¢’ (Bx) for some
B in {det glg € G(x')}.

If ¥4/ (x) = ¢'(Bx) and 7’ is realized on a space V of functions ¢ satisfying

@(((1) T)g) = ¢'(x)e(g)

- (1)

lies in G (") then it is also realized on

le'le’(g) = o(hgh™), ¢ € V}

and if

and

(2.3) w’((é ’f)g) = Y1 (x)¢'(2).

Conversely suppose 7’ is realized on 7 and on a space of functions satisfying
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(2.3). Then =’ and
m' g — 7 (h~'gh)
are both contained in
Ind(G’, N(F), ¢).

The uniqueness of the Whittaker model for G(F) implies that =’ ~ =" and
that b € G(=').

LEMMA 2.8, Suppose ' is a« component of #. The character w belongs to X ()
if and only if it 1s trivial on G(n"). Moreover, the number of components of the
restriction of  to G’ 1s | X (7)].

Let the restriction of # to G’ be a direct sum

™ ®...®n,

of irreducible representations with =" = #’. If # acts on ¥ and
Vr=7v,®...® 7V,

then Vi isinvariant under G(x’). If 7, is the representation of G(7") on V, then
7 = Ind(G(F), G(x'), m).

Consequently
r = [G(F) : G(x')]

and every character of G(F)/G(x") belongs to X (#). If w belongs to X (#) and
A intertwines # and # ® w then 4 : VV; —» V, and it acts as a scalar on V.
Therefore m; and 7, ® w are not merely equivalent but in fact equal. Hence
w is trivial on G(=').

Suppose # and ¢ are two irreducible representations of G (F) whose restric-
tions to G’ contain . We may also decompose the restriction of ¢ to G’ into
a direct sum

o ®...®

with 7 = [G(F) : G(z')] and with ¢," = «’. If 6 acts on W and ¢," on W, then
W, is invariant under G (=’) and if ¢, is the representation of G(7") on W, then

g1 = w; @ 7
where w; is a character of G\G(#’). Thus
¢ = Ind(G(F), G('), 1)

is equivalent w ® # where w is any extension of w; from G(x') to G(F). In
particular if # and w ® 7 have the same restriction to G’ then v = ww; with
wy trivial on 4 and ws Q 7 ~ 7.
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Suppose w is a character of /X of order two and L the corresponding quadratic
extension. One knows [6] that to each character 6 of L%, of absolute value one
or not, there is associated an irreducible admissible representation = (6) of
G (F). Moreover, by Lemma 5.16 of [11], if w lies in X (7) there is a character §
so that # = «(6). If G(w) is the kernel of w, regarded as a character of G(F),
then 7 restricted to G(w) is the direct sum of two irreducible representations.
Suppose T(F) is a Cartan subgroup corresponding to L, ¢ a non-trivial
character of F, and v" a regular element of 7' (F). According to Lemma 5.18 of
[11] we may label these two components as 7+ () and 7—(8) in such a way that

8(v) + 8(wyw ™)
Ay) '

(2.4) Xre) (V) = xa-0 () = ML/, ¢)w(%}; : zZ")

Here w lies in the normalizer of 7(F) but not in 7'(F) and
Aly) = [(v1 = 722"/ [yl 2

Let
B(y) = 0(wyw™) = 0(7).

Observe in particular that = (6,) 2% =(0) unless 6, = 6 or 6, = 8.
Suppose IIt(#) and II~(#) are the components of the restrictions of =+ ()
and 7 (0) to G’; then a simple calculation shows that the map adjoint to

=27 (f)

takes 6 to

(2.3)  DrarmXe — 2ren-Xe-

If X (#) has r elements then there must be » — 1 non-isomorphic L and to
cach L a 0 so that # = m(#). The span of the distributions (2.5) together with
> x=+ where the sum is taken over all components of the restriction of # to G’
is the same as the span of the x, .

We say that two irreducible admissible representations m’, 7' of G’ are
L-indistinguishable if they both occur in the restriction of an irreducible,
admissible representation of G(I7) to G’ or, in other words, if =’ is equivalent
to h — my' (g~1hg) for some g in G (F). This gives a partition of the equivalence
classes of irreducible admissible representations of G’ into finite sets. If there
is no L and 6 such that 7’ is a component of 7 (8) or if the quadratic character
corresponding to L is not trivial on G’, then the L-indistinguishable class of =’
consists of 7" alone. Otherwise it consists of two representations, or more pre-
cisely two equivalence classes, unless there are two different L;, L, as well as
61, 02 so that G’ is contained in the kernel of w; and of ws and 7’ is a component
of both #(6,) and = (62).

Indeed applying the Weyl integration to the formula (2.4) we see that

Do (127 meas (Z\T)) ™ [onr Ixer ) (¥) — xo-0)|2A2(y)dy
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is equal to 4 if
0(v) = 0(wyw™)

for all v in 77 and to 2 otherwise. Here ©(1") is the Weyl group of 17 in G’ and
the sum is over the conjugacy classes of elliptic Cartan subgroups. Since wyw™!
corresponds to the conjugation v — 7 we conclude from the orthogonality
relations for square-integrable representations that if 6(y) # 6(y) then the
L-indistinguishable class of ' consists of two elements if 6(y) = 6(y) on 1"
and of four if 6(y) = 0(y) on 1",

In the latter case

v —0(v/7)

is not trivial but of order two. If B C FXis
{INm g, my[0(v/7) = 1}

then [F*: Bl =4. If L, = L, Ly, Ly are the three quadratic extensions with
B € Nm L, then it is easily seen that there are characters 6, = 6, 6, 6; of L ¥
so that the three representations

pir = Ind(Wy, e, Wi, 04)
of the Weil group are equivalent after inflation. Thus

7!'(01) = 7!'(02) = 7l'(03).
Since [F*: B] = 4 and there are only four classes L-indistinguishable from
™(0),

7(0) ~w @ 7()
only if w is trivial on B. Thus there cannot exist a further field L, different from
L1, Ly, and Lzand a 0, so that w(6,) ~ 7 (04).

If 6(y) = 6(7) then w(6) lies in the principal series and the L-indistinguish-
able class of 7’ is easily seen to consist of two elements. In general, therefore,
an L-indistinguishable class consists of 1, 2, or 4 elements.

As we have described them the sets TI*(#) and II=(f) seem to depend on

four choices, that of an additive character, a Cartan subgroup 7" corresponding
to the field L, an isomorphism of 7" with

{x € LXINmx € A}

and a regular element . However, the last three choices can be dispensed
with, and it can be arranged that I (6) and II—(8) depend only on ¢. This
may not be significant. Given L we choose 7 to lie in L but not in F and as
above let

2 = ur 4+ 0.

Take the imbedding of LX in G(F) that assigns to « + br its matrix with
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respect to the basis {1, 7}, viz.

(a, by )
b a—+ bu

This fixes 77 and the isomorphism. We take v° to be the image of the conjugate
of 7. If we replace 7 by x 4+ yr we replace 1”7 by ¢='Tg¢g where det ¢ = vy and
(v1 — v2)/ (v1" — 2% by 37 '(yv1 — v2)/(v1® — v2%). Consequently the sets
I+ (#) and II—(A) remain the same. According to the proof of Lemma 5.18 of
[11], the elements of 11+ () are the constituents of the representation = (6, ¢)
of Theorem 4.6 of [6].

It follows from the linear independence of characters that IT*(8) and 11—(6)
are determined by the restriction §’ of § to 77; it is often convenient to write
I+ (0") and T~ (0"). We set

) = m+(6") U 1I—(¢).
If 6" and 65" are two characters of 77 and II1(6,’) and I1(6,’) are the same, then
9," and 6, extend to characters 6, and 8, of T(F) or LX with 7(8;) ~ w ® m(62).
Here w is a character of G'\G () or of A\F*. If o' (y) = w(Nm v) then we may
replace 0, by '8, and suppose 7 (8;) =~ 7 (#,). Then 6, = 8, or §; = 8,. Conse-
quently I1(8,") = II(6y) if and only if 8, = 6, or 8,' = 6,’.

We have described the properties of the transform

J—= 2" (f)
for functions with compact support. If (Z’ is a closed subgroup of the centre of
G’ the transform may also be defined for functions which transform according
to a character of ¢Z' and have support which is compact modulo (Z’. It has

similar properties, and they can be easily deduced from what we have already
done (cf. [11]).

3. Stably invariant distributions. Two possible ways to define the notion
of a stably invariant distribution on G’ present themselves. We could define a
distribution to be stably invariant if it can be approximated by finite linear
combinations of the distributions

f =2 seocm @y, f)
with v regular in 77 or, more naively, if it is invariant under conjugation by
elements of G (F). The two possibilities are likely to be equivalent, but we do
not trouble ourselves about this, and simply choose the second, because it is
easier to work with. In this paragraph we shall examine a number of distribu-
tions that arise in the trace formula to see how far they depart from stable
invariance.
Let A’ be the group of diagonal matrices in G’, let

v =1{(5 %)

x € F},
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and let 5 be a character of 4’. We do not assume that 5 has absolute value 1.
We introduce the representation
p(n) 1 ¢— plgn)

of G’ on the space of smooth functions ¢ on N(F)\G’ satisfying

172

@ a 0
3 0(g), a=(0 8

If f is a smooth function on G" with compact support set

olag) = nla)

e

p(fim) = f,,,,f(g)p(g’ n)dg.
LemMmA 3.1. The distribution
J — trace o(f, n)
is stably imvariant.
If ¢ € G(F) we set
(k) = f(g'hg).
We have to show that
trace p(“f, n) = trace p(f, 1),
but it is enough to do this when g is diagonal because G(F) = A (F)G'. Then
R,: ¢o— %
maps the space on which p(5) acts to itself. Since

p(afv 77)1'{(: = ]erzp(f? 77)

and
R, = R,

the lemma is clear.
If ' is non-archimedean
K =G NGO

where O is the ring of integers in . Otherwise let K’ be the group of orthog-
onal or unitary matrices in G'. Let 4’ be the group of diagonal matrices in G’.
Every element of G’ may be written as a product ¢ = nak with & € K’,

a 0 ,
=(0 B)EA

=3

and
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Set B(g) = /Bl and N(g) = B(g) + B(wg) with

o= 00).

Then N(g) = B(wn). If v lies in A’ and has distinct eigenvalues «, 3 set
Aly) = |a — B|/lapB[">

and introduce two distributions
Pon) = a0 | e e

Ai(v,f) = Alv) f4,\G,f(g‘lvg) In A(g)dg.

In both cases the integral may be replaced by one over 4 (F)\G(F) because
ANG' = A(I)\G(F). The first distribution is clearly stably invariant.

The second is not even invariant. However, it is invariant under G(Op).
Since A’\G' is equal to A (F)\G(I") we may regard the space of functions on
which p(n) acts as a space of functions on G(F). We extend n to a character
7 of A(F) and treat p(y) as the restriction of p(7). We may identify the space
of p(7) with a space of functions on G(0O), for the functions on which p(7)
acts are determined by their values on G(OF). The space of functions is the
same for 5 and for

Nyl = (a 0) — i) %

=N g 5

and this will allow us to introduce derivatives with respect to s. If ¢ ¢ G(F) let

kg = muiky and let N(g) be the operator on the space of p(7) given by multi-

plication by In 8(«;). We introduce dual measures on A" and on D°, its Pontrja-
gin dual. The kernel of p(f, 5) is

s

’

K, (ky, k) = f{ fwmf(kflankz))\(a)l/zdadn

provided the measure on K’ is so chosen that

fG,f(g)dg= fA, fW) L'f(ank)dadndk.

The Fourier transform of

f K, (k, k)dk
.

is easily seen to be F(y, f). The trace of p(f, n) N (g) is

f/K,,(k, k) In B(a1)dk.
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Taking the Fourier transform with respect to n we obtain

f f F(E ank)B (@) In B(ay)da'dndk’.
N Y
Lemma 3.2, The difference

A1(7v gglf) - AI(’va)

18 the sum of the Fourier transform of

trace p(f, 1) N (g)

aty and v where
o (/3 0)
"7\ o«
Xy
Y= 0 8-

The difference is equal to the sum of

Aty) |. )f(h_lvh){lnﬁ(hg)—1116(h)}dh

A\
and

Aly) o F( 'y {In B(whg) — In B(wh)}dh.

Replacing 7 by w='% in the second integral we see that it is enough to show
that the first integral is the value of the Fourier transform of trace p(f, n) NV (g)
aty. However, if & = nak then hg = nan,akyand In 8(hg) — Ing(h) = InB(ay).
Standard manipulations complete the proof.

There are still more distributions to be investigated. Let L(1 + s, 1) be
the local zeta-function of Fat 1 + s. If « lies in Z’ the centre of G’ and

B (1 1)
n"—aOl

. —1 —s
0((1, S!f) - L(l + S, 11«‘) f(;;n(F)\é(F)f(g nﬂg)ﬂ(g) dg'

set

We suppose that the measure on G, (F), the centralizer of #, is that associated
to the form

(de
z
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if a typical element of G, is
Z(1 x)
0 1
and that the measure on A (/) is that associated to

do dB
a 8

when the typical element is
(5 2)
0 8/°
Lemma 3.3. The distribution
d 1 d
is minus the Fourier transform of

trace p(f, 1) N (g)
at a divided by L(1, 1x).

When we take the derivative and then the difference, the term involving the
derivative of the L-function drops out and we are left with

Lﬁ_—lﬂ S ) {In B(hg) — In B(h)}dh

Gn(F)\G(F)

or

Y B an ) 1 dh
L(1, 1) fénm\é(mf( angh) In )

if a; is defined as above. However, the integral may be written

f~ . f [ at k) In Bar) N (0)dtdE.
Z(F)\A(F)

G(op

Changing variables we see that this equals

f f f(k-lfmk) In B(a1)dndk
N(F) G(Op)

which is, because of the normalization of measures, also

f f F(E  ank) In B(ar)dndk.
N(F) K’

The next distributions to be considered are defined by intertwining operators.
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We associate to 5 the character

el (5 2)

of FX and consider the normalized intertwining operators R(n) on the space
of p(n) or p(n)

Re@) = 0w 0 7 | otwngian

Here ¢ is some non-trivial additive character of F and €(0, u, ) is the usual
factor. The measure on N (F) is that associated to the form dx and the character
¢. The integrals converge when |u(®)| < 1 and the intertwining operator can
be defined by analytic continuation for |u(®)| = 1. Here & is a uniformizing
parameter for F. When |u(@)| = 1 the operator R(n) is invertible.

LeEmMA 3.4. The difference
trace R (n)R'(n)p(*"'f, n) — trace R (n)R'(n)p(f, n)

s equal to

trace p(f, n)N(g) + trace p(f, 1) N(g).

The prime denotes differentiation with respect to the parameter s. It will be
enough to show that

p(g, m)R (n)p(g, 1)~ — R'(n) = R(n)N(g) + N(gR(n).
Here 7, is defined by

ol 5) =l )

and 5, has been defined in a similar fashion. Because we can invoke the principle
of permanence of functional relations, it suffices to verify the desired relation
when |p(@)] < 1 and the intertwining operator is defined by the integral. In
the difference the derivative of the L-functions disappear and it is therefore
adequate to verify the analogous relation for the unnormalized intertwining
operators

M)e(g) = fN(F)w(wng)dn.
Then
M (n)e(k) = pr) o (wnk)dn

where in the integrand it is understood that we start from a fixed function on
G(Or) and then extend it to a function in the space of p(y) or p(7). The
extended function will then depend on the parameter s locally, and the prime
indicates that the derivative with respect to s has been taken.
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If wnk = ni ik, the integrand is equal to In 8(a1) e (wnk). If kg = nsasks and
wnky = ni'a,’k, then
p(g m) M ()p(g™! Mo (k) = [ 71(a)B"2(az) In B(ar )¢ (wnkeg ™ )dn.
Since
kog™! = wy 'y lk
we may change variables in the integrand, replacing #n Dy «s 'nn.s to obtain
fln B (i) (wnk)dn
where a," is now defined by
WAy Mnatoks = ni'a’ky.
But the left side is wa,™'wlwnkg. If kig = nsuzk; then

' = way, \wlaqas

and

In 8(a,’) = In B(e2) + In B(a1) + In B(ay).
Since

MmN (g)e(k) = fmm In B(as)e (wnk)dn
and

N(g)ﬁl(n)sO(k):f v)lnﬂ((tz)so(wnk)dn

N

the lemma follows.
Suppose x is a given character of (Z’, a closed subgroup of the centre of G'.

If f is a function which is smooth and compactly supported modulo (Z’ and
satisfies

flag) = x(a)f(g)  56€ o2

and if 5 is a character of A’ whose restriction to ¢Z’ is x~! then we may define
p(f, m) to be

foz/wf(g)p(g, n)dg.

We can also define distributions for the class of these functions and carry out
a completely analogous discussion.

There are two more lemmas about intertwining operators that we will need
for our treatment of the trace formula. If 4 = 5, then R(y) intertwines the
representation p(n) with itself.

LeMMA 3.5. If 1 can be extended to a character 7 of A (F) which satisfies 7, = 7,
then R(n) is the identity.
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This is basically the first part of Lemma 5.7 of [11]. If n = 5, but 5 does not
extend to an 7 with 7 = 7, then the character p of X associated to by

v =5 )

is quadratic but not trivial and hence defines a quadratic extension L. We
associate to L a Cartan subgroup T of G with T'(F') ~ L*. Its intersection with
G’ is then a Cartan subgroup of G’ and

7'~ {x € LXNmux € 4}.

Define a character 8 of 77 by

(0 )

The elements of I1(f) are the irreducible constituents of p(n). Since we have
chosen the additive character ¢ we can speak of IIT(6) and II—(6).

LEmMmA 3.6. The trace

trace R(n)p(f, 1)

is equal to

Zweﬂﬂe)xﬁ(f) - Zwerr<e>x7r(f)~

Observe that the previous lemma could be formulated in the same way if
we took 77 to be the split Cartan subgroup, II7(8) to be empty, and II*(6) to
be the constituents of p(n). Lemma 3.6 will be proved in much the same way
as Lemma 5.8 of [11]. Notice how important the choice of normalization is!
According to the discussion of [11], we replace R(y) by u(a)R () if we replace
Y (x) by ¢(ax). If u(¢) = —1 this is compensated by the interchange of II*(f)
and II-(9).

It is certainly enough to prove the lemma when

G' = Gu) = {glu(detg) = 1}.
Then T+ (8) consists of a single element 7+ and I~(#) of = and

p(7) =7t @ 7.
Suppose first that F is non-archimedean. If we take the Kirillov model of p()
then its space 17 is the sum of the space V* of functions in it with support on
Nm L* and the space '~ of functions in it with support in FX — Nm LX,
T actson V*tand #~on I/, Since R(n) commutes with G’ it is multiplication

by a function ¢ + bu(e). Here ¢ and b are constants and « is a variable in FX.
If 7 is an extension of 4 to A (F) then 7 has the form

(5 9)) = vesrne)
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and R(n) is equal to R(n). We are going to apply formula (1) of § 5 of [11],
taking account of the differences in notation. If

v =l (5 1))

is a function in 17 then

V(@) ~ar(@)]al?{e(1) + pl@)R0)e (1)}
¢ is a constant, namely

,U'(_l) € (Ov My ‘p)

As we observed the effect of applying R (n) is to multiply by « + bu(a). On the
other hand the effect on the asymptotic expression above is to change it to

v (@)]al{R(n)e(1) + pl@)R*(n)e(1)}.
Lemma 5.8 of [11] implies that R?(n) is the identity. We conclude that

ap(1) + bR(n)e(1) = R(n)e(1)
bo(1) + aR(n)e(1) = ¢(1)

and hence that
al + (b — 1)R(n) = 0.

The operator R(n) cannot be a scalar because 7; # 1. We conclude that « =
b — 1 = 0. The lemma follows.

If Fis archimedean then Fis R; and the lemma is proved by evaluating the
appropriate definite integrals. This is straightforward. Since it is possible, at
the cost of a little additional effort, to manage without the lemma for archi-
medean fields, and indeed to deduce it from the global considerations, we omit
the calculations.

We should remark at some point and we do it now that if 8 is unramified and
O 1s the largest ideal in which ¢ is trivial then there is exactly one element of
I1(#) that contains the trivial representation of K’ and it lies in II7(#). This can
be seen by examining the constructions of [6].

4. Quaternion algebras. We now let G(F) be the multiplicative group DX
of a quaternion algebra D over F and, choosing A as before with 4 € Nm DX,
define G’ to be

{g € G(F)|Nmyg e 4}.

A Cartan subgroup 7" of G’ is again of the form G’ N T'(F) where T is a Cartan
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subgroup of G over F. 1" or T correspond to a quadratic extension L of F. Set
C(1") = FX/A Nm LX
D(T") = Nm D*X/A Nm LX,

If Fisreal ©(7") is a proper subset of G(71").
If v in 77 is regular and & in D(7”) is represented by % in G (F) we set

o' (v, ¢) = f f@ W vhg)dg
AL AYeL

as before and define
T (y, f) = d (v, K') 2o K (8) P (y, f).

k" is a character of G(7”). If «’ is not trivial we define
d(y) = d(v,«")

as in § 2 and set
T (v, f) = (v, f).

Let Z’ be the centre of G’ and extend ®7'(f) to all of 77 by the equation
" (a,f) =0  ac Z.

Lemma 4.1. The function ®*'(f) is smooth.

Since Z'\G’ is compact the function v — ®8(y, f) is given by

S S f P
meas (Z'\1") Z,\G,J(g h'ohg)dg

and is defined and smooth on all of 77. If Fis R then d(v) is also smooth on all
of T"and 0 on Z’. If F is non-archimedean then ©(7”) = ¢(7”) and

2o € (8) (v, f)

is 0 near Z'.
The dual map on distributions takes the character 8’ of 77 to a function 6
which satisfies

O(h~'gh) = «'(5)0(2),

if # ¢ G(F) represents 6, and which is supported on the union of the Cartan
subgroups stably conjugate to 7"'. Let w be the quadratic character of FX
associated to L, so that w(Nm k) = «’(8) and let the standard involution in D
be denoted by a bar. If win G(F) satisfies w—yw = y for v in 7”7 then »(Nm w)
= —w(—1). Formal manipulations then establish that on 7" the function 6
is given by

_ . yi— e | 6 (v) — 6 (@ yw)
e('Y) = )\(L/}'v ¢)w (710 — 720) A('y)
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In particular O is identically 0if 6’ (y) = 6'(¥), and when F is non-archimedean
is 0 near Z'.

If 6 is an extension of 8’ to T (F) and = (f) the associated irreducible admis-
sible representation of G (F) let I1(6’) be components of the restriction of = (f)
to G'. If 6(y) = §(3) then =(f) does not exist, but it does otherwise, and if
F = R the set T1(¢") consists of a single element . [t is easily seen that

Xr = £ 6.

As in § 2 we say that two irreducible admissible representations m, m» of
G’ are L-indistinguishable if o = m,? with g € G(F). It is clear that =, and
are L-indistinguishable if and only if there is a representation # of G (/') whose
restriction to G’ contains both 7; and 7. In general

|G~ @i cmy

where ¢ = ¢(7) = c¢(w;) is a positive integer and the sum is over an L-indistin-
guishable class. The number ¢ may not be 1. In order to discover something
about it we compare representations of G (/) with representations of GL(2, I).
We now denote GL(2) by H and change the notation of § 2 accordingly. Thus

H = {h € GL(2, F)| deth € A}.
Let 7 be the representation of H (F) associated to # and let
HH = @7
With no loss of generality we may assume that the central character of #
has absolute value 1. The character x; of 7 on the elliptic elements is the nega-

tive of xz, and x; restricted to G’ and x; restricted to H' are stable. The ortho-
gonality relations on H’ state that

Ly R o
2 & meas Z\U" J ;o |x:(V)["A™(y)dy = .

The sum is over a set of representations for the stable conjugacy classes of
elliptic Cartan subgroups. If F is non-archimedean the orthogonality relations
on (G’ state that

1 D] f 2,2 2

. T T IN AT 7 A d = rc .

2 4 meas ZI\I/ - lX (’Y)l (’Y) Y 7
The sum is over a set of representatives for the stable conjugacy classes of
Cartan subgroups. If F is non-archimedean and 77 and U’ are Cartan sub-
groups corresponding to the same quadratic extension then

(D)) = [DU)].

If FisR then [D(7)]isalways 1 while [D(U’)]is1or 2, but thens = [D(U’)].
The conclusion is that 7¢*> = s when F is non-archimedean and that r¢? = 1
when Fis R. Thus when Fis R the integers 7 and ¢ are both 1. When F is non-
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archimedean sis 1, 2, or 4. If sis 1 or 2 thenr = sand ¢ = 1. If s is 4 either
r=4and ¢ = 1orr =1and ¢ = 2. We shall see eventually that only the
latter possibility occurs, but we will need the help of the trace formula.

In order to apply the trace formula we will need to compare distributions on
G’ and on H'. We set

BT (y, ) = Do (1, f).

If we agreed that ®°(y, f) = 0 for 6 in €(7”) but not in D(7”) we could also
write the sum on the right as

Z@‘(T’) ‘I’a(%f)~

It is a stably invariant distribution and does not depend on the choice of 7"
within a stable conjugacy class. If we replace 77 by A='7T"h and vy by h~'vh
with % in G(F) we obtain the same distribution. 7" determines a stable con-

jugacy class {U’} of H' and an isomorphism ¢ : 77 = U’, determined up to
stable conjugation. If ¢ is a smooth function on H’ with compact support we
may also introduce

(S, 8) = 2own P, ).
It follows easily from Lemma 4.1 of [11] that if f is given there is a ¢ satisfying
PN, 9) =0
if U’ is split and
BN, 6) = BT, )

if 77 and u’ are corresponding tori and { = ¥ (y). The adjoint map is only
defined on stably invariant distributions.

Suppose T is an L-indistinguishable class for H'. If the elements of T belong
to the principal series then

ZTET Xr 0

However, if the elements of T belong to the discrete series and II is the cor-
responding class for G’ then

ZTET Xr—> — ZTE” C(”)X‘H'
If 7 is one-dimensional and = is the corresponding one-dimensional representa-
tion of G’ then x, — Xx.
5. The trace formula. F will now be a global field. Let 4 be a closed sub-
group of I = GL(1, Az) of the form
A =1,4,.

The product is over all places of Fand 4, is a closed subgroup of GL(1, F,).
We suppose in addition that F*4 is closed. If B is an open subgroup of 4 and
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Ap = A N FXwe also demand that [4 : A%4 zB] < ©0. Set
G' =g ¢ G(Ap)| detgc A4}.

Let Z’ be a closed subgroup of the centre Z’ of G’, with Z'F* closed,
oZ' = 10,42,

and
oZ'Z\Z', Zy =2 M FX

compact. Let x be a character of (Z’ trivial on ¢Z " = (Z' M F*and of absolute
value one.

We want to apply the trace formula to the space of measurable functions
¢ on G/\G', with G/ = G(F) N G’, which satisfy

(i) ¢(g) = x '(2)e(g) 2 € o2
(i) j:)Z'G’F'\G’ lo(e)|'dg < 0.

This is not the exact context in which a detailed proof has been published,
but that may be in the nature of things, for it is a principle that Selberg dis-
covered, more than a formula, and principles when they are effective are also
plastic, and do not admit a definitive form. To carry out the verification of the
formula with the minor modifications now required would not however be very
profitable, for it would amount to little more than a transcription of [6]. We
content ourselves with stating the result.

The space of functions ¢ is a direct sum of two subspaces

LI (GH\G x) ® L"(G#\G', x)

both invariant under the action of G’. The representation of G’ on the first
subspace is a continuous direct integral of irreducible representations and is
constructed by the Eisenstein series, while L' (G»'\G’, x) is a direct sum of
irreducible representations. Let » be the representation of G’ on it. Suppose

fig— pr(g”)

is a function on G’. We suppose that
flzg) = x()f(g)  z€ 2

and that its support is compact modulo (Z’. Moreover, each f, is to be smooth
and for almost all v, f, is to be supported on (Z,” (G’ M G(O,)) and the relation

meas (Z,'\oZ,/ (G' N\ G(0r,))f(zk) = x(2),2 € oZ/, k € G N\ G(Op,)

is to be satisfied. We define

r(f) = foz,\a,f(g)r(g)dg-
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The operator 7(f) is of trace class and the trace formula provides a complicated
but useful expression for it.

This expression is usually presented as the sum of several parts (1], [3], [6],
[11]. The authors of [6] do not seem to have been able to keep a firm grip
on the constants that arose in their discussion of the trace formula. We timor-
ously suggest the following corrections: p. 516, line 2*, replace ¢ by ¢/4; p. 531,
divide the second, third, and fourth displayed expressions by 2; p. 540, lines
7,9, and 11, replace ¢;2* and ¢;2* by ¢;* and ¢,". The last change has then to be
made in the ensuing calculations as well. However, we are going to state the
formula in a slightly different situation, and will have the opportunity to make
new errors all of our own.) The first part is

(B.1) D ez F(0)-

The second is a sum over the elliptic conjugacy classes {v} in ((Z" M FX)\G '
of

(5.2)  8(y)" meas (.Z'Gx' (M\G' (1)) fwm\clf(glvg)dg‘

Here G’ (y) and G (y) are the centralizers of v in G’ and G and §(y) is the
index of ¢Z'\oZ'G ' (v) in the centralizer of v in (Z'\,Z'G ;. It is 1 or 2.
As before, let 4" be the group of diagonal matrices in G’ and let

K,/ =G NGOg,).

It is understood that G(O,) is to be the group of orthogonal or unitary
matrices when v is real or complex. Let

=16y 9 catm-

The group 4°\4’ is isomorphic to R by means of

(a 0)—>x=ln
0 B 6

We choose a measure on (Z’'\A4’ composed of the measure dx on 4°\4’ and a
measure on ¢Z'\A4° for which

meas ¢Z'4'\A° = 1.

a

Here 4" is A" M A (F). We may also suppose that this measure is given as a
product measure. The next term of the trace formula is then

. A 1 Al('nyv) F('vaw)
G3) -5 2 Tamilran

with oZ " = (Z' M FX. Here \ is the residue of the global L-function L(s, 15)
at s = 1. The factor X\ and the denominators appear because of the relation
between local and global Tamagawa measures.
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On

1 x . l
V@) = {(o 1) v €Ay

we choose a product measure for which
meas (NV(F)\N(A)) = 1.

The next part of the trace formula appears at first in a garb that conceals
the features of concern to us. It is the constant term of the Laurent expansion of

(5.4) > >, meas (W Z'Z/\Z") Z/MA)\G,f(g_la(l x)g))\(g)_sdg

A€ Zp'\Zp' x€F %24 p\FX 01

ats = 0. Here 4 = A4 M FXand if

T

then
B(g) = la/Bl.

Suppose D° is the set of all characters of 4'\4’ which equal x=! in (Z’.
Another contribution to the trace formula is the sum over all » in D° for which
n = n of

(5.5)  —% trace (M(n)p(f,n)).

Recall that

A5 5D =l 2)

There are two more contributions. D? is the union of connected components,
the component containing 7° consisting of those n of the form

0
nia = (g 6)—*170(0) g

with s purely imaginary. The dual measure on D° is 1/27 |ds|. If

R ()

then u is a character of the idéle class group. We set

m(n) = L(1, p=")/L(1, u).

One contribution is

S

(5.6) 4—17; fDom(n) trace p(f, n)|ds|.
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Another is

> 4o ) trace R GOR (e m}{l;l trace p(fu, nu~>}|d5|~

The representations p( -, 1,) have been defined in the third paragraph.
The distribution

f — trace r(f)

will not be stable. Our purpose is to write it as the sum of a stable term, and a
term which can be analyzed by means of the stabilized trace formula for groups
of lower dimension and the principle of functoriality. The group G = SL(2)
is very special, and for it the lower dimensional groups are just Cartan sub-
groups, but one of our purposes is to illuminate the definitions of [12], and so
we begin with them in mind, with G’ = G(A), and with (Z" = 1.

Two elements of G(FF) will be called stably conjugate* if they are conjugate
in G(F) or, what is the same, in G (F). We take the expression (5.2) and sum
over the conjugacy classes within the stable conjugacy class of y. If we intro-
duce the global form of the notation of the second paragraph, this sum may be
written

(5.7)  meas (I'(F\T(A)) Zocr/m (v, f)

with 7" = G(v). With the present assumptions é(y) is 1.
If D(T\A) is the direct sum of the D(7'/F,) we have a map

D(T/F)y - D(T/A).

There are a number of simplifying factors in the present circumstances. First
of all

D(T/F) = G(T/F) = HY(F, T)
and
D(T/A) = G(T/A) = @ H'(F,, T).

Moreover
HY(F, T)— ® H'(F,, T)

is injective. If L is the quadratic extension defined by 7" and C the idéle class
group of L then

(6.8) H'(F,T)— @ H'(F, 1) — H(O(L/F), Xa(T) ® Cy)
is exact. Since T is not split the Tate-Nakayama theory shows that the last
group is

H Y (O(L/F), X (1)) = Xu(D)/{ XN = N\ € Xo(T), 0 € O(L/F)}

*Prudence must be exercised when transferring this notion to other groups.
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There are analogues of these statements for general groups. A special feature
of G = SL(2) is that the second arrow of (5.8) is surjective. Thus the dual of
G(T/F)\G(T/A) isisomorphic to the set of & (L/F)-invariant homomorphisms
k of X4 (71") into CX.

The sum (5.7) is equal to

meas (T(F)\T(AN[C(T/A) : G(T/F)]7' 20 Dscrm «6) @2 (v, f).

According to the definitions of {12], a group H is associated to the pair 1, «.
If « is trivial this group is just the quasi-split form of G, namely G itself, and

- Z@(T/A) i (y, f)

is a stable distribution.
If « is the non-trivial homomorphism, and there is only one of them, the
group H is 1. If w is a divisor of » in L then by the Tate-Nakayama theory

HY (Fy, 1) = (N € Xu(D)] Xy sry oh = 0} /10N — M) € Xy (1),
o € O(L,/F,)}
and the map

H'(Fo, T) = H(G(L/F), Xy (T) ® Cr)

is simply N — \. In particular « determines a homomorphism «, of ©(1"/F,)
into GX. It is trivial if » splits and non-trivial otherwise. Choose v° in T (F)
and a non-trivial character of "\ A. Then

[T ML/ Fo )5 (“ - W) [ = 22)’L"
v v v Yo/l ’Yl” _ 72() |7172|11-
and
D s k(8) D0 (y, f) = IL,®T/x (v, f,)
and

meas (Z'T(F)\T(A))11, @"'*(y, f,)

is one term of the trace formula for the abelian pair Z’7°(F), 7°(A) and the
function

y = 2" (y, fi) = @7*(y, f)

on T'(A).

For each isomorphism class of quadratic extension we choose a torus 7,
in other words we choose a set of representatives for the stable conjugacy classes
of non-split tori. We may choose the representatives v of the stable conjugacy
classes arising from (5.2) to lie in one of these 7". The stable conjugacy class
determines 7', but within 7" there are two possible representatives for the
stable conjugacy classes, and so we must divide by 2 if we want to sum over all
regular elements in 7°(F). Since the index [E(T/A) : G(1'/F)] is also 2, the
total unstable contribution from (5.2) is 1 times the sum over 7" of

(5.9)  meas (T (F\T(A)) X @7/« (y, f).
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The prime indicates that we only sum over the regular elements y of 7°(F). We
almost have what we were seeking. We must now hope that when we remove
the stable part from the remaining terms of the trace formula we will be left
with the summands missing from (5.9), namely

1> rmeas (T(I\T(A)) 2vezcm ®7/%(v, f).

Here Z is the centre of G and Z(F) consists of two elements.

We have preferred to treat not merely the group G(A) but the groups G’ as
well, and we carry out the complete discussion for them. We examine the terms
(5.2) once again. The group G (v) is the intersection T’ of G’ with a torus
Tin G. If T is assooiated to the quadratic extension L we define

@(T//F):FX/AFNmL/FLX Ap = AN FX
and

C(1T"/A) = I5/A Nmy,r 1,

where Ir and [, are the idéles of F and L. It is also useful to introduce the
subsets D(T/F) and D(T/A) whose elements can be realized as norms from G,
but only for groups defined by quaternion algebras is this necessary. The
natural map from G(77/F) to G(1”/A) has a cokernel of order 1 or 2. Let u be
the order of its kernel.

If the cokernel is trivial and we sum over the stable conjugacy classes within
the conjugacy class of ¥ we obtain

s (v)~  meas (Z'Gr' (v)\G' () 2semcrin) (v, f),

which is a stable distribution. If it is not trivial the contribution of the stable

conjugacy class of v to the trace formula is } the sum of this expression and

s (v)"t meas (oZ'Gr’ (Y\G' (7)) 2o a) K (8) 22 (v, f).

Here «’ is the non-trivial character of Im (77/A)/G(1”/F). The stable conjugacy
class of v has two representatives within a given 77 modulo Z’ if and only if
8(y) = 1. Thus if we choose a set of representatives 7" for the stable conjugacy
classes of Cartan subgroups with

[E(T"/A) : Im C(1"/F)] = 2

the total labile contribution to the trace formula of the sum over the terms
(5.2) is

(5.10) %> umeas (Z'T/\I") X 7 (v, ).

The inner sum is over the regular elements of 77/ modulo ¢Z'. For the 7’
occurring in this sum

Ip# FXA Nm ;.
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Since A = 114, this is possible only if 4 € Nm [, and then the formula given
below shows that u, which seems to depend on 7, is in fact 1. But we prefer
not to make use of this until it is necessary, and perhaps not at all.

The missing terms in (5.10) will be extracted from (5.4). It is convenient to
perform a sequence of modifications of (5.4) and (5.10) before comparing
them. We write

meas (¢Z'17'\1") = meas (,Z'Z'\Z") meas (Z'T/\1").
Since meas ((Z'Z'\Z") is common to (5.4) and (5.10) it will be ignored.
Suppose B = AIz* and let

G" = {g|detg € BY.

The various objects associated to G will be denoted in the same way as those
associated to G’, except that the prime will be doubled. Since Z""\G"" = Z'\G’
we may take the measures on the two spaces to be the same and replace the
space of integration in (5.4) by Z"”" N(A)\G”. The sum over x appearing there
may be replaced by [By : 4 »F>**] times a sum over B\ F'X.

We want to replace G’ by G’ and 77 by 17" in (5.10). Since 77\G"" = 1"\G’
and Z"\T"" = Z'\T" this is certainly possible. However

meas (Z"1/'\T") = [T " : T F*<*] meas (Z''T/'\T")
and if 77 corresponds to the quadratic extension L

w=wu(l")=[F*MANmI,: Ay Nm LX]

while

w(T"”) = [FXMN\BNm I, : By Nm LX].
However

ANmI, = BNmlI;
so that

w(IH T Ty F*] = u(I")[Br Nm LX: 4 Nm LX]
X [Br YNm LX: (4 M Nm LX) >,

The middle factor equals

[Br:Br M\ Ay Nm LX].
Moreover, the map

Br N\ NmLX— BpM\ Ay Nm LX/A g
is surjective with kernel

ApF M Nm LX = (4x N Nm LX) <,

Thus the product of the last two factors is (B : 4 nF*<*]. If we disregard this
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integer, which is common to (5.4) and (5.10), we may replace G’ by G”'. In
order not to burden the notation we now assume that 4 contains [ z* and that
G is G".

The symbols G’ and B are now free again and we set B = 4 F*X and define
G" in terms of B as before. The quotient Z'\G’ is open in Z""\G"’ and we choose
the invariant measure on Z’’\G"’ so that it restricts to that on Z’\G'. We may
drop the sum over x from (5.4) provided we now integrate over Z"" N (A)\G".
The space T'\G’ is the same as 7”/\7"'G’, which is open in 77\G", and we
choose the measures to be compatible. Then D(77'/F) = {1} and

ZSD(T’/F) ‘I)'S(’ny)

is equal to

f flg vg)dg.
. T’/\GII

We now have no choice for the measure on Z”/\ 7. 1t must be compatible with
that on the open subset Z'\1".
Since

TS ONT T =AY O A A =1

we have

meas (Z"Ty'\T") = [T" : T#"1T"] meas (Z'T\1").
Moreover

(7" Te"T" ] = |[AFXNNm [, : (AFXMN Nm LX) (4 M Nm )]
which may be simplified to

[AFXMN\Nm Iz : Nm LX(A4 M Nm I.)].
We claim that this index equals

w(T) =[F*MANmI;: A4 Nm LX].

Suppose u in Nm I, equals xy with x € 4, v € X, Then y lies in
FX*MANmI; If u=ovw with v € NmL* w€ AN NmI, then y =
(x~'w)v and x~'w = v~1y. Clearly x~'w lies in 4 . Conversely, if y € FX M
A Nm 7, then we may find # € Nm I, x € 4 with u = xy. If y = zv with
z2€ Ap, v € Nm LX then u = v(xz) and v € NmLX, xz € 4 M\ Nm I,. The
conclusion is that we may suppose that 4 contains both F¥ and Iz

The quotient G'\G(4) is now compact and abelian. We take its measure to
be one and write the integral of (5.4) as a sum over its characters

G113 k(det g)f(g‘lfl ((1) i)g)ﬁ(g)_sdg

TpN(A)\G(A)
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It should perhaps be stressed that for a given f only finitely many terms of this
sum are not 0. By global class field theory each non-trivial k¥ occurring in this
sum determines a quadratic extension of F and the quadratic extensions so
obtained are precisely those for which

[G(T'/A) : Im G(1"/F)] = 2

when 7" is the corresponding Cartan subgroup of G'. Since Z ;' is just the set of
singular elements in 7'’ and since there is in (5.4) a sum over Zz'\Z ;" we
can hope that the term of (5.11) corresponding to « is just the missing term in
(5.10) corresponding to « and the 7" defined by . The expression

3 meas (Z'T#/\T") 2o ax () (v, f) = § meas (Z'T/\1")

X @7 (v, f)
may be written

3meas (IzT(F)\T(A)) fmn 4)f(g_l"yg)x(detg)dg

a(

if we so normalize measures that
meas (/"\T(A)) = 1.

We take « to be non-trivial and write the corresponding integral in (5.11)
as a product

/
11 _
5.12 llf ,(d ,,‘1( )) *dg.
(5.12) J U I (det g)ful g a o 1)¢)8@)"de

Suppose k, is unramified, and f, is supported on (Z,’ K,” and satisfies
f(zk) = x(2)f (k).

Then the local integral is equal to
meas (F,XN(F,) N G(0p,)\G(Or,)f (@) Do k(") w1+

and the sum is equal to L(1 + s, ,). Since the global L-function
LA+ s,k,) = L1 + s, )

is regular at s = 0 the constant term of the Laurent expansion of (5.12) at
s=0is

L 1 (11
1) 55 it
( K) H 1‘(1v Kv) FvXIV(Fv)\(.;'(Fv) K (det g)f g a O 1 g dg

v

We have fixed the measure on N(A) but not on 7(A) or on I;\T(A).
Since the results are independent of this choice we may pick any measure that
is convenient for the completion of the computations. If Z is the centre of G
then I\T(A) is Z\T(A) and we take the unnormalized Tamagawa measure
((9], § 6). The measure on N(A) may also be taken to be the unnormalized
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Tamagawa measure for it has the desired property that
meas (N(F)\N(A)) = 1.

The lattice of characters of Z\T is Z with the action of &(L/F) = {1, o}
given by oz = —z. With this action

[HY(G(L/F),Z)] = 2.
Moreover, the kernel of
HY(F, Z\T) - n,H' (F,, Z\T)

is trivial. Thus by a general theorem of Ono on the Tamagawa number of a
torus

Lmeas (I ,T(F\T(A)) = L1, «).
Finally

f_ . Jeve)xdet g)dg = [ ] (g vg) ko (det g)dg.
T(A)\G(A) 2

T(F)\G(Fy)

We have seen in § 2 that if « € Z, then

lim o (¢ 'vg)x,(det g)dg

voa T(Fp)\G(Fr

is equal to a constant ¢, times

e +f;
WL ) ooz ky(det g)f,\ g a 0 1)¢ dg.

All we need do is show that ¢, is 1 for almost all » and that
MO, = 1.

We define the local Tamagawa measure on N by means of the form dx if

=5 3)

and on Z\T as the quotient of

_ 1 dndr

710—720 Y1 Ve
by

dz

—

However, we might as well use a more natural Tamagawa measure locally,
that obtained by suppressing the factor L(1, \,) from the definition in [9]. We
must then suppress the factor L(1, «,) in the definition of ¢, as well. We may
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assume that the form n on

e o)l
4= {(0 8/ f
appearing in Lemma 6.1 of [9] is

do dps
a @

and that the measure on Z is given by the form dz/z. Then Lemma 2.1 together
with Definitions 2.2 and 2.3 and the discussion following the aforementioned
Lemma 6.1 show that

o = 1n? = vy

We have still to consider the contribution to (5.4) from the trivial character
as well as the remaining terms of the trace formula, but we first examine the
contribution

Y2 (1) meas (Z'T#/\T") L 0" (v, f)

more closely. Applying the trace formula to the pairs 7', 77 we see that this
equals

Y22 w17 22606, 27 ()

where 6 runs through all characters of 7'\ 7" which equal xx~' on (Z'. Appeal-
ing to the discussion of § 2 we transform this to

I3 (1) D20, (D et o0 X (f2) = Dmveni—com Xrw (f2))-

It should perhaps be stressed that for almost all v the trace x.,(f,) is 0 when
m, € II=(8,). Moreover, when v splits II=(8,) is empty and II*(8,) consists of
the components of the principal series defined by 6,.

We distinguish three types of 6. Let vy — ¥ be the automorphism of 7" or
of T'(A) corresponding to conjugation on the corresponding quadratic field.
We first introduce a provisional classification:

a;) On 77
0(y/7) # 1.
01) On 17
0(y/7) =1
but 6 cannot be extended to a character § of T(F)\T(A) satisfying
0(y) = 6(7).

1) 6 can be extended to a character of T(F)\T(A) satisfying this identity.
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Suppose there are two elliptic Cartan subgroups 74/, 7'y’ which are not stably
conjugate and two characters 6' and 62 for which
oY) = {@ m|m, € W(H,") = 1I+(0,") U 11,7}

are the same. It is understood that in each product =, contains the trivial
representation of K, for almost all ». Suppose also that

(5.13) [G(T//A) : Im C(1'//F)] = 2.

Extend 6 to a character §¢ of T(F)\T'(A). Then =(§,") and =(§,2) determine
the same L-indistinguishable class of G(F,) for all ». We may regard ' as a
character of L\, and consider

p' = Ind (Wi, e Wirisni 67).
When we compose p’ with
GL(2, C) — PGL(2, C) — GL(3, C)

we obtain three-dimensional representations which are locally equivalent every-
where and hence, by Lemma 12.3 of [6], equivalent. It is easy to see that this
is possible only if

y =8 (v/7)

is of order 2 but not trivial. In addition /#* Nm [;, must contain
FX{Nmy,,r x|0'(x/x) = 1}.

Indeed this set must be
FXNm I, N\ FXNm I,,.

If follows from (5.13) that 7, 6' must be of type (b,).
Conversely if the pair (7, ') is of type (b;) and 6! lifts to #' then

v — 0 (v/7)

is of order 2. There are exactly three different quadratic extensions L, L., Lj
of F for which

FXNm I, D FX{Nmyg,,r x|0"(x/%) = 1}.
There are also three characters !, §2, and 3 so that the representations
pt = Ind Wy p, Wriz, 67
become equivalent upon inflation. Thus
T(6Y) = T1(6?) = TI(6%)
if * is the restriction of 6% to T'". We say that (7, 8') is of type (b,’) if
AC Ny F*NmI,,

and of type (b,”) otherwise.
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The final classification is:

type (a) < type («¢;) or type (bi'")
type (b) < type (b1)
type (¢) < type (c1)

If 6 is of type (c) and extends to § with 6(y) = 0(y) then
0(v) = «(Nm v)

and the elements of 11(#) are the components of the principal series associated
to the character

2 (50) = et

of A’. x is the quadratic character associated to the quadratic extension defined
by 77. We do not expect to see them in the discrete spectrum or in the stable
or labile part of the trace formula, and it turns out that the corresponding
contribution to (5.14) is cancelled by the labile part of (5.5).

The operator M (n) appearing in (5.5) is equal to

LA, w)
L(l, 4 —1) ®v R(m)

Here p is of order 2. If it is trivial then the quotient L (1, u)/L (1, =), which is
defined as a limit, is equal to —1. Since each R(x,) is then the identity, the
corresponding contribution to the trace is stable. If u is not trivial, the quotient
is 1 and by Lemmas 3.5 and 3.6

II, trace R (nrr)P(fv 771')

is equal to

Hv( erEH+(ﬁu)X7rv(fv) - ZméH*(Ov)va (fv>)

Observe that class field theory associates to p a quadratic extension L. 77 is
the corresponding Cartan subgroup and 6 is defined by

oo 1))

For a in A

s =l 5 3))nl (5 5)) =

because = n;. Thus 4 € FXNm I, and
[G(T'/A) : ImC(T"/F)] = 2.

In order to verify that the expected cancellation occurs we have to check
that if 0 extends to a character § of 7'(F)\T (A) withf(x) = §(x) then there are
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exactly u(7”) characters n with n = 7, yielding the pair (7',0). If« € Nm I, N
A we must have

IR

and we must have

{fs 2) -

if  is the quadratic character associated to 7”. Then
7(z) = k(2)0(2), LA SAR

In particular 7 is equal to x~! on (Z’. The number of possibilities for 7 is there-
fore

[A:Ax(Nm I, M 4)].

However, 4 is contained in /¥ Nm I, and if we write ¢ = xy then ¢« — x
yields an injection of 4/A4 (Nm I, M A) into F*¥/A4» Nm L*. The image is

FXMN\ANmI,/4zNm L~

and the order of this group is u(7”).

The terms (5.1) and (5.6) are clearly stably invariant. We shall show that
the last term of the trace formula combines with (5.3) and the remaining part
of (5.4) to give a stably invariant distribution. Denote these three terms by
S1, S5, S5 We take ¢ = IIg, in G(A) and show that

?:1 Sig -S5;=0.
According to Lemma 3.4 the distribution S;*"" — S, is given by

Z §L7; oo {trace P(fv: nv)N(gv)} { l};[ trace p(fwy nm)} ’d8|

For brevity denote the function
trace p(f., 1,) NV (g,)
by H,(n,) and the function trace p(fy, 7,) by I (). Then
(5.15)  Hy(no) WL (120)

is a function on D,°, the set of all characters of 4’ which are of absolute value
1 and equal x~! on ¢Z’. According to Lemma 3.2 the difference S»?(f) — Sa(f)
is equal to

H, (v) I,”(v)
X2 L(1, F,) I1 L1, F,) "

v 0Zp'\dp’ wHEY

Here H,” and I," are the local Fourier transforms of H, and I,,. The global
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Fourier transform of (5.15) is

Hv\/('Yv) H va('Yu')

L(ly Fv) wWFv L(lv ]4‘10) '
If we can show that Sy*(f) — Si(f) is equal to

YA

H,Y(v) L, (v)
— by EL LIS o V)
Zv OZF'\_IZF'L(]WPD) QD L(lvﬁw)

when Z ) is the group of scalar matrices in G’, then an appeal to the Poisson
summation formula will establish that the sum of the three differences is 0.
The value of S; at f is the constant term of the Laurent expansion at 0 of

Dozze L(L4 5, 1)IL0(a, s, f,).
The distribution 6(«, 0, f,) is stably invariant. Hence
Ss(f771) = Ss(f)
is equal to
Nz ze 2oo 0@, 0,£,07) = 0(a, 0, f)}{TL0(a, 0, f)]
if \is the residue of L(1 + s, 1) at s = 0. We now invoke Lemma 3.3.

6. Consequences. Let m(w) be the multiplicity with which an irreducible
admissible representation of G’ occurs in the representation r. Then

trace r(f) = >m(r) trace = (f).
If = belongs to no II(9) with
([ET"/A) : Im G(T"/F)] = 2

we set n(mw) = m(mr). If m belongs to some such () we say that = is of type (a)
or type (b) according as 6 is of type (a) or (b).
If 7 is of type (a) and ' is a character of 7'y then = can belong to I1(8')
only if 7'y and 7" are stably conjugate. If 7y = 1" then
H+(01') = H+(01}1) H—(gv) = H—(ovl)

for all v. Let e(r) be the number of characters of 7°7'\71” for which = € 1I(6).
Let (¢, m,) be 1 or —1 according as =, € II*(,) or =, € II=(4,). Then (¢, m,)
is 1 for almost all », and we set

(&, m) = (e, my).

The local factors depend upon a number of choices but (e, ) itself is well-
defined when the local choices are made to depend in a consistent manner on
global data, and this was done. Finally set

n(r) = m(r) — i(e, me(m)u(l”).
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If 7 is of type (¢) there are three distinct quadratic extensions L1, L, L3 with
associated Cartan subgroups 7', satisfying
[&(T//A), Im G(T//F)] = 2

and characters ¢ of "/ with = € TI(8%). Let ¢;(w) be the number of characters
of I'y/ trivial in I°y/ M G}’ for which = € T (6?). For each ¢ we may introduce
(e m,) and set

(eqy m) = M, {ey, Ty).
Then we introduce
n(m) = m(r) — 12 a1 ey mye(m)u(T)).

There is a curious property of the triple (ei, 7), {e2, 7), {e3, 7) which should
be remarked. If we let L; = F(r;) then, as at the end of § 2, r; determines
a particular 7'/ and a particular v,° € 7°;(F). These we use to define II*(4,%)
and TI—(8,"). The set T1(4,%) is the same for all 2 and a 7, in the set acts on the
space of functions in the Kirillov model supported by

fa € FXl ' (@) = ey my), 1 = 1,2, 3],
Consequently

(e1, my) (€3, mp) = (es, Ty)
and

(e, m) (eo, m) = (e, 7).
The distribution
f— 2n(r) trace = (f)
is stable.
Lemma 6.1, If ¢ € G(A) define = by
7' h— w(ghg™).
Then n(n?) = n(w).
Set
Im) = n(x?) — n(w)

and let B be the space of finite linear combinations of functions to which we
have applied the trace formula. B is closed under f — f* with

@) = flg™)
and under the obvious convolution product. Moreover, for f in B

> I(w) trace = (f)
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is absolutely convergent and equal to 0. In particular

(6.1) D imso l(m) trace w(ff*) = D im<o —L(x) trace = (ff*).

Let X+ be the set of # with [(7) > 0 and X~ the set with [(x) < 0. All we
need do is show that X~ is empty. If not, choose f so that the maximum eigen-
value M) of m(ff*), # € X, is 1. Let N(my) = 1 with 7o in X~ and let x¢ be
a unit vector in the space of my with = (ff*)xo = xo.

Set

6 = MaXyex+ N(m).

§ is finite because the representations 7 are unitary. Moreover, it is positive.
If f1 lies in B let || (f1)|| be the Hilbert-Schmid norm of 7 (f). As on p. 498 of
[6] we may choose f; so that

Dorex+ Lm)|[w (f)I]2 < —1(mo) /25
and so that

lmo(fr)xol[ = [xoll.
In (6.1) we replace f by fif. The left side is then less than —[(r,)/2. The
right side is at least
—I(my) trace ro(flff*ﬂ*) = —I(my) trace 7r0(f1*f1ff*)

and this is greater than or equal to

=L (mo)[[mo(fr)xol|* = —1(m0).
The resulting contradiction proves the lemma.

Suppose # = @ 7, is a representation of G(A) and let = be one of the ir-
reducible components of its restriction to G(A). Let G(7) or G(7) be the set of
all 2 in G (A) for which "z : ¢ — w(h~'gh) is equivalent to =. Let X (r) = X (#)
be the set of all characters w of I for which # ~ w ® #. X (#) consists of the
characters trivial on {det Z| /% € G(#)}. Let ¥ be the set of characters of F* I
and Y (#) the set of all characters w of I for which @ ® 7 is automorphic and
cuspidal. Let

q(m) = q(7) = [V(7)/YX(7)].

It will be seen in a moment that this index is finite; it is likely to always be 0
or 1 and to be 0 if # = 7 (u, ») with two characters u, » in V; but the only proof
we can envisage at the moment is difhcult and lies beyond the scope of this

paper.

LEMMA 6.2. Suppose G = G(A) and 7 is infinite-dimensional with =(z) =
x Y(2)I, z € Z'. Then

q(m) = Pamamaa m('r).
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[t follows easily from this equation that ¢(z") is finite. We may suppose that
Z' = 7' 1f Z is the centre of G let G = Z(A)G' = Z"G'. From the relation

XN [zt = F*
we conclude that
G NZ'Gy" =272'Gy
and that
G/Z\G' ~G"Z"\G".
Thus if we extend x to a character x'" of Z”" and let #’" be the corresponding
extension of 7 to G'/, we need only show that
q(r) = Z(Ewm(w)\é(m m("r'").

Let L, Ly, and L be the spaces of cusp forms on G,/\G", G(F)\G"G (F),
and G (F)\G(A) transforming according to a given character of Z”/, and let 5"/,
s1, and § be the representations of the three groups G”, G''G(F), and G(A) on
these three spaces. L' and L are the same as spaces. Suppose 7'’ isa representa-
tion occurring in s’ with multiplicity m (7). Let 7 be its restriction to G' and
let

Gi(r) = G"G(F) N\ G(x).

It follows easily from Lemma 2.6 that '’ extends to a representation ¢ of G ()
on the same space. Let ¢; be the restriction of ¢ to G, (7).

The subspace V"' of L' transforming according to =’
G1(w) according to

(")
1w @ oy
where w; is a character of G""\G(r). The smallest invariant subspace of L,
containing 1’ transforms according to

@D Ind (G”G(F), Gi(r), w; ® o1),

" transforms under

and each summand is irreducible.
Since

5 = Ind (G(A), G"G(F), s1)

we have
5 = @(ﬂ @l Il]d (G(A), Gl(ﬂ'), [OF ® 0'1).

In this sum two representations = and m, are taken to be equivalent if m; =
hr with det & € FX. The induction can be carried out in two steps, first from
Gi(r) to G(x), and then from G(r) to G(A). The quotient G,(x)\G(x) is a
subquotient of FXIz*\I, and hence compact; and

Ind (G(x), Gi(7), w; ® 1) = Pow @ a.
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The sum is over all characters w of G(7) which agree with w; on G, (). At the
second step we obtain the summands

Ind (G(A), G(r), v ® o),

which are irreducible. Since each of these representations contains =’/, any
one of them arises also from 7" if and only if =,/ = """ with & ¢ G(A). The
lemma is therefore clear if ¢(7) = 0.

If ¢(7) # 0 we may take 7 to be automorphic and cuspidal. Let ¥’ (r) and
Y’ be the elements of order two in Y (x) and V. All elements of X (x) are of
order two and every element of ¥ (r) is trivial on F**. Since

FXI 2/ X ~ X)X T2 ) X
the set V(r) is equal to ¥V’ (r) Y and
g(r) = [V'(r)/V'X(x)].

The lemma now follows easily from multiplicity one for G(A) and the observa-
tion that a character lies in Y'X (r) if and only if it is trivial on G, (r).

Now suppose G’ is arbitrary and 7’ a cuspidal automorphic representation,

We attempt to compute m (') in terms of the m(«) for cuspidal automorphic
forms for G(A). We may suppose that «Z' = Z’. We may also replace G(A)
by G = Z'G(A) because

GIAYNZ'Gy" = Z(A)G(F)
and
Z(A)G(I\G(A) = Z'G/"'\G".

We proceed as in the proof of the lemma with G’ replacing G (A). Set
G'(r) = G N G(m) G/ (7)) = G"Gy N G(x).
Let ¢’ and o,” be the restriction of ¢ and ¢; to G'(7) and G’ (w). We obtain a
direct sum decomposition of the representation of G’ on the space of cusp forms
transforming according to x~! under Z’. It is
D B B Ind (¢, G (), &' @ o).
For the purposes of this sum 7'’ and 7" are taken as equivalent if

1’

m o~y deth € 4p.

For each 7" and each i there is a character w;/ of G’’\G,'(v) and the inner sum
is over all characters o’ of G’ (7) whose restriction to Gy’ (7) is w,". The space of
functions on

GF//\G// — GF/\G//GF/
transforming according to 7’/ transforms under G’ (7) according to

m(r’’) ’
1 w0 @ ey
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If the summands corresponding to 7/, 7, ', and 7", j, @ are equivalent then
6.2) " ~"" he(q.

Suppose that (6.2) is satisfied and that ¢(r) is 1. Then in addition 7" ~ "
with ¢ € G(F). Thus k™'g € G(r). Also m(7”) = m(7") = 1, and
@’ @6 ~%w’ @ a)).
Thus
@’ ® 51/ ~"w' ® a)
and the summand indexed by 7'/, 1, and any o’ is equivalent to that indexed

by #", 1, and some w’. We have established:

COROLLARY 6.3. Suppose 7’ is a cuspidal automorphic representation of G' and
m one of the irreducible components of the restriction of =’ to G(A). Let A(n') =
A(r) = {det gl g € G(m)}. If q(x) 1s 1 then the multiplicity with which = occurs
in the space of automorphic forms on G @'\G' is

[AA(m) N\ FXA(r) : ApA(m))] = [FXMN AA(x) : ApA(7)p).

ProprosITION 6.4. Suppose m is a representation of G'. If m(n?) is not equal to
m(w) for all g € G(A) thereis a T with [§(T'/A) : Im G(T'/F)] = 2 and a 0
so that w belongs to T1(0).

If there were no such 77 and 6 then m (r?) would be »n(x?) for all g.

PROPOSITION 6.5. Suppose w is a non-trivial character of FX\I r of order 2 and
7 15 a constituent of the space of cusp forms of G(A). If 7 ~ w ® = then there is
a character § of LX\Iy, where L s the quadratic extension of F defined by w, for
which m = ©(0).

Let G’ be the group defined by
4 = NmL/F IL-

The restriction of = to G(F)G’ is the direct sum of two irreducible representa-
tions w and m;. Let 7" and m," be irreducible components of the restrictions of =
and m; to G’. One of 7’ and ;" must occur in the space of cusp forms on G’.
Suppose they both do. Taking the Fourier expansion with respect to the group
N(F)\N(A) we see that there are two characters ¢ and ¢, of F\A so that =’
is contained in Ind (G’, N(A), ¢) and =" in Ind (G’, N(A), ¢,). Let

Y(x) = ¢i(Bx) B € FX
Thereisa gin G(A) withw(a) = —1ifa = det g for which = is equivalent to
h — mi(ghg™1).

Thus = is also contained in Ind (G’, N(A), ¢') if ¢’ (x) = ¢1(ax). Since G, =
G(w,) for all v it follows from Corollary 2.7 that w(8) = w(a). This is a contra-
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diction, and so one of m(7") and m(x,") is 0. The proof is completed by an
appeal to Proposition 6.4.

COROLLARY 6.6. Suppose L is a quadratic extension of F, 0 a character of
LX\I}, which does not factor through the norm, and # = w(8). Then q(7) = 1.

If w is the quadratic character of F*\I defined by L then
w Q@ T >~
Suppose v is a character of [ and 7 = v ® 7 is also a constituent of the space
of ensp forms. Since w ® # ~ &’ there is a 6 for which # = #(#"). The two

characters 6 and 6’ define representations of the Weil group W, in GL(2, C)
and because 7' = v @ 7 the three-dimensional representations obtained from

GL(2, C) — PGL(2, C) — GL(3, C)
have equivalent restrictions to the local Weil groups at every place. Glancing
at Lemma 12.3 of [6], we conclude that the three-dimensional representations

of Wy, r itself are equivalent. Writing the representations out explicitly and
recalling that the first cohomology group of LX\I} is trivial, we see that

' (x) = ' (Nmx)f
with some character of FX\I,. Thus
T o Q 7.

We suppose more generally that # = w(p) where p is an irreducible two-
dimensional representation of the Weil group. We assume that for every place
v and every character w, of F/,%,

ﬂ(pn) ~w, ® W(Pp)
if and only if
Py = Wy ® Po-

This is known in general, and in the case of primary concern to us that p is
induced it is a consequence of the discussion of § 2.

There are two notions of equivalence on the set of representations p’ =
w ® p, w a character of FX\Ip.

i) Global: p’ « pif and only if the representation p’ is equivalent to v’ ® p
with ' trivial on A FX,

ii) Local: p’ « p if and only if for every place v the representation p,” is
equivalent to w,” ® p, with w,’” trivial on 4,.
Global equivalence means that

https://doi.org/10.4153/CJM-1979-070-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-070-3

L-INDISTINGUISHABILITY FOR SL(2) 773

with o’ trivial on 4 () FX. Such a factorization is possible if and only if wis
trivial on A FX M A (7) FX. Local equivalence means that for every v

! 12
Wy = Wy Wy

with o, trivial on A(r), This factorization is possible if and only if w is
trivial on FX(4 M A (x)). Thus the number of global equivalence classes with-
in one local equivalence class is

[AFPXNA @)X FXANA@)] = [ANA@) FX: Ap(A M A(r))].

This is the index of Corollary 6.3. It depends only on the L-indistinguishability
class to which = belongs, that is, it is the same for « and for r, g € G(4).
We denote it by d(x). More generally if 7’ is a representation of G’ and 7 a
component of its restriction to G(A) we set d(x') = d(r).

Suppose L is a quadratic extension and

pi = Ind(WL/Fy WL/Lv 01)~

The representations 7(p;) = 7w (6;) determine the same L-indistinguishability
class of representations of G’ if and only if

p2mw @ py
with w trivial on FX(A4 M A (7)), # = = (0:). However, p» « v ® p; if and only
if

02(y) = w(Nm v)8:i(y)
or

02(y) = w(Nm )0, (7).

The bar denotes conjugation on L. However, 6, and 6, have the same restric-
tions to 77 if and only if

02(v) = o(Nm )6 (v)
with w trivial on F*(4 M Nm I,).
Thus the number of characters 8 of 7°x'\71” which yield the same L-indis-
tinguishability class TI1(6") is
2[FX(A N Nm I.): FX(4 M A4 (x))]
unless
01(x/x) =1
when- it is simply
[FX{A N Nm I): F*X(4 M A(x))].

We are going to multiply the latter number by w(7”). Any element a of
A M FXNm I is of course also equal to xy, x € FX, v € Nm I, and the
map a — x yields an isomorphism

AN PXNm I /Ap(A N NmI,) ~F<MNANmI,/ApNm LX.
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Thus
w(T") = [FX4A N FXNm I : (4 M Nm I,)]
and the product is
[FXA N FXNm I : FX(4 N A(7))].
If 7’ lies in TI(#’) this is d(x’) times
(6.3) [FXA N FXNm Iy : FX4 N FX4 ()]
=[ANFXNmI;: AN F*4(7)].

Take a character 6 of LX and let # = = (0). Every character of Iz/A (#)F*
is of order two and # « w ® #. Thus I,/4 (#)F*¥is of order 1, 2, or 4 and is
of order 4 if and only if

x— 0(x/%)

is of order two but not identically 1. There are then three different quadratic
extensions L = Ly, Ly, Lyand characters 6;, 65, 05 so that # = «(6;). In addition

3
AR F = N F*Nm I,.

If A C FXNm L then the index (6.3) is 1 unless
[({p:AF)FX] =4

and
AZ FXNm I, AZ FXNm I,

when it is 2.

Suppose 8 does not factor through the norm. Since ¢(7) is 1 the discussion
culminating in Corollary 6.3 shows in addition that for #’ in the L-indistin-
guishable class I1(8") defined by #, m(7’) is 0 or d(x"), that for one of these 7',

m(r') = d(x')
and that then
m(r’) = d(x)

if and only if det ¢ € A4 (7)F*¥. The results of the previous paragraph yield
in combination with the considerations above a more precise statement.

PROPOSITION 6.7. Suppose 6 is a character of T '\1" with
[E(T'/A) : Im S(T"/F)] = 2
and 7 in 11(0) is of type (a). Then
n(r) = d(r)/2
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and

m(r) =L 14 (o )

One need only observe that when 8 is of type (a)
e(m)u(1") = 2d(r).

ProrosITION 6.8. Suppose = is of type (b) and lies in T1(6'), 11(6%), T1(6?),
where 0% 1s a character of T/ trivial on T/ M G ¢’ and

[S(T//A) : Im C(T//F)] = 2.

Then
n(r) = d(r)/4
and
m(w) = 4“(471;) {1+ (&1, m) + (e, ) + (3, m)}.

When 6 is of type (b)
e(m)u(1") = d(m).

There is a more suggestive way to state the propositions. We first work
locally. Suppose F is an extension of E so that

G(]:) = RCSF/E G(E)
and the determinant map is from
RCSF/E C(F) d RCSF/E GL(I)

We replace 4 by A(E) where A is a connected algebraic subgroup of
Resy,sGL(1) defined over E. The group G’ is now G(E) where G is the inverse
image of 4. Let “G be the associate group of G. If # = 7 (p) is the irreducible,
admissible representation associated to a two-dimensional representation of the
Weil group W over F then the components of the restriction of # to G’ form
the L-indistinguishable class I (p) associated to the corresponding homo-
morphism p of Wy to *G, a quotient of the associate group of ResyzG by a
central torus. Let S be the centralizer of p(IWg) in £G° and S° the product of
its connected component and its intersection with the centre of *G°. We shall
show that the quotient S°\S is abelian and that the set II(p) may be mapped
in a natural and bijective manner to its dual.

We first remind ourselves of the definitions of p and *G [10]. If K is a large
Galois extension of E containing F then

X* = X*(Resp,sGL(1)) = Ind (§(K/E), $(K/F), 1)

= @@(K/F)\@(K/E) Z
and

X*(4) = X*/V*,
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Let Y« be the orthogonal complement of ¥* in the dual module. The group *G
is the quotient of the semi-direct product

(Tow, mowmGL2, G)) X O(K/F)

7=l )
Choose a set of representatives v for Wg,p\Wg e If w € Wk g let
o = d @) dy(w) € Wr
If w—oin O(K/F) then p(w) is the image in *G of
(5 (dy(w))) X o.

Notice that the cosets in O(K/F)\®(K/E) may also be labelled by the v.
We may suppose that one of the v is 1. Suppose Ila, commutes with p(Wg, #).
Then

by

Uexm6&/m Ae(28,) = 1 forall X = (A,) in Y*} .

(Zvﬁ(dv(w))“v’_l = z,p(d,(w))
with
Hv)\v(zv) =1

forall A = ()\,) in £Z° If 5 is a representation by scalar matrices then S is the
product of its intersection with the centre and the image of GL(2, C) in *G°
under the diagonal map. Thus S°\S = 1. In this case II(p) consists, as we
have seen, of a single element. If 5 is not a representation by scalar matrices
and is not induced from a one-dimensional representation of a Weil group over
a quadratic extension then the associated projective representation is irreduc-
ible and S is contained in the centre of “G°. Again S°\S = 1 and II(p) consists
of a single element.
Suppose

p = Ind(Wg/p, Wg1,0)

where § is a one-dimensional representation of Wk, ., that is, a character of
LX. We suppose § does not factor through the norm. Suppose T is a Cartan
subgroup of G associated to L and 7" = G M Resz,zT. The associate group “T'
is a semi-direct product

(CX X CX) X O(K/F).

& (L/F) acts on C* X CX by permuting the two factors and & (K/F) acts
through its projection on & (L/F). § may be regarded as a character of 7'(F)
and is associated to a homomorphism & : Wx,» — T. There is a homo-
morphism

T — G
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given by

1[/2((1,8)))((7—)(8 2))(0

if ¢ acts trivially on L and by

ooy 90 e

if ¢ does not act trivially on L. Then p = ¥ 0 ¢ and = (5) is the image ot §
under the map Jx associated to { by the principle of functoriality. The formalism
of [10] then yields

v — LG

and if 9 is the restriction of § to T(E) then y« takes {6} to the set II(p) and 8 is
associated to ¢ : W,z — LT

Consider the set G(7") introduced in [12] and suppose « is a homomorphism
of G(7") into CX, that is, a homomorphism of X4(7's.) into C* which is trivial
on

X*(Tsc) M (Z@(K/E) (‘7 - 1)X*(T))

Then « extends to a & (K/F)-invariant homomorphism «" of X4 (7") into CX.
Since

LT = Hom (X4 (T, CX)

the homomorphism «’ is an element of *7° which commutes with & (K/E) and
hence with ¢(Wg,x). Then € = ¢(K’) commutes with p(Wg,z) and lies in .S.
Since € is uniquely determined modulo this centre by «, its image in S°\S is
uniquely determined.

If there is a non-trivial « it is unique, and there exists a non-trivial character
if and only if [E(T)] = 2. However, it is easy to see thatif 77 = T(E) C T(F)
and if G(7”) is defined as in § 2 then

C(T)~ G(T").

If « is non-trivial then e is represented by an element which is congruent to

oo (5 )y )

modulo scalars.
For each L, T, § with [G(7)] = 2 and

6 Ind(Wg,p, Wiir, 0)

we obtain an ¢, uniquely determined modulo the centre. When j is fixed within
its equivalence class then e has the form (6.4) only after conjugation. If (a,)
lies in .S then all the ¢, have the same image in the projective group and lie

https://doi.org/10.4153/CJM-1979-070-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-070-3

778 J-P. LABESSE AND R. P. LANGLANDS

in the projective centralizer of 5(Wg,r). But the projective centralizer of
p(Wx, 1) consists of two or four elements, two when
0(x)? = 0(x)?
and four otherwise. If G is SL(2) so that [§(7")] is always 2 it is easily seen that
this centralizer consists of the identity and the e obtained from non-isomorphic
L, T,a.
To show that in general .S is formed of S° and the S%, where ¢ is obtained
from the L, T, § with [G(T)] = 2 we show that if we start from L, T, § with
ﬁ = II]d(WK/F, WK/L,é)
and form the corresponding ¢ in the associate group of Resg,»SL(2), which is

(e mowmPGLE2, G)) X O(K/E),

and & lifts to e in ZG° then ¢ lies in Sonly if [§(7")] = 2. But e is still the image
of ¥ and if € lies in .S then «’ is invariant under ¢J (K/E) and its restriction to
X4 (T'g.) is non-trivial.

If € lies in S° we set (¢, 7) = 1. Otherwise € in S is associated to a 7" and
afwith [C(7")] = 2and = € T1(h). We set (¢, 7) equal to 1 or to — 1 according
as 7 € IIH(0) or = € TI=(). We have already observed that (¢, =) is then
multiplicative in e. If to each 7 in T1(0) we associate the character € — (¢, 7)
we obtain a bijection from 7 () to the dual of S°\S.

Now we treat a global field F. We again suppose that 4 is 4 (L) where

A g_ I{eSF/EGL(l).
If w is a place of E then over £, the group on the right becomes
I, Resp,/m, GL(1).

In order to remain within the framework of the earlier paragraph we suppose
that over F, the group 4 is also a product 114, with

Av _(; I{eS}nv/Ew GL(I),

but this is only a matter of convenience. The definition of S is now somewhat
different. It is the set of all s such that for each place w there is an a, in the
centre of “G® which is such that «,s commutes with p(Wg,). S° can therefore
be taken to be the connected component of S. The analysis of S°\S may be
repeated, because C(17/A)/C(1’/F)) may be identified by means of Tate-
Nakayama duality with a quotient of X, (7). If w is a place of E the local
analogue of .S is

Sw = IIvlw Sv
and the local analogue of S° is

S’ = Il Sy°
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We clearly have a map e — ¢, = II¢, 0f S\S to S,°\S,. If
p: Wgip— LG

then II(p) consists of the representations 7 = ® =, where =, € Il(p,) for all
vand 7, contains the trivial representation of K, for almost all v. We introduce
the pairing of S°\S with II(p) given by

<6, 7l'> = 11, (e, 7|'v>~

The product is over all places of F and yields a surjection from II(p) to the
dual of S\S. The numbers m (7) appearing in Propositions 6.7 and 6.8 may
be written as

We have also to find another interpretation for d(w). = is w(p) where
p: Wg— LG.

Suppose we have another
o: Wg— G

p is defined by 5 : Wy — G and, by Lemma 3 of [12], ¢ too is defined by
¢ : Wp— LG. It is easy enough to deduce from the results of [14] that o,
and p,, are conjugate under £G° for all places w of E if and only if ¢ ~w ® 5
and ¢ and p are locally equivalent in the sense defined earlier. Thus local
equivalence is more appropriately defined as the conjugacy of ¢, and p, under
LG for all w.

It also follows from [14] that p and ¢ themselves are conjugate under *G°
if and only if 6 «~ w ® s where w is 1 on the group B of all x € I such that
for some finite extension K of F there isa y € KX with xy € 4 (Ag). Since B
contains F¥X4 (Ay) this is stronger than global equivalence. g and ¢ are globally
equivalent if and only if ¢ is conjugate under *G° to

w — w(w)p(w)

where w — w(w) is a continuous locally trivial 1-cocycle of Wy with values in
240 the centre of G°. In any event we can define local and global equivalence
and the integer d () entirely in terms of p and the associate group.

7. Quaternion algebras again. It is a straightforward matter to decompose
the trace formula for a quaternion algebra into a stable and a labile part. Let
G be the group defined by a quaternion algebra over the global field F, let 4
be as in § 5with 4 € Nm G(A), and let

G' = {g € G(A)Nmg € 4}.

Otherwise our notation will be along the lines of § 5. We want to evaluate the
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trace of the representation s on the space of functions ¢ which satisfy
e(zg) = x7'()e(g) 2 €2

and which are square integrable on (Z’G'\G’. If f is a function on G(A) with
@) = ILf.(g),

where the f, satisfy the usual conditions, in particular

fv(ng) = X(Z)fv(gz'), 3 € OZv/

then

(e (k) = f o(h9)f (9.

02’ \¢’

The results and definitions of § 4 clearly have analogues for the functions f,,
and we shall employ them.
The first and trivial term of the trace formula is

ZveozF'\zp' f(v)-

The second term will be broken up immediately into a stable and a labile part.
If w(T") is the order of the kernel of

C(17/F) — C(T"/A)

then the stable part is

1 u(T7) e =, i
B ; [@(T//A) tImG’(T'/F)]meaS GZ'T\T") ; P /(y,f)

with
TN (y, f) = M,@" (v, f,).

The outer sum is over a set of representations for the stable conjugacy classes
of Cartan subgroups. The inner sum is over the regular elements of 7" modulo
oZ #'. The liabile part is a sum over representatives of those stable conjugacy
classes for which

[C(T7/A) : Im S/ F)] = 2
of
(7.1) 12 0m(17) meas (Z'T¥\T")®" (v, f).
We note also that

D(T"/F) = Nm D*/A4 » Nm LX

and that it is implicit in the above discussion that Nm D* consists of the
elements of FX that are positive at every real place where D does not split.
The sum in (7.1) is at first only over the regular elements in 7", modulo
oZ &' but we may extend it over all of 7', for the additional terms will all be 0.

https://doi.org/10.4153/CJM-1979-070-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-070-3

L-INDISTINGUISHABILITY FOR SL(2) 781

Let [ be GL(2) over F and define H' accordingly. For almost all v,
Hu/ ~ Gv/

and we may choose the isomorphism so that the maximal compacts correspond.

For these v let ¢, be the image of f, by the isomorphism. For the v at which H
does not split define ¢, as in § 4. An easy comparison, as in § 16 of [6], shows
that the stable parts of trace s(f) and trace 7 (¢) are equal. We write the first as

> .n(w) trace = (f)

and the second as

Z,n (r) trace 7(¢).

The argument used to prove Lemma 6.1 and the remarks of § 4 imply that
if 7 lies in the L-indistinguishable class corresponding to that of = then

n(r) = n(r)M,e(w,).

Here ¢(r,) is 1 when H, is split.

We first study the labile part for a particular G'. If F’ is a given non-
archimedean local field and L’ a given quadratic extension of F’ we choose a
totally real field F and a totally imaginary quadratic extension of it so that for
some place v of F the pair F,, L, is isomorphic to F’, L’. Choose a quaternion
algebra which splits at every finite place except v, and let

A = Nm IL'
There is only one stable conjugacy class of Cartan subgroups with
[C(T"/A) : Im C(T"/F)] = 2

and the labile part of the trace formula is the sum over the characters of
T \T"’ which equal x~! on (Z’ of

(7.2)  20,(f) Moo ( D mperit 00 Xm (fur) — D mueri—ow) X ( f0))-

We have fixed a non-trivial character ¢ of F\A and at a place where the quater-
nion algebra splits the sets I17(6,,) and 117(6,) are defined with respect to y,,.
0, is defined with respect to ¢, as in § 4. At an archimedean place w where the
algebra does not split 11(4,) consists of a single element . We place it in
I+ (6,) or I=(,) according as O, equals +x, or —x,. One of the two sets
remains empty.

Define § by

0(7) = 6(v)

where ¥ — 7 is the involution. If §, = 0, then 6, = 0. Otherwise replacing
by § changes the sign of an even number of factors in (7.2) but does not change
the expression itself. We sum over pairs {6, 8} with § > § and replace the by 1.
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It is clear that 6, is a finite linear combination of irreducible characters
0, = 2 AiXryi-
Consider
=10 Qv
with m, in 11(6,). If m(x) is the multiplicity with which = occurs in s then
m(m) = n(w) Fa/2.

Varying the 7, within 11(8,) does not change #n(r) but it does change the sign.
We conclude that «, is an integer. Moreover if «; # 0 we may arrange that
m(m) be positive. Since = must lie in the restriction to G’ of an automorphic
representation of G(A) we conclude from the strong form of the multiplicity
one theorem that 7,* € 11(f,) when «; # 0. We know that II(6,) consists of
two elements when 8, # 6,.

The orthogonality relations for characters of G,” show that

) L 2
- T TN ’ A d — 2
2 % meas Z, \I', J 7,7, 0, A" (dy = X2 a

The sum is over a set of representatives for stable conjugacy classes of Cartan
subgroups of G,/. However, the formula for 6, shows immediately that the left
side is 2 when 8,  0,. Thus a; = =1. Since there are two «; and 0, is not stable,
they must have opposite signs, and with an appropriate choice of II*(6,) and
II-(6,) we have

(7.3) 6, = Zmen-umxnv - Zﬂyeﬂ_(ev)xﬂ'v'

More generally if G, is defined by A, and if T,/ belongs to the stable con-
jugacy class associated to L, then

[D(T)] = 2

if and only if A, € Nm L, and G,/ € G,. If =, and =, are the restrictions
of the elements of IT*(4,) and 11~ (6,) then 0, is equal to
Xoy+o — Xo _
on G,. If §, and 8, are not equal on T,/ then =,* and 7, are not equivalent.
Otherwise they are and ¢(7,") = 2. We know already that ¢(m,t) < 2.
We can summarize the local results.

LemMa 7.1. Suppose F is a local field. The L-indistinguishable class of =
consists of 1 or 2 elements. It consists of two elements if and only if = liesin 11(6),
where 0 1s a character of T', [D(T")] = 2, and 0(v) = 0(7). Moreover c¢(w) is 1
unless w lies in 11(0), where [D(T7)] = 2, and 6(y) = 6(y) when c(x) = 2.

When II1(#) consists of two elements we may decompose it into II*(8) and
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I1-(6) in such a way that

6 = Zwéﬂ'f‘(ﬂ)xﬁ - Zwen—(mxr-

If 0 is replaced by f then 0 is replaced by —6, and consequently IT*(§) = II-(4).
If Fisa global field and § a character of T'5'\1" we let II(f) be the set of

tensor products ® m, with 7, in I1(4,) for all v. It is understood that in such a
tensor product 7, contains the trivial representation of the maximal compact
for almost all v.

ProrositioN 7.2. Suppose 7 = & w, is contained in no 1 (0) where 6 is a
character of T #'\T" and

[(D(T'/A) : Im D(T"/F)] = 2.
Let 7-be in the L-indistinguishable class of H' corresponding to that of =. For all
g €G(A)

m(w?) = m(mw)
and

m(w) = n(r),c(r,).

Now suppose 7 belongs to I1(8) and [D(77/A) : Im D(17/F)] = 2. The type
of 7 is again defined to be that of 6, either (a) or (b). Let 7 be a representation
of H' whose L-indistinguishable class is that of =. It is reasonable to set

d(m) = d(r).

Suppose 7 is of type (a). We introduce the group consisting of two elements
1, e. At a place v where the quaternion algebra splits we define (1, 7,) to be 1
and (¢, m,) to be as before. At a place v where the algebra does not split but
0, # 0,set (1, 7,) = 1and (¢, 7,) equal to +1 or —1 according as =, € II*(8,)
orw, € II7(6,). Observe that (¢, m,) depends on 6,. At a place where the quater-
nion algebra does not split and 6, = §, we set (1, r,) = 2and (¢, 7,) = 0. Let

A, m) = 1I,{1, m,)
and
(6, m) = Iy(e, my).
ProrosiTiON 7.3. If 7 is of type (a) then

m(m) = EE (1) e ).

If 6, = 4, for some v then

m(m) = n(x) = n@) I1 er) = 2T ey = 42 1, m)

<
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and (¢, m) = 0. If 6, # 8, for all v then

d(‘)‘r) d(

m(ry = n(r) + 9 @ my = X1y 4 (e ).

If 7 is of type (b) we introduce a group consisting of four elements 1, 1, €,
e with ¢,2 = 1. The numbers (e;, 7, ) are defined just like those (e, 7,) of the
previous lemma and

(e, m) = (e, my).

Since 8 =9/, 7 =1, 2, 3 and = € I1(9), the algebra is split at the infinite
places and not split at some finite places. Consequently

leym)=0 i=1723.
ProrositionN 7.4. If = is of type (b) then

_4”_ (1, 1)+ (e, 7) + (&0, 7) + (5, 7).

m(r) = 7 I e (4)<1 ).

When G’ is defined by a connected subgroup of ReszzGL (1), we may in-

terpret the groups appearing in these two propositions as S°\S, just as in the
previous paragraph.

8. Afterword. There is a condition implicit when we take the group G’
to be G(Ay) where G is a subgroup of Resz,»G defined as the inverse image of
the subgroup 4 of G, = Resz,sGL(1). 4 is of course taken to be connected and

A(Ag) = HwA (Ewp),
the product being restricted, and
A(E,) C Gi(Ey) = M, ,F%
However, 4 (£,) need not be a product
Tywd,

with 4, € F,%, and we may not be free to apply the results of the early para-
graphs.

We might have developed the local theory of L-indistinguishability for the
groups G(E,). However C(1'/E,) may no longer be of order 2. All of its charac-
ters would have to be considered, and some of them give rise to groups H
which are not abelian. The local theory would provide a linear transformation
from stable distributions on H to distributions on G. Although not difficult
it would have been elaborate, and unnecessary for the global theory.

In the global theory it is the quotient

C(T'/Ag)/Im C(1T'/E)
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which is central. If 7" is a Cartan subgroup of G associated to the quadratic
extension L it is again

and of order 1 or 2. The local theory need only be developed for the character
of §(T'/E,) obtained by pulling back the non-trivial character of the quotient
via

G(T/E,) — C(T/Ay) = G(T/Ag)/Im G(T/E).

The necessary results are easily deduced from § 2 —§ 4.
The principal results of § 5 —§ 7 remain valid, and the proofs are the same.
We remark only that .S, is no longer a product I1,,, .S,.
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