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Abstract

We study one-forms with zero wedge-product, which we call collinear, and their foliations. We
characterise the set of forms that define a given foliation, with special attention to closed forms and
forms with small singular sets. We apply the notion of collinearity to give a criterion for the existence of
a compact leaf and to study homological properties of compact leaves.
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1. Introduction and statement of the main results

We consider a closed oriented n-dimensional manifold M and a smooth one-form
α on it with the singular set Sing α. This form defines on Supp α = M \ Sing α a
foliation Fα , which can be extended to the whole of M as a singular foliation Fα
(Definition 5.2). We shall study the conditions for other forms β to define the same
foliation: Fβ = Fα or Fβ = Fα .

We call forms α, β collinear, denoted by α‖β, if α ∧ β = 0 [10]. Collinear
one-forms appear in many problems of theoretical physics, for example in general
relativity: type I vacuum solutions with aligned Papapetrou fields [6] or triplet
ansatz [2, 11]. Ranks (of group of the periods) of collinear Morse forms (closed one-
forms with nondegenerate singularities) have been studied in [10].

On the intersection of their supports, collinear forms are proportional (Lemma 3.3).
Moreover, on this set they share important properties, integrability in particular
(Proposition 3.6), and, if they are integrable, the foliation. Thus the set of the forms
that define the same foliation Fα are those that (obviously) have the corresponding
support and are collinear with α (Theorem 3.7).

The relation of collinearity is reflexive and symmetric, but generally not transitive
(Figure 1). For Morse forms, however, collinearity is an equivalence relation [10]; we
generalise this fact to one-forms with nowhere dense singular sets (Proposition 3.8).
In this case, integrability of the form is a class invariant and the singular foliation
uniquely identifies integrable classes (that is, it is a class invariant which is different
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for different classes). Similarly, for one-forms with a common support, collinearity
is an equivalence relation (Corollary 3.5), integrability is a class invariant, and the
foliation uniquely identifies integrable classes.

Closed forms, that is, dα = 0, are an important class of integrable one-forms. They
are especially interesting because they allow the use of cohomology techniques. In
particular, α ∧ β = 0 implies [α]^ [β] = 0, where ^ : H1(M, Z)× H1(M, Z)→
H2(M, Z) is the cup-product and [α] is the cohomology class; this is used in our study
of foliations defined by closed forms (Theorem 7.3). In addition, closed one-forms
define an important class of foliations—foliations without holonomy; moreover, any
codimension-one foliation without holonomy is topologically equivalent to a foliation
defined by a closed one-form [19]. For closed one-forms, the singular foliation Fα is
a good approximation of the foliation Fα (Lemmas 5.3–5.6).

For closed collinear one-forms, the intersection of their supports consists of entire
leaves of both forms (Corollary 4.3). In particular, no leaf of one form can intersect
the boundary of the support of the other form (Proposition 4.2).

Our main result states that for closed one-forms with small enough singular sets,
their foliations coincide if and only if the forms are collinear (Theorem 6.5); this was
already known for Morse forms [10]. Note that, unlike the case in Theorem 3.7, coin-
cidence of supports is no longer required but is instead guaranteed by the conditions.

Namely, for closed one-forms with at most (n − 2)-dimensional singular sets,
Fα = Fβ holds if and only if α‖β (Theorem 6.5); note that for such forms α‖β
implies Supp α = Supp β. We mean here the topological (covering) dimension
(Definition 2.1), since Sing α is generically not a submanifold.

The condition on Sing α can be relaxed: for closed one-forms with at most
(n − 1)-dimensional, that is, nowhere dense (Lemma 2.3), singular sets, Fα = Fβ
holds if and only if α‖β (Theorem 6.5). Further generalisations are as follows:
for (not necessarily closed) one-forms with dim Sing α ≤ 0, α‖β implies Fα = Fβ .
(Proposition 6.2); for closed one-forms (irrespective of their singular sets) Fα = Fβ
implies α‖β (Proposition 6.4).

The notion of collinearity is useful for the study of foliations defined by closed
one-forms, as can be illustrated by the following examples.

Farber et al. [4, 5] gave a necessary condition for the existence of a compact leaf in
the foliation defined by a so-called transitive Morse form, in terms of the cup-product.
We generalise this condition in terms of collinearity to an arbitrary closed one-form
and improve it to a criterion (Theorem 7.2).

In [10], it was shown that the topology of a foliation defined by a Morse form of
the maximum possible rank for the given M , rk α = b1(M) (the first Betti number), is
connected with the structure of the cup-product, namely, c(α)≤ rk ker^, where c(α)
is the maximum number of homologically independent compact leaves of Fα , an
important value in the theory of foliations defined by Morse forms [8, 9]. We
use the notion of collinearity to generalise this fact to arbitrary closed one-forms
(Theorem 7.3).

https://doi.org/10.1017/S0004972711002310 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002310


324 I. Gelbukh [3]

The paper is organised as follows. In Section 2, we give various conditions for
Sing α to be small, in terms of covering dimension. In Section 3, we introduce
collinear forms and consider some of their properties. In Section 4, we study the
supports of closed collinear one-forms. In Section 5, we define the notion of singular
foliation and show that it is well behaved for closed forms. In Section 6, we prove
our main result on the characterisation of the set of closed forms with small supports
that define the same foliation, as an equivalence class of collinear forms. Finally, in
Section 7, we use the notion of collinearity to study homological properties of compact
leaves of a foliation defined by a closed one-form.

2. Singular set

We consider smooth one-forms on a closed oriented n-dimensional manifold M .
The one-form α is a smooth section of the cotangent bundle of M , that is, it assigns to
each point x ∈ M a linear functional αx : Tx M→ R. Denote

Sing α = {x ∈ M | αx = 0}.

Obviously, Sing α ⊆ M is closed and the support Supp α = M \ Sing α is open.
Generically, Sing α is not a submanifold.

To characterise a subset of M that is not necessarily a submanifold, we use the
topological (covering) dimension.

DEFINITION 2.1 [12]. The covering dimension dim X of a topological space X is the
minimum value n such that every open cover of X has an open refinement in which no
point is included in more than n + 1 elements.

For instance, dim ∅ = −1; the covering dimension of a simplicial complex is
the maximum dimension of its simplices; and dim(S2

∨ S1)= 2. If Y ⊆ X , then
dim Y ≤ dim X . The covering dimension of a manifold coincides with its conventional
dimension [12, Corollary 1, Theorem IV.3]. In particular, the following remark
holds.

REMARK 2.2. If X ⊆ M and X ⊇ iRk (i is an inclusion), then dim X ≥ k.

For X ⊆ M , dim X ≤ n − 1 if and only if the interior int(X)= ∅ [12,
Theorem IV.3]; in particular, the covering dimension of a leaf of a foliation is n − 1.
If dim X ≤ n − 2, then X does not locally divide M [12, Theorem IV.4].

Thus dim Sing α ≤ n = dim M ; obviously, ∂Supp α ⊆ Sing α = M \ Supp α.

LEMMA 2.3. For a one-form α, the following conditions are equivalent:

(i) Sing α is nowhere dense in M;
(ii) Supp α is dense in M;
(iii) ∂Supp α = Sing α;
(iv) int(Sing α)= ∅;
(v) dim Sing α ≤ n − 1.
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FIGURE 1. Chain of collinear forms on a 2-torus. Note that S(ω1, ω2)= ∅; f and g are bump functions.

PROOF. (ii)⇔ (iii). Y ⊆ X is open and dense if and only if ∂Y = Y C , the complement.
(iii)⇔ (iv). int(Y )= ∅ if and only if Y = ∂(Y C ). (iv)⇔ (v). dim Y < dim X if and
only if int(Y )= ∅ [12, Theorem IV.3]. (iv)⇔ (i). Sing α is closed. 2

3. Collinear one-forms

DEFINITION 3.1. Two differential forms α, β are called collinear if α ∧ β = 0; we
denote this as α‖β.

The term is motivated by Lemma 3.3 below.

REMARK 3.2. The set of x ∈ M at which α‖β is closed.

Denote S(α, β)= Supp α ∩ Supp β; it is open. The collinearity relation is reflexive
and symmetric but not necessarily transitive: obviously, S(α, β)= ∅ implies α‖β, so
any two forms α, β are connected via two forms ω j such that α‖ω1, ω1‖ω2, and ω2‖β,
even if α ∧ β 6= 0 (see Figure 1; see [18]). Therefore collinearity is generally not an
equivalence relation. In what follows, however, we shall consider various conditions
under which collinearity is an equivalence.

LEMMA 3.3. Let α, β be one-forms. The following conditions are equivalent:

(i) α‖β;
(ii) α = f (x)β on Supp β;
(iii) β = g(x)α on Supp α.

On S(α, β), the functions f (x) and g(x) are smooth and nonvanishing, with
f (x)g(x)= 1.

PROOF. (ii) or (iii)⇒ (i) is obvious.
(i) ⇒ (ii) and similarly (iii). Consider on Supp β a smooth vector field ξ with

nonvanishing β(ξx ). Choose

f (x)=
α(ξx )

β(ξx )
,

which, by collinearity, does not depend on the choice of ξ . Indeed, for any other such
field ξ ′ collinearity gives

(α ∧ β)(ξx , ξ
′
x )= α(ξx )β(ξ

′
x )− α(ξ

′
x )β(ξx )= 0.

Thus α = f (x)β on Supp β; in addition, f (x) 6= 0 on S(α, β). 2
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So on S(α, β) collinear forms are proportional, thus the term. However, this does
not necessarily hold on the whole M : for instance, any two forms with nonintersecting
supports are collinear, but not proportional.

COROLLARY 3.4. On Supp β, α‖β and β‖γ imply α‖γ .

COROLLARY 3.5. Consider a set A of one-forms on M such that S(α, β)= S ⊆ M
is the same for any α, β ∈ A; for instance, Supp α = S for any α ∈ A. Then the
collinearity is an equivalence relation on A.

On S(α, β), collinear forms share important properties. Consider an integrable
form α; this defines a foliation Fα on Supp α.

PROPOSITION 3.6. Let α be an integrable one-form. Then for a one-form β it holds
that β‖α if and only if on S = S(α, β) it is also integrable and Fβ |S = Fα|S .

By F |S we understand a foliation of S whose leaves are path-connected components
of γ ∩ S, γ ∈ F .

PROOF. Let α‖β. By the Frobenius theorem, α is integrable if and only if α ∧ dα = 0.
By Lemma 3.3, on S it holds that β = f (x)α, so β ∧ dβ = 0 and thus β is also
integrable. The foliations coincide since {α = 0} ≡ { f α = 0}.

Assume now Fα = Fβ on S(α, β). Outside S(α, β), the forms are obviously
collinear. Consider x ∈ S(α, β) and ξx , ηx ∈ Tx M = 〈nx , Txγ 〉, where γ ∈ Fα is the
leaf that contains x and nx ∈ Tx M \ Txγ ; ξx = anx + ξ

′
x , ηx = bnx + η

′
x for some

a, b ∈ R and ξ ′x , η
′
x ∈ Txγ . Since α|Txγ = β|Txγ = 0,

(α ∧ β)(ξx , ηx )= α(anx )β(bnx )− α(bnx )β(anx )= 0,

that is, α‖β. 2

Therefore, collinear forms are either both integrable or both nonintegrable on
S(α, β), that is, integrability on S is a class invariant under the equivalence relation
from Corollary 3.5. Integrable one-forms α, β are collinear if and only if Fα = Fβ
on S(α, β), that is, F |S uniquely identifies an integrable class under this equivalence
relation.

We have obtained a characterisation of the set of forms defining a given foliation
F as the equivalence class, under the collinearity relation, of forms with the
corresponding support. In particular, we obtain the following theorem.

THEOREM 3.7. Given a foliation F = Fα of a one-form α, the forms defining F are
one-forms collinear with α and having the same support.

The latter condition automatically holds and thus can be omitted from Theorem 3.7
in the class of closed forms with small enough singular sets; this is formulated below
as part of Theorem 6.5.

Forms with small singular sets give another important class of forms on which
collinearity is an equivalence relation.
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Supp α Supp βSupp βSupp α

FIGURE 2. Left: partial intersection of leaves is possible only for nonclosed collinear forms;
right: intersecting leaves of closed collinear forms coincide.

PROPOSITION 3.8. On the set of one-forms with nowhere dense singular sets (see
Lemma 2.3), collinearity is an equivalence relation.

PROOF. It is sufficient to prove transitivity. Suppose α‖β and β‖γ , but α 6 ‖ γ at
x ∈ M and thus, by Remark 3.2, on some open U 6= ∅. By Corollary 3.4, U ⊆ Sing β,
which is a contradiction. 2

In this case, integrability on the whole of M is a class invariant (by Proposition 3.6
and the fact that α ∧ dα is continuous) but the foliation is not, as can be seen in
Figure 3. For such closed forms, however, the singular foliation introduced below
in Definition 5.2 is a class invariant uniquely identifying an equivalence class. This is
also formulated below as part of Theorem 6.5.

4. Supports of closed collinear one-forms

In what follows, we consider an important class of integrable forms: closed one-
forms. Properties of the supports of closed collinear one-forms prove to be connected
with their foliations.

LEMMA 4.1. Let α, β be closed one-forms and α = f (x)β on Supp β. Then f (x) is
constant on leaves of Fβ .

This follows by direct calculation from the equation dα = d f ∧ β = 0.
By Proposition 3.6, leaves of collinear integrable one-forms α, β coincide on

S = S(α, β), that is, Fα|S = Fβ |S . The following proposition shows that if both forms
are closed, then leaves of one form cannot intersect the boundary of the support of the
other form; see Figure 2.

PROPOSITION 4.2. Let α, β be closed collinear one-forms and γα ∈ Fα . Then γα ∩
Supp β 6= ∅ implies γα ⊂ Supp β and, moreover, γα ∈ Fβ (and similarly for Sing β).

PROOF. By Lemma 3.3, on Supp α it holds that β = f (x)α. Let γα ∩ Supp β 6= ∅. If
γα 6⊂ Supp β, then there exists x0 ∈ γα ∩ Sing β, so f (x0)= 0. By Lemma 4.1, we
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FIGURE 3. One-forms on a 2-torus (far from the singularity, the coefficient is assumed to be 1).

have f (x)= 0 on γα , that is, for all x ∈ γα it holds that βx = 0, thus γα ⊂ Sing β; this
is a contradiction. By Proposition 3.6, γα ∈ Fβ . 2

The condition for the forms to be closed is important. Indeed, on a torus M = T 2,
consider α = dy and β = (x2

+ y2) dy locally (while far from the singularity, assume
this coefficient to be 1); see Figure 3. Then Supp α = M and Supp β = M \ {0};
γ = {y = 0} ∈ Fα intersects both Supp β and Sing β = {0}.

COROLLARY 4.3. Let α, β be closed collinear one-forms; γα ∈ Fα and γβ ∈ Fβ . Then
γα ∩ γβ 6= ∅ implies γα = γβ . In particular,

S(α, β)=
⋃

γ∈Fα∩Fβ
γ.

Indeed, by Proposition 4.2, γα, γβ ⊂ S(α, β); then, by Proposition 3.6, γα = γβ .
In other words, leaves of α and β coincide if they intersect, and the intersection of

their supports consists of entire leaves of both forms.

5. Singular foliation of a closed form

Let α be an integrable one-form. Its foliation is defined only on Supp α, namely,
the following remark holds.

REMARK 5.1. A foliation Fα is a decomposition of Supp α into leaves: two points
p, q ∈ Supp α belong to the same leaf γ if and only if there exists a smooth path
s : [0, 1] → Supp α, s(0)= p, s(1)= q such that α(ṡ(t))≡ 0, t 6= 0, 1.

This notion can be extended to the whole of M to define a so-called singular
foliation. In [4], a singular foliation for Morse forms (their singular sets are finite)
is defined as in Remark 5.1 by substituting M for Supp α. For arbitrary integrable
forms we, however, prefer to relax the smoothness condition.

DEFINITION 5.2. A singular foliation Fα is a decomposition of M into leaves: two
points p, q ∈ M belong to the same leaf γ̃ if and only if there exists a continuous
path s : [0, 1] → M , s(0)= p, s(1)= q such that on s−1(Supp α) \ {0, 1} it is
differentiable and α(ṡ(t))≡ 0.
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FIGURE 4. Smooth integrable one-forms on a 2-torus M = T 2 (the coefficients are assumed to be 1 far
from the singular set). Sing θ is the graph of the Weierstrass function, which is continuous but nowhere
differentiable. As a closed subset of M , it is the set of zeros of a smooth function fW [13, Theorem 1.5].
Note that this path-connected set does not contain any nontrivial differentiable path s : [0, 1] → M . The
function fS is obtained similarly from the closed topologist’s sine curve; it is connected but not path-

connected.

FIGURE 5. Nonclosed one-forms on a 2-torus M = T 2; f is a bump function. Supp α = Supp β and
Fα = Fβ = {γ̃ }, γ̃ = M , but α 6 ‖ β.

In Figure 4, Fα = Fα; Fβ = {γ̃ }, γ̃ = M ; and Fζ = {γ̃1, γ̃2}, γ̃1 = S1. With the
relaxed smoothness condition, as in Definition 5.2, we have Fθ = Fβ , while if we
required the path to be smooth on M , we would have Fθ = Fα , which is, perhaps, a
matter of personal taste.

For any γ ∈ Fα , if γ ∩ γ̃ 6= ∅, then γ ⊆ γ̃ , that is, a singular leaf of Fα consists of
entire leaves of Fα and path-connected components of Sing α.

While leaves γ of a usual foliation F , which have the same dimension dim γ=n−1,
leaves γ̃ of a singular foliation F can have different dimensions 0≤ dim γ̃ ≤ n. For
instance, a centre singularity is a zero-dimensional singular leaf; if int(Sing α) 6= ∅,
then there exists γ̃ ∈ Fα with dim γ̃ = n (see Lemma 2.3). By Remark 5.1, if dim γ̃ 6=

n − 1, then γ̃ ∩ Sing α 6= ∅; in particular, dim γ̃ ≤ n − 2 implies that γ̃ ⊆ Sing α is a
path-connected component of Sing α.

The notion of a singular foliation as defined by Definition 5.2, while well defined,
is rather counter-intuitive for nonclosed forms. As seen in Figure 4, for a leaf γ̃ ∈ Fα ,
it is possible that dim(γ̃ ∩ Supp α)= n or even γ̃ = M with Supp α 6= ∅. Thus
for a curve s(t)⊆ γ̃ , it is possible that α(ṡ(t)) 6= 0. Two noncollinear forms with
Supp α = Supp β can have Fα = Fβ , as in Figure 5.
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For closed forms, however, the notion of Fα is quite intuitive and is a good
approximation of Fα , as we show in the rest of this section. The form β in Figure 4
shows that closedness is important in Lemmas 5.3–5.6.

LEMMA 5.3. Let α be a closed one-form, γ̃ ∈ Fα , and s(t)⊆ γ̃ a differentiable curve.
Then α(ṡ(t))≡ 0.

PROOF. Consider F(x)=
∫ x

0 α(ṡ(t)) dt . Since s ⊆ γ̃ , for any x ∈ [0, 1] there exists

a path ux : [0, 1] → M connecting s(x) and s(0) such that
∫ 1

0 α(u̇x (t)) dt = 0. Thus
F(x) ∈ P , where P = 〈

∫
z α | z ∈ H1(M)〉Z is the group of periods. Since P is finitely

generated and thus at most countable while F is continuous, we have F ≡ const and
thus α(ṡ(t))≡ 0. 2

COROLLARY 5.4. Let α be a closed one-form and γ̃ ∈ Fα . Then int(γ̃ )⊆ Sing α.

COROLLARY 5.5. For a closed one-form, Sing α is nowhere dense if and only if
dim γ̃ ≤ n − 1 for any γ̃ ∈ Fα .

LEMMA 5.6. For a closed form, Fα|Supp α = Fα .

By F |S we understand, again, a decomposition of S into path-connected
components of γ̃ ∩ S, γ̃ ∈ F .

PROOF. Consider a path-connected component X ⊆ γ̃ ∩ Supp α and a point x ∈ X .
Then x ∈ γ for some γ ∈ Fα , so γ ⊆ X . For any x ′ ∈ X \ x there exists a curve
s(t)⊆ X ⊆ γ̃ , s(0)= x and s(1)= x ′. By Lemma 5.3, α(ṡ(t))= 0; by Remark 5.1,
x ′ ∈ γ . Thus X = γ . 2

6. Collinear forms with small singular sets

We shall show that for closed one-forms with small enough singular sets,
collinearity implies coincidence of their singular foliations or, in the case of even
smaller singular sets, coincidence of their (conventional) foliations and, in particular,
their supports.

Recall that dim X stands for the covering dimension. On the set of one-forms with
dim Sing α ≤ n − 1, collinearity is an equivalence relation (Proposition 3.8).

LEMMA 6.1. Let α‖β be integrable one-forms, with dim Sing α ≤ 0. Then for any
γ̃α ∈ Fα there exists γ̃β ∈ Fβ such that γ̃a ⊆ γ̃β .

PROOF. Let p, q ∈ γ̃α , that is, there exists s : [0, 1] → M , s(0)= p, s(1)= q such
that α(ṡ(t))= 0. Let us show that β(ṡ(t))= 0, then γ̃α ⊆ γ̃β .

Suppose β(ṡ(t)) 6= 0 for some t ∈ [0, 1]. Since dim α ≤ 0, by Remark 2.2, for any
small neighbourhood U (t) there exists t ′ ∈U such that s(t ′) ∈ Supp α. By Lemma 3.3,
in a small neighbourhood of s(t ′) we have β = f (x)α, thus β(ṡ(t ′))= 0. We obtain
β(ṡ(t))= 0; this is a contradiction. 2
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FIGURE 6. Nonclosed one-forms α 6 ‖ β on M = S2, each one with two singularities; dim Sing α =
dim Sing β = 0, Supp α 6= Supp β, but Fα = Fβ = {γ̃ }, γ̃ = M .

FIGURE 7. One-forms on a 2-torus M = T 2 (far from the singular set, the coefficients are equal to 1).
Sing β = S1, Sing θ = S1, Fβ = Fθ = {M}.

PROPOSITION 6.2. Let α‖β be integrable one-forms with dim Sing α ≤ 0 and
dim Sing β ≤ 0. Then Fα = Fβ .

The converse is not true: Figure 6 shows two ‘meridional’ forms α 6 ‖ β on S2 with
different ‘poles’; however, Fα = Fβ .

The condition dim Sing α ≤ 0 in Lemma 6.1 and Proposition 6.2 cannot be relaxed
to a higher value; see the forms α and β in Figure 7. Note that an example analogous
to β can be constructed in any dimension n, with dim Sing β = 1.

LEMMA 6.3. Let α‖β be closed one-forms and dim Sing α ≤ n − 2. Then Sing α ⊆
Sing β.

PROOF. Suppose there exists a point x ∈ Sing α ∪ Supp β. Consider γβ ∈ Fβ such
that x ∈ γβ . By Proposition 4.2, γβ ⊂ Sing α. Remark 2.2 gives a contradiction. 2

In particular, the supports of collinear Morse forms (closed one-forms with non-
degenerated singularities) coincide [10]. The condition for the forms to be closed is
important; see Figure 3.

Recall that by Proposition 3.6, Fα = Fβ implies α‖β.

PROPOSITION 6.4. Let α be a closed one-form. Then Fβ = Fα implies β‖α.

PROOF. Let x ∈ S = S(α, β). Consider a curve s(t)⊆ γβ ∈ Fβ , x ∈ s(t). Then s(t)⊆
γ̃β = γ̃α ∈ Fα and, by Lemma 5.3, we have α(ṡ(t))= 0. Thus {βx = 0} ⊆ {αx = 0},
then {βx = 0} = {αx = 0} and βx‖αx . 2
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FIGURE 8. Closed collinear one-forms on a 2-torus: Sing α = ∅, Sing β = S1, and Sing θ = I × S1.

Now we are ready to formulate our main result.

THEOREM 6.5. Let α and β be closed forms with nowhere dense singular sets (see
Lemma 2.3). Then Fα = Fβ if and only if α‖β.

If, moreover, dim Sing α ≤ n − 2 and dim Sing β ≤ n − 2, then Fα = Fβ if and only
if α‖β (in particular, α‖β implies Sing α = Sing β).

PROOF. Let α‖β. Consider a leaf γ̃α ∈ Fα . Let s : [0, 1] → γ̃α be a map, from
Definition 5.2, so that α(ṡ(t))= 0 for all t ∈ [0, 1]. Then also β(ṡ(t))= 0.

Indeed, suppose at s(t) ∈ Supp β, and thus in a small neighbourhood U =
U (s(t))⊂ Supp β, the curve s is transversal to the leaves of Fβ . By Lemma 3.3, on
Supp β it holds that α = f (x)β, so we have f (x)= 0 for s ∩U . Then Lemma 4.1
gives f (x)≡ 0 in U , so U ⊆ Sing α; this is a contradiction. Thus β(ṡ(t))= 0.

We obtain γ̃α ⊆ γ̃β ∈ Fβ and vice versa, that is, Fα = Fβ . The converse
follows from Proposition 6.4. Finally, Fα = Fβ follows from Lemma 6.3 and
Proposition 3.6. 2

Note that Fα = Fβ here is not trivially true, as in Figure 7, since, by Corollary 5.4,
under the conditions of the theorem it holds that dim γ̃ ≤ n − 1.

The condition for the forms to be closed is important: in Figure 4, α‖β but Fα 6= Fβ ;
in Figure 7, Fβ = Fθ but β 6 ‖ θ . This condition is also important for the second part of
the theorem: in Figure 3, α‖β and Fα = Fβ , but Fα 6= Fβ because Sing α 6= Sing β.

The condition dim Sing β ≤ n − 2 in the second part of Theorem 6.5 is important:
in Figure 8, α‖β are closed forms and therefore Fα = Fβ , but Fα 6= Fβ because
Sing α 6= Sing β.

Finally, the condition for the singular sets to be nowhere dense is important: in
Figure 8, where Sing θ is a band, Fα 6= Fθ . Another example is Figure 2, right.

Theorem 6.5 describes the set of closed one-forms with small enough singular sets
that define the same foliation F , eliminating the requirement of coincidence of singular
sets in Theorem 3.7.

COROLLARY 6.6. Let A be the class of closed one-forms with dim Sing α ≤ n − 2.
Given a foliation F = Fα of form α ∈ A, the forms from A defining F are those
collinear with α.
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Similarly, for the class A of closed one-forms with nowhere dense singular set, the
forms from A defining F = Fα are those collinear with α.

Note that the only property of covering dimension used in our results regarding
dim Sing α ≤ n − 2 is Remark 2.2: if dim X ≤ k, then X does not contain Rk . This
weaker condition can be used in Lemma 6.3, Theorem 6.5, and Corollary 6.6: instead
of dim Sing α ≤ n − 2, it is enough to require Sing α not to contain a smooth inclusion
of Rn−1. This generalises these results to forms with dim Sing α = n − 1 whose
singular set is just not smooth enough to contain Rn−1, such as θ in Figure 4.

7. Applications of collinearity: foliations of closed one-forms

The notion of collinearity is a useful tool for studying the topology of foliations of
closed one-forms.

Since a foliation defined by a closed one-form has no holonomy, by the Reeb
local stability theorem, each of its compact leaves has a neighbourhood consisting
of compact leaves. It can be explicitly constructed as shown in the following lemma.

LEMMA 7.1. Let α be a closed one-form. Then any compact leaf γ ∈ Fα has a
cylindrical neighbourhood consisting of compact leaves.

PROOF. Let U be a neighbourhood of γ where the form is exact: α = d f ; assume
f |γ = 0. For some ε > 0, consider a neighbourhood Uε = {x ∈U | | f (x)|< ε}. Since
Supp α is open, we can choose ε such that Uε ∩ Sing α = ∅. Obviously, γ ⊂Uε. By
construction,

Uε =
⋃
|y|<ε

γy ' γ × (−ε, ε),

where γy = f −1(y) are compact leaves of Fα . 2

By choosing a suitable form β‖α, one can characterise the topology of the foliation
Fα . For example, if there exists an exact form d f ‖α with Supp d f = Supp α, then
the foliation Fα is compactifiable, that is, for any leaf γ ∈ Fα , the set γ ∪ Sing α is
compact. Indeed, the foliation Fd f = Fα is defined by levels of the function f (x),
which are compact.

Farber et al. [4, 5] gave a necessary condition for the existence of a compact leaf in
the foliation defined by a so-called transitive Morse form in terms of the cup-product:
if Fα has a compact leaf γ , [γ ] 6= 0, then there exists a closed one-form β, 0 6= [β] ∈
H1(M, Z) such that [α]^ [β] = 0. This is not a criterion; moreover, no sufficient
condition for the existence of a compact leaf can be given in purely cohomologous
terms since in any cohomology class [α], rk α > 1, there exists a form with minimal
foliation [1]; rk α is the rank of its group of periods (integrals over one-cycles).

We generalise this condition in terms of collinearity to an arbitrary closed one-form
and improve it to a criterion.

THEOREM 7.2. Let α be a closed one-form. The following conditions are equivalent.

(i) Fα has a compact leaf γ .
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(ii) There exists a smooth function f (x) such that:

(a) d f ‖α;
(b) Supp α ∩ Supp d f 6= ∅.

(iii) There exists a smooth closed one-form β such that:

(a) β‖α;
(b) Supp α ∩ Supp β 6= ∅;
(c) [β] ∈ H1(M, Z).

Given a specific γ , f , or β, the other two can be chosen such that f |γ = const and
[β] = D[γ ], where D : Hn−1(M)→ H1(M, Z) is the Poincaré duality map.

PROOF. (i)⇒ (ii). Consider the function from Lemma 7.1, defined on a cylindrical
neighbourhood γ × (−ε/2, ε/2) consisting of compact diffeomorphic leaves, and
extend it to a smooth function f , constant on leaves, such that f ≡ 0 outside
γ × (−ε, ε). Then Supp α ∩ Supp d f 6= ∅. By Proposition 3.6, d f ‖α.

(ii) ⇒ (iii). Consider β = d f ; [β] = 0.
(iii)⇒ (i). Since [β] ∈ H1(M, Z), the form β defines a map F : M→ S1,

F(x)= e
2π i

∫ x
x0
β
.

Obviously, F is constant on leaves of Fβ and the critical set of F coincides with Sing β.
Consider FS = F |S : S→ S1, where S = Supp α ∩ Supp β.

By Sard’s theorem, the map FS has a regular value y ∈ S1, and by the implicit
function theorem, F−1

S (y) is a closed codimension-one submanifold. By Corollary 4.3,
the set S consists of entire leaves of both Fα and Fβ , so a connected component of
F−1

S (y) is a compact leaf γ ∈ Fβ ∩ Fα . Thus (iii)⇒ (i).
Now, given a specific γ , the function f constructed above satisfies f |γ = const.

Let us construct β such that [β] = D[γ ].
Construct the function f as above; denote U = γ × (−ε, ε). Consider a curve

s(t)⊂U , t ∈ (−ε, ε), transversal to leaves. Obviously, the form f (x)α is closed;
denote A =

∫ ε
−ε

f (s(t))α(ṡ(t)) dt , which is finite. Let β = (1/A) f (x)α. This form is
closed and collinear with α; by construction, Supp α ∩ Supp β 6= ∅.

Consider an arbitrary (n − 1)-form θ . Since Supp β ⊆U and
∫ ε
−ε
β(ṡ(t)) dt = 1,∫

M
θ ∧ β =

∫
U
θ ∧ β =

∫
γ

i∗θ
∫ ε

−ε

β(ṡ(t)) dt =
∫
γ

i∗θ,

where i : γ ↪→ M is the inclusion map. This means that [β] = D[γ ] [3, (5.13)].
Given f , the leaf γ constructed in (ii)⇒ (iii) and (iii)⇒ (i) satisfies f |γ = const;

then a new β is constructed as above. Given β, the leaf γ constructed as in (iii)⇒ (i)
and f constructed in (i)⇒ (ii) satisfy the conditions. 2

Finally, let us show that homological properties of compact leaves are connected
with the structure of the cup-product ^ : H1(M, Z)× H1(M, Z)→ H2(M, Z).
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Denote by c(α) the maximum number of homologically independent compact
leaves of Fα . This value plays an important role in the theory of Morse form
foliations [14–16]; in particular, in this case

c(α)+ m(α)≤


b′1(M) [8],

b1(M)/2 [9],

h(M) [9],

where m(α) is the number of minimal components of Fα , b′1(M) is the first
noncommutative Betti number [1], and h(M) is the maximum rank of a subgroup
in H1(M, Z) with trivial cup-product [17], an important characteristic of the
manifold [7].

For a closed one-form α, its rank rk α is the rank of its group of periods:

rk α = rkQ

{∫
z
α

∣∣∣∣ z ∈ H1(M)

}
.

Obviously, 0≤ rk α ≤ b1(M), the first Betti number.
For an arbitrary closed one-form, obviously, c(α)≤ h(M). For forms of the

maximum possible rank for the given M , a stronger fact holds (shown in [10] for
Morse forms).

THEOREM 7.3. Assume rk α = b1(M). Then c(α)≤ rk ker^.

PROOF. For c(α)= 0 the statement is trivial, so assume there exists a homologically
nontrivial compact leaf γ ∈ Fα , [γ ] 6= 0. By Theorem 7.2, there exists a smooth
closed one-form β‖α such that [β] = D[γ ] ∈ H1(M, Z). Since β ∧ α = 0, we have
[β]^R [α] =

∑
αi ([β]^ ξi )= 0, where ^R is the cup-product on H1(M, R), {ξi }

is a basis in H1(M, Z), and [α] =
∑
αiξi .

Denote ui = [β]^ ξi ;
∑
αi ui = 0. Since rk α = b1(M), all αi are independent

over Q. Thus all ui belong to the torsion of H2(M, Z), that is, for some 0 6= k ∈ Z,
we have k[β]^ ξi = 0 for all i , so k[β] ∈ ker^. Since H1(M, Z) has no torsion,
k[β] 6= 0.

Now consider c(α) homologically independent compact leaves γ1, . . . , γc(α) and
the corresponding βi as above such that ki [βi ] ∈ ker^ for some 0 6= Ki ∈ Z. Since
the [γ1], . . . , [γc(α)] are independent, so are [βi ] = D[γi ], and therefore ki [βi ]; thus
rk ker^≥ c(α). 2
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