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We study linear subset regression in the context of the high-dimensional overall
model y = ϑ +θ ′z+ε with univariate response y and a d-vector of random regressors
z, independent of ε. Here, “high-dimensional” means that the number d of available
explanatory variables is much larger than the number n of observations. We consider
simple linear submodels where y is regressed on a set of p regressors given by
x = M′z, for some d×p matrix M of full rank p < n. The corresponding simple model,
that is, y = α +β ′x + e, is usually justified by imposing appropriate restrictions on
the unknown parameter θ in the overall model; otherwise, this simple model can be
grossly misspecified in the sense that relevant variables may have been omitted. In
this paper, we establish asymptotic validity of the standard F-test on the surrogate
parameter β, in an appropriate sense, even when the simple model is misspecified,
that is, without any restrictions on θ whatsoever and without assuming Gaussian data.

1. INTRODUCTION

The F-test is a staple tool of applied statistical analyses. It is widely used, some-
times also in situations where its applicability is debatable because underlying
assumptions may not be met. We study a situation of this kind: An F-test after
fitting a (possibly misspecified) working model. We focus, in particular, on a
scenario where the fitted model has p explanatory variables while the true model
is non-Gaussian, has d explanatory variables, with p � d, and where sample size
n is of the same order as p. Scenarios like this occur, for example, in quality
control studies, such as Souders and Stenbakken (1991), where a model with 18
explanatory variables (out of a total of about 8,000) is fit based on a sample of size
50; in time series forecasting with principal components as in Stock and Watson
(2002), who extract a handful of factors from 149 explanatory variables based on
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480 monthly observations; or in genetic analyses, such as van’t Veer et al. (2002),
who select and fit a model with 70 genes (out of a total of about 25,000) based on
a sample of size 78.

In situations like these, the question whether the fitted model has any
explanatory value is of particular interest. We show that, approximately, the usual
F-statistic is F-distributed under a corresponding null-hypothesis, and that it is
noncentral F-distributed in a local neighborhood of the null. Approximation errors
go to zero as n → ∞ if n2/ logd → 0 and if, at the same time, p is of the same
order as n; cf. Theorem 4.1 and Remark 4.3, respectively. The crucial point here
is the following: Our results are uniform over a large region of the parameter
space. In particular, our results are completely uniform in the true unknown high-
dimensional regression coefficient vector and therefore also cover situations where
the fitted model is grossly misspecified in the sense that important variables have
been omitted. Notice that, in general, it cannot be expected that the classical
F-test in such a misspecified working model is valid, because the omitted variable
bias usually leads to both mean and variance misspecification of the working
model. The setting of our analysis is nonstandard in that we require a particular
constellation of d, p, and n. This is a challenging setting of practical relevance, for
which few theoretical results are available so far. Our findings, which are given for
independent observations, also prompt the question whether similar results can be
obtained under serial correlation.

The F-statistic is exactly F-distributed in a correctly specified linear model with
Gaussian errors; and it is asymptotically F-distributed under the strong Gauss–
Markov condition on the errors if n → ∞ while the model dimension stays fixed;
cf. Anderson (1958). F-tests in correctly specified models in settings where p is
allowed to increase with n are studied, among others, by Portnoy (1984, 1985),
Boos and Brownie (1995), Akritas and Arnold (2000), Bathke and Lankowski
(2005), Harrar and Bathke (2008), and Wang and Cui (2013). In addition, there
are several viable alternatives to the F-test in potentially misspecified settings; see,
for example, Eicker (1967), Huber (1967), White (1980a, 1980b), Chen and Qin
(2010), and Zhong and Chen (2011). For further results on hypothesis testing and
marginal screening in misspecified models, see, for example, Jensen and Ramirez
(1991), Ramirez and Jensen (1991), Fomby and Hill (2003), Choi and Kiefer
(2011), Boos and Stefanski (2013), and the references therein.

On a technical level, this paper relies on Wang and Cui (2013), the corresponding
extensions and corrections in Steinberger (2016), and also on Steinberger and Leeb
(2018, 2019); all but the first of these references are based on Steinberger (2015).

The rest of the paper is structured as follows: In Section 2, we describe the
true data-generating model and the underlying parameter space. The (typically
misspecified) working model and the corresponding F-statistic are described in
Section 3. Our main theoretical result is given in Section 4, and the strategy for its
proof, including some intuitive explanations, is outlined in Section 5. A simulation
study in Section 6 demonstrates that our asymptotic approximations can “kick-in”
reasonably fast.
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2. THE TRUE MODEL

Throughout, we consider the (true) linear model

y = ϑ + θ ′z+ ε (1)

with ϑ ∈ R and θ ∈ R
d for some d ∈ N. We assume that the error ε is independent

of z, with mean zero and finite variance σ 2 > 0; its distribution will be denoted by
L(ε). Moreover, we assume that the vector of regressors z has mean μ ∈ R

d and
positive definite variance/covariance matrix �. Our model assumptions are further
discussed in Steinberger and Leeb (2019, Remark 7.1). No additional restrictions
will be placed on the regression coefficients ϑ and θ , on the moments μ and �, or
on the error distribution L(ε).

We do place some assumptions on the distribution of the explanatory variables.
First, we assume that z can be written as an affine transformation of independent
random variables. With this, we can represent the d-vector z as

z = μ+�1/2Rz̃ (2)

for a d-vector z̃ with independent (but not necessarily identically distributed)
components so thatE[z̃] = 0 andE[z̃z̃′] = Id, where �1/2 is the positive definite and
symmetric square root of �, and where R is an orthogonal (nonrandom) matrix.
Notice that R governs distributional properties of z beyond the second moments.
Our results will hold for most matrices R, in an appropriate sense (cf. the set U in
Theorem 4.1). Second, we assume that z̃ has a Lebesgue density, which we denote
by fz̃, with bounded marginal densities and finite marginal moments of sufficiently
high order. In particular, we will assume that fz̃ belongs to one of the classes
Fd,k(D,E) that are defined in the next paragraph, for appropriate constants k, D,
and E. Our assumptions on z are similar to those maintained by Bai and Saranadasa
(1996) and Zhong and Chen (2011). For later use, note that the distribution of (y,z)
in (1) and (2) is characterized by ϑ and θ , by L(ε), by � and μ, by fz̃, and by R.

Fix an integer k ≥ 1 and positive (finite) constants D and E. With this, write
Fd,k(D,E) for the class of Lebesgue densities on R

d that are products of univariate
marginal densities such that each marginal density is bounded from above by D,
and such that each univariate marginal density has absolute moments of order up
to k that are bounded by E.

We refer the reader to Steinberger and Leeb (2018) for further discussion and
several relaxations of this assumption on fz̃. In particular, we point out that also
d-variate distributions on z̃ with some dependence among components can be
allowed.

3. THE SUBMODEL AND THE F -TEST

Consider a submodel where y is regressed on x, with x given by

x = M′z (3)
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for some full-rank d × p matrix M with p < d. The observed data (yi,xi)i=1,...,n

are i.i.d. copies of (y,x) following (1) and (3). Notice that we do not require high-
dimensional covariates zi (i.i.d. copies of z in (2)) to be observed, although this
will be the case in many applications. Also notice that since we do not put any
further assumptions on M ∈R

d×p other than being full rank, M need not be known
to the user. However, often M is explicitly specified by the data analyst or obtained
by some model selection procedure in a data-driven way. For example, M can be
a selection matrix that picks out p components of the d-vector z. The following
matrix Md:3 would, for instance, correspond to choosing the first three variables
from the d available ones,

Md:3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0
...

...
...

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
d×3.

Our results can also be used when M is obtained from a data-driven model
selection procedure. This is obvious when the model selection was carried out
on a holdout set that is independent of the data used to conduct the F-test, since
conditioning on the holdout set would take us back to the situation of a nonrandom
M. Otherwise, in principle, our ideas can still be used by applying them uniformly
over all models in the candidate set. However, uniformity over the candidate set
requires restrictions on the size of that set. Extending our results to model selection
procedures which choose from practically relevant sets of candidate models is an
important but open problem (see Steinberger and Leeb, 2019, Section 6, for first
ideas in that direction). Finally, submodels with regressors of the form x = M′z
as in (3) also occur in principal component regression, partial least squares, and
certain sufficient dimension reduction methods.

We are particularly interested in situations where d is much larger than p, that
is, p � d. Trivially, we can write

y = α +β ′x+ e (4)

with e = y −α −β ′x, where α and β minimize E[(y −α −β ′x)2]. The “error” e
has mean zero (because both (1) and (4) include an intercept), and we denote its
variance by s2 = E[e2]. Note that α = ϑ + μ′θ − μ′M(M′�M)−1M′�θ and, for
later use, that

β = (M′�M)−1M′�θ and

s2 = θ ′�θ − θ ′�M(M′�M)−1M′�θ +σ 2. (5)

Irrespective of whether the working model is correctly specified, the “surrogate”
parameters α, β, and s2 are always well-defined. Here, β is our main object of
interest, instead of the underlying true parameter θ . Such surrogate parameters
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are well known in the statistics literature, certainly since Huber (1967), and have
recently gained new popularity, as witnessed by, for example, Abadie, Imbens,
and Zheng (2014), Brannath and Scharpenberg (2014), Buja et al. (2014), and
Bachoc, Leeb, and Pötscher (2019). In particular, such surrogate parameters can
be consistently estimated, in a standard M-estimation setting, by the ordinary least
squares (OLS) estimator or by robust alternatives, provided that p is not too large
relative to n (see White, 1980a, 1980b; Portnoy, 1984, 1985); cf. also Lemma A.3
in Steinberger (2015) and Lemma A.4 in Steinberger and Leeb (2019) for analyses
tailored to our present setting.

The working model (4) is correct (in the usual sense) if E[y‖z] =E[y‖x], that is,
if ϑ +θ ′z = α+β ′x or, equivalently, if ε = e. This is the case if θ lies in the column
space of M; if M is a selection matrix, this means that M′θ selects all the nonzero
components of θ . Here, we do not assume that the working model is correct. In
particular, we stress that e may differ from ε, and that e may depend on x.

When working with the simple submodel (4), a natural question is whether x
has any explanatory value for the response variable y. Given a sample of n > p+1
i.i.d. observations of y and x from (4), a classical approach to this question is to
use the F-test of the hypotheses

H0 : β = 0 versus H1 : β 	= 0. (6)

Let Y and X denote the n×1 vector of responses and the n×p matrix of explanatory
variables, respectively. Write β̂ for the OLS-estimator for β when Y is regressed
on X and a constant, set ŝ2 = ‖(In −Pι,X)Y‖2/(n−p−1), and write F̂n = F̂n(X,Y)

for the usual F-statistics for testing H0, that is,

F̂n = ‖(In −Pι)Xβ̂‖2/p

ŝ2
,

if the numerator is well-defined and the denominator is positive and F̂n = 0
otherwise. Here, PA denotes the orthogonal projection on the space spanned by
the columns of A and ι denotes the n-vector ι = (1, . . . ,1)′. Note that F̂n > 0 with
probability one by our assumptions.

H0 may be rephrased as the hypothesis that the best linear predictor of y given
x is constant. An alternative to H0 is the hypothesis that the Bayes-estimator of y
given x is constant, that is,

H̃0 : E[y‖x] is constant.

Testing this nonparametric hypothesis is more difficult. In the asymptotic setting
that we consider in the next section, however, we find that H0 and H̃0 are close to
each other in the sense that the Bayes predictor and the best linear predictor (of y
given x) are close in terms of mean-squared prediction error; see Remark 4.2 for
details.
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4. MAIN RESULT

Our main result is concerned with the asymptotic distribution of the F-statistic in a
local neighborhood of the null-hypothesis. Here, the local neighborhood is defined
through the requirement that


 = Var(β ′x)/Var(e) = β ′M′�Mβ/s2

is small. This quantity can be interpreted as a signal-to-noise ratio in (4) and
depends on θ , M, �, and σ 2 = E[ε2]; cf. (5).

If the error e in (4) is Gaussian and independent of x, then, conditional on
X, the F-statistic F̂n = F̂n(X,Y) is F-distributed with parameters p, n − p − 1
and noncentrality parameter nδ, where δ = 1

nβ ′X′(In −Pι)Xβ/s2 : P(F̂n ≤ t‖X) =
Fp,n−p−1,nδ(t), where Fp,n−p−1,nδ(t) denotes the cumulative distribution function
(c.d.f.) of the F-distribution with indicated parameters. In our present setting,
however, the error e in (4) need not be Gaussian and can (and typically will) depend
on x.

We will show that the unconditional c.d.f of F̂n can be approximated by
Fp,n−p−1,n
(t), provided that 
 is small. Note that the noncentrality parameter
nδ considered in the preceding paragraph is related to n
 in the sense that s2δ =
1
nβ ′X′(In −Pι)Xβ is the empirical variance of the vector Xβ, while s2
 = Var(x′β).
Our approximations are uniform over most parameters in the model. Only for ε, fz̃
and R, that is, for the error in (1) and for the density of the standardized explanatory
variables as well as the orthogonal matrix in (2), some restrictions are needed. We
will require a moment restriction on ε/σ , and we will require that fz̃ belongs to
one of the classes Fd,k(D,E) introduced earlier. To formulate the restriction on R,
write Od for the collection of all orthogonal d × d matrices and write νd for the
uniform distribution on that set; that is, νd is the normalized Haar measure on the
d-dimensional orthogonal group. For R, we will require that it belongs to a Borel
set U ⊆ Od that is large in terms of νd.

The following theorem is formulated in terms of suprema of certain functions
that, by definition, depend on n. Furthermore, most of the sets over which these
suprema are computed also depend on n through p = pn or d = dn. Thus, the
suprema themselves necessarily depend on n and are shown to converge to zero
as n → ∞. However, some of the sets over which the maximization is carried out
also depend on constants that are assumed to be fixed when n increases. These are
D, E, ρ, λ, L, and γ. For the proof, we operate in a triangular array setting where
everything, except the mentioned quantities, is allowed to depend on n.

THEOREM 4.1. Fix finite constants D ≥ 1 and E ≥ 1, and positive finite
constants ρ ∈ (0,1), λ, L and γ. For each full-rank d × p matrix M, each d × d
variance/covariance matrix � > 0, and each fz̃ ∈ Fd,20(D,E) there exists a Borel
set U = U(M,�,fz̃) ⊆ Od such that

sup
M

sup
�

sup
fz̃∈Fd,20(D,E)

νd(U
c)

p
logd →0
−→ 0
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and such that the following holds: If �n denotes either the quantity

sup
t∈R

∣∣∣P(
F̂n ≤ t

)
−Fp,n−p−1,n
(t)

∣∣∣ (7)

or the quantity

P

(
F̂n > F−1

p,n−p−1,0(η)
)

−�

(
−�−1(η)+√

n


√
1−p/n

2p/n

)
(8)

for some fixed η ∈ [0,1], then

sup
M

sup
ϑ,θ,L(ε),μ,σ 2,�

E|ε/σ |8+λ ≤ L

 < γ/

√
n

sup
fz̃∈Fd,20(D,E)

sup
R∈U

�n
n→∞−→

n2
logd →0, p

n →ρ

0.

This statement continues to hold if the restriction 
 < γ/
√

n in the last display
is replaced by 
 < g(n) provided that limn→∞ g(n) = 0. (Here, the suprema are
taken over all full-rank d × p matrices M, all ϑ ∈ R, all d-vectors θ and μ, all
distributions L(ε) so that ε has mean zero and finite positive variance, all positive
finite σ 2 and all symmetric and positive definite d × d matrices �, subject to the
indicated restrictions.)

Remark 4.2. Write RN and RL for the prediction risk of the Bayes predictor
and of the best linear predictor, respectively, of y given x. That is, RN = E[(y −
E[y‖x])2] and RL = E[(y − (α + β ′x))2]. The results of Steinberger and Leeb
(2019) then entail that, in the setting of Theorem 4.1, RN/RL converges to one,
uniformly over all the parameters indicated in the last display of that theorem.
In fact, the risk-ratio converges to one uniformly even if the restriction on 


is removed altogether, and a similar statement holds for the ratio of conditional
risks given x, that is, E[(y−E[y‖x])2‖x]/E[(y− (α +β ′x))2‖x]. See Theorem 3.1
of Steinberger and Leeb (2019) for a more general form of this statement under
weaker assumptions.

Remark 4.3. In Theorem 4.1, we require that the limit ρ of p/n is strictly
positive and less than one. It seems natural, though, that the result would still hold
if we only require ρ ∈ [0,1). However, the assumption that ρ > 0 is needed for
both a conceptual as well as a purely technical reason.

• From a technical point of view, we rely on the results of Steinberger (2016) and
need to verify Assumption (A2) in that reference. In particular, we need to show
that (see the proof of Theorem 4.1 in Appendix A)

1√
p

max
i=1,...,n

E[(ei/s)4‖xi]
i.p.−−−→

n→∞ 0,

where ei = yi −α−β ′xi is the error term corresponding to the ith observation pair in
the working model (4). Under the (8+λ) moment bound on |ε/σ | and the bounded
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20th moments of z̃ imposed in Theorem 4.1, the maximum in the previous display

is easily seen to be OP(n
1

2+λ/4 ). Thus, in order to get the required convergence for
arbitrary λ > 0, we need p to be of the same order as n. We conjecture that the
result still holds for ρ = 0 (and p → ∞, cf. the next bullet point), but this would
require an entirely different proof strategy while providing only limited additional
statistical insight.

• From a conceptual point of view, we need to impose at least that p → ∞ as
n → ∞, or otherwise the conclusions of Theorem 4.1, with �n as in (7) and as
in (8), are at odds with one another: Simply note that the F-distribution with p
and n − p − 1 degrees of freedom converges to 1/p times a χ2

p -distribution with
p degrees of freedom if n → ∞ and p is fixed. But this is well approximated by
a normal distribution as in (8) only if p is large. However, in the case where �n

is equal to the expression in (7), the theorem also remains true in the classical
situation where p is fixed and only n diverges to ∞, although we do not present the
details here. It can be established using Lemma A.2 (which shows that the effect of
misspecification vanishes if np/ logd is small; see also Section 5) and asymptotic
normality of the OLS estimator (e.g., White, 1980a, Lemma 2) in the correctly
specified case, which leads to an asymptotic χ2

p -distribution of the F-statistic. In
that sense, the conclusion with �n equal to (7) is more generally true than that
for (8). We include this part of the theorem nonetheless, because the Gaussian
approximation in (8) has the advantage that it is easier to interpret than the more
complicated distribution function of the noncentral F-distribution in (7); see also
the discussion in Steinberger (2016), Remark 2.4. Also note that the statement
regarding (8) in Theorem 4.1 coincides with the conclusion of Theorem 1 in Zhong
and Chen (2011) for the correctly specified Gaussian error case.

Remark 4.4 (On heteroskedasticity). The critical reader will observe that if
the working model omits relevant variables, the error term e in (4) will depend on
x. In particular, the conditional variance Var[yi‖xi] may depend on the working
regressors xi and the submodel may be heteroskedastic. Thus, the classical F-
test as studied in Theorem 4.1 does not appear to be the appropriate method of
choice here. The paradox is resolved by noticing that our results imply Var[yi‖xi] =
Var[ei‖xi] ≈ Var[ei] = s2 if np/ logd is sufficiently small (cf. Lemma A.1 for the
precise statement). If, on the other hand, the true innovations εi in model (1) are
already heteroskedastic, then this will typically propagate also to the submodel and
will invalidate the F-test. The dimension effect mentioned above will not alleviate
this problem.

In general, and irrespective of the source of heteroskedasticity in the working
model (4), instead of conducting a standard F-test, one may follow the classical
Eicker–Huber–White (Eicker, 1967; Huber, 1967; White, 1980a, 1980b) approach
to heteroskedasticity robust testing (see also Preinerstorfer and Pötscher, 2016).
In the context of model (4), since E[eixi] = 0 (and under additional boundedness
assumptions, cf. White, 1980a, Assumptions 1–4), the heteroskedasticity corrected
test for the regression parameter γ = (α,β ′)′ ∈ R

p+1 suggested in Eicker (1967,
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Theorem 3.2) and White (1980a, Theorem 1) is asymptotically valid (as n → ∞
and d,p fixed) in the sense that its asymptotic rejection probability is equal to
the nominal significance level. Of course, this adjusted test will have less power
than the standard F-test if the model (4) is linear and homoskedastic, which is
why in practice one might be inclined to simply use the standard F-test if there is
no strong indication of a violation of linearity and homoskedasticity. Our results
justify the use of the standard F-test under omitted variables when d � np. We
also point out that the classical Eicker–Huber–White heteroskedasticity robust test
is no longer statistically valid in the asymptotic framework p/n → ρ ∈ (0,1) we
consider here (cf. Cattaneo, Jansson, and Newey, 2018; Dobriban and Su, 2018; Li
and Yao, 2019; Jochmans, 2020), but valid alternatives for the high-dimensional
regime have been suggested in these references.

5. PROOF STRATEGY AND INTUITION

The proof of Theorem 4.1 relies mainly on the results of Steinberger (2016) and
Steinberger and Leeb (2018). Steinberger (2016) (building on Wang and Cui,
2013) derives the asymptotic distribution of the F-statistic under local alternatives
in a correctly specified but non-Gaussian p-parameter linear model and in the
p/n → ρ ∈ (0,1) framework. The main result in that reference is identical to that
of Theorem 4.1 in the case where �n is given by the expression in (8), but with
U = Od and with the important additional assumption that the working model M
is linear and homoskedastic, that is

E[e‖x] = 0 and Var[e‖x] = Var[e] = s2. (9)

The core of the rather technical proof in Steinberger (2016) relies on a martingale
central limit theorem applied to a quadratic form in the independent error terms
(see Lemma 6.1 in that reference). Notice that due to the potentially omitted
variables, (9) is not necessarily true in our present setting. Thus, one main
innovation of the present work is to extend these existing results on the asymptotic
distribution of the F-statistic to potentially misspecified submodels (i.e., models
where (9) holds only approximately).

This is where the results of Steinberger and Leeb (2018) come into play. They
consider the omitted variables setting that is also adopted here, with the dimension
d of the true linear model far exceeding the dimension p of the working model.
They essentially show that for the set U in Theorem 4.1 and for R ∈ U, we have

E[e‖x] ≈ 0 and Var[e‖x] ≈ Var[e] = s2, (10)

in an appropriate sense and uniformly in θ ∈ R
d, provided that p/ logd is suffi-

ciently small (see the beginning of Section A for details). To shed some light on
this result, consider the noiseless case σ 2 = 0 = ϑ , μ = 0, ‖θ‖ = 1 and p = 1.
Thus, y = θ ′z and x = m′z, for some unit vector m ∈R

d. Now, for most θ and m on
the unit sphere in R

d (measured by the uniform distribution), y = θ ′z = ∑d
j=1 θjzj

and x = m′z = ∑d
j=1 mjzj will be approximately jointly normally distributed if
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d is large (provided that the distribution of z is sufficiently regular). If they
were exactly jointly Gaussian, then we would, of course, have E[y‖x] = βx and
Var[y‖x] = Var[y]. However, making these approximations uniform in θ ∈ R

d is
far from trivial (cf. Hall and Li, 1993; Leeb, 2013; Steinberger and Leeb, 2018).

The main task in the proof of Theorem 4.1 is therefore to make the link between
(10) and (9) rigorous. To that end, we consider an “artificial” sample Y∗ consisting
of elements

y∗
i := α +β ′xi + e∗

i

with

e∗
i := s

ei −E[ei‖xi]√
Var[ei‖xi]

(cf. Lemma A.1 in Appendix A). Clearly, (9) is satisfied for e∗
i instead of e. In

Lemma A.2, using the results of Steinberger and Leeb (2018), we then prove
an equivalence of experiments type result, showing that the F-statistic F̂n(X,Y)

computed from the original data X and Y, and that computed from X and Y∗, are
close to each other in probability. More precisely, we show that

nk
(

F̂n(X,Y)− F̂n(X,Y∗)
)

i.p.−→ 0,

for every k ∈ N, provided that np/ logd → 0. The additional n in np/ logd → 0
comes from the fact that we need to apply the approximation in (10) to get e∗

i ≈ ei,
for each i = 1, . . . ,n.

Finally, we want to point out that an alternative to relying on approximations
as in (10) could be to directly analyse the asymptotic distribution of the F-
statistic in the misspecified case. Building on basic observations from the fixed
(nonrandom) design Gaussian linear model under omitted variable bias, one
would expect a doubly noncentral F-distribution as the limiting distribution with
noncentrality parameters somehow depending on the approximation errors in
(10). Intuitively, these noncentrality terms should reduce to those of the singly
noncentral F-distribution known from a correct Gaussian linear model, provided
that the approximations in (10) are accurate. However, in the random design
case, one would also have to deal with the heteroskedastic variances Var[yi‖xi],
i = 1, . . . ,n, and it is far from obvious how exactly these will affect the limiting
noncentrality parameters, or if the limit is even F-distributed at all. This approach
may be technically quite involved and is not further explored here.

6. SIMULATION ANALYSIS

Theorem 4.1 is an asymptotic result. In this section, we study a range of non-
asymptotic scenarios through simulation to investigate how soon these asymptotic
approximations become accurate. We consider a rather small sample size of n = 50
and look at different configurations of the model dimensions d and p with p < d,
and also at different points in parameter space.
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The theorem contains two asymptotic statements, one about the distribution
of the F-statistic and one about the size of the set U. For the distribution of
the F-statistic, we compare the rejection probability of the F-test under the null-
hypothesis with the nominal significance level α = 0.05. The nominal significance
level provides a natural benchmark. (Clearly, one can also investigate the power
of the F-test through simulation experiments, but, unlike the significance level, it
is less obvious what the right benchmark for the power should be.) In particular,
we simulate 1,000 independent realizations Fj,r, j = 1, . . . ,1,000 of the F-statistic
at sample size n = 50 under the null for each point in parameter space (the
index r will be explained shortly), and compare the empirical significance level
pr = 1,000−1 ∑1,000

j=1 1{Fj,r > F−1
p,n−p−1,0(1−α)} with the nominal level α.

Gauging the size of U is more difficult, because that set is not given explicitly.
We proceed as follows: We fix all the parameters in (1) and (2) except for the
orthogonal matrix R in (2). We then simulate 100 independent realizations Rr

of R, compute pr as outlined above, r = 1, . . . ,100, and finally compute D =
100−1 ∑100

r=1 |pr − α|. If Rr ∈ U, then pr should be close to α, in view of the
last display in Theorem 4.1. We use D and the empirical distribution of the pr,
r = 1, . . . ,100, as indicators for the size of U.

The remaining parameters in (1) and (2), and the submodel matrix M are
chosen as follows for any fixed values of d and p: The intercept terms ϑ and
μ are set to zero, for convenience. We do not include an error term in the true
model, that is, we set σ 2 = 0, because the effect of misspecification becomes
more pronounced when the error variance σ 2 is small.1 (Note that the case where
σ 2 = 0 is not covered by Theorem 4.1 per se, but inspection of the proof shows
that our results also apply in this case; cf. Remark A.3.) For z̃, we consider product
distributions with zero mean and i.i.d. components from the student-t distribution
with 2, 3, and 5 degrees of freedom, as well as from the centered exponential,
uniform, Bernoulli{−1,1} and Gaussian distributions. (Note that the scaling of
these distributions is inconsequential, because of the scale-invariance of the F-
statistic F̂(X,Y) in both arguments and the fact that we do not include an error term
in the full model, that is, scaling of z̃i is equivalent to scaling of both yi = θ ′zi and
xi = M′zi. Similarly, also the scaling of θ and � has no impact on the value of the
F-statistic.) For �, we chose a spiked covariance matrix � = Udiag(λ1, . . . ,λd)U′
with eigenvalues λ1 = λ2 = 400 and λ3 = ·· · = λd = 1 and an orthogonal matrix of
eigenvectors U chosen randomly from the uniform distribution on the orthogonal
group.2 For the matrix M, which describes the working model, we take M equal

1Note that if the error variance σ 2 = Var[εi] in the true model yi = θ ′zi + εi is overly large, that is, much larger
than θ ′�θ , then the scaled true model is essentially given by yi/σ ≈ εi/σ . Since the F-statistic is scale-invariant
and ε is independent of X, we then have F̂(X,Y) = F̂(X,Y/σ) ≈ F̂(X,(εi)

n
i=1/σ) = F̂(X,(εi)

n
i=1). In that case, the F-

statistic will essentially follow the null-distribution and we expect a rejection probability close to the nominal level,
irrespective of θ and R.
2The spiked covariance model corresponds to a factor model where the identity matrix is perturbed by a low rank
matrix. It has received much attention in the literature on high dimensional random matrices (e.g., Johnstone, 2001;
Baik and Silverstein, 2006; Cai, Ma, and Wu, 2013; Donoho, Gavish, and Johnstone, 2018). We have repeated the
simulations also with covariance matrices of an AR(1) process and obtained essentially the same results.
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Table 1. Average absolute differences D̄ = 1
100

∑100
r=1 |p̄r − α| of simulated

rejection probabilities p̄r = 1
1000

∑1000
j=1 1{Fj,r > F−1

p,n−p−1,0(1 −α)} and nominal
significance level α = 0.05 of the F-test for H0 : β = 0.

d\p 1 2 5 25 1 2 5 25

t(5) Exp(1)

2 0.077 0.141

4 0.056 0.076 0.093 0.140

10 0.032 0.047 0.066 0.052 0.071 0.109

50 0.009 0.013 0.017 0.019 0.014 0.015 0.020 0.033

100 0.007 0.008 0.009 0.010 0.009 0.009 0.012 0.015

200 0.006 0.007 0.006 0.008 0.007 0.007 0.006 0.009

t(3) Unif[−1,1]

2 0.188 0.025

4 0.158 0.225 0.020 0.023

10 0.122 0.167 0.238 0.011 0.014 0.016

50 0.062 0.084 0.116 0.123 0.006 0.006 0.007 0.007

100 0.048 0.061 0.081 0.082 0.005 0.006 0.006 0.005

200 0.033 0.044 0.057 0.055 0.005 0.005 0.005 0.006

t(2) Gauss

2 0.335 0.005

4 0.332 0.458 0.006 0.005

10 0.301 0.411 0.563 0.005 0.005 0.006

50 0.250 0.335 0.456 0.518 0.005 0.006 0.005 0.005

100 0.228 0.314 0.412 0.457 0.005 0.005 0.006 0.005

200 0.212 0.286 0.383 0.407 0.005 0.005 0.006 0.006

to the d × p matrix whose kth column is the kth standard basis vector in R
d,

1 ≤ k ≤ p. In other words, we consider a submodel that includes only the first
p regressors (out of d). For the parameter θ ∈ R

d, we need to ensure that the null-
hypothesis is satisfied, that is, that β = (M′�M)−1M′�θ = 0. By construction
of �, M′�M is regular, and we choose θ = (Id − P�M)V/‖(Id − P�M)V‖, for
one realization of V ∼ N(0,Id), to guarantee that M′�θ = 0. Notice that, in
particular, this construction leads to a true model that contains variables which
are not included in the working model (first p regressors).

The results of the simulations are summarized in Table 1 and Figures 1 and 2.
From Table 1, the overall picture we get is consistent with what was predicted
by our theory. For all distributions except the Gaussian, the average absolute
difference between the true (simulated) rejection probabilities and the nominal
level decreases as d increases. This phenomenon is most pronounced for the
exponential distribution, which has a finite moment generating function around
the origin, and is weakest for the t(2)-distribution, which does not even have
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Figure 1. Box-plots of simulated rejection probabilities (p̄r)
100
r=1 (gray crosses) of the F-test with

n = 50, p = 5 and d = 10,50,100,1,000, for different design distributions. Every r ∈ {1, . . . ,100}
corresponds to a different Rr applied to the standardized design z̃.

finite variance. For uniformly distributed design, which is bounded, the effect
of misspecification on the size of the F-test is relatively mild already for small
dimensions. In the Gaussian case, all sub-models of the form (4) are correct in the
sense that the error e is Gaussian with mean zero and independent of x, so that
theoretically the corresponding panel in Table 1 should contain only zeros. The
numbers therefore represent only the simulation error and serve as a benchmark
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Figure 2. Box-plots of simulated rejection probabilities (p̄r)
100
r=1 (gray crosses) of the F-test with

n = 50, p = 5 and d = 10,50,100,1,000, for Bernoulli{−1,1} and exponential design distributions and
a benchmark panel of Binomial samples with different success probabilities.

for the other panels. We also see a monotonic increase, in the deviation of the size
of the F-test from the nominal level, as the dimension p of the submodel increases,
which was also suggested by our theory. However, if we fix the ratio p/d = 1/2,
that is, if we move along the staircase pattern in each of the panels, except for the
heavy tailed distributions t(3) and t(2), we still see the effect of misspecification
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decrease as d increases. This suggests that convergence of n2/ log(d) ∼ p2/ log(d)

to zero, as required in Theorem 4.1, may not be necessary, at least in the scenarios
considered here.

In Table 1, the effect of the orthogonal matrix R on the actual significance level
of the F-test was compressed into one summary statistic, namely the mean absolute
deviation from the nominal significance level. To get a more comprehensive
picture, Figures 1 and 2 show plots of the sample (p̄r)

100
r=1 (gray crosses) and

superimposed box-plots for different design distributions. Due to limited space
we present only the results for submodels of dimension p = 5. In view of Theorem
4.1, we expect that the size of U, that is, the family of matrices R for which (7) and
(8) get small, grows with d. Consequently, we expect that many of the p̄r should
be close to α = 0.05. On the other hand, if d is not large then many matrices R will
lead to a biased rejection probability due to misspecification of the working model.
In other words, if d is not large, then for many matrices R the approximations in
(10) will be poor, which invalidates the use of the conventional F-test. This is
exactly what we observe in Figures 1 and 2. For small values of d, the rejection
probabilities p̄r are systematically biased and we see an increased variability of
their values due to the variation in the choice of Rr (compare benchmark panel in
Figure 2). Both the bias and the variability in p̄r reduce when d increases, which
is what we expected, as for large d, most Rr will be favorable and we obtain small
misspecification errors uniformly over these favorable Rr. What is remarkable is
the systematic over-rejection in case of the t- and exponential distribution and
the under-rejection for Bernoulli and uniformly distributed designs. We currently
cannot explain the mechanism that is responsible for this pattern. Finally, the
benchmark panel shows i.i.d. samples (p̃r)

100
r=1 with p̃r ∼Binomial(1,000,α)/1,000

and success probabilities α = 0.05,0.1,0.15,0.2. This provides some idea what
portion of the variability observed in the other panels is due to random simulation
error. Clearly, the results in the benchmark panel could have been equivalently
obtained by repeating the previous simulation for the F-test with Gaussian design
at significance levels α = 0.05,0.1,0.15,0.2.

Remark 6.1. Finally, we want to point out once more that, as already described
in Section 5, there are two possible sources of error that could lead to the observed
deviations of the true rejection probabilities from the nominal ones for small values
of d. First, the data are non-Gaussian and therefore the F-statistic will not be
exactly F-distributed in finite samples (recall that here n = 50) even if the working
model is correctly specified. Secondly, the approximations in (10) may be poor due
to the omitted variable bias, which will also lead to a bias in the distribution of the
F-statistic. In light of simulation results in Steinberger (2016, Figure 3), however,
the small sample non-Gaussianity effect appears to be rather negligible already for
n = 50 even for heavy tailed and asymmetric error and design distributions. Thus,
most of the deviations from the nominal rejection probabilities we observe seem
to be attributable to violations of (10). Our theory predicts that theses violations
diminish as d increases relative to p and n.
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APPENDIX
A. Proofs

We begin with some preliminary considerations that connect this paper with the results of
Steinberger and Leeb (2018). In particular, we use Theorem 2.1, parts (ii) and (iii), in that
reference with Z = z̃ and τ = 1/2: If fz̃ ∈Fd,20(D,E), then the assumptions of that result are
satisfied in view of Example 3.1 in Steinberger and Leeb (2018). The theorem guarantees
existence of a Borel subset G = G(fz̃) ⊆ Vd,p of the Stiefel manifold Vd,p of order d × p,
that depends on the density fz̃, such that for all t > 0 both

sup
B∈G

P
(∥∥E[z̃‖B′z̃]−BB′z̃

∥∥ > t
)

and

sup
B∈G

P
(∥∥E[z̃z̃′‖B′z̃]− (Id −BB′ +BB′z̃z̃′BB′)

∥∥ > t
)

are bounded from above by

1

t
d−1/20 +4γ

p

logd
, (11)

such that

νd,p(Gc) ≤ κd
−(1−20γ

p
logd )/20

, (12)

where νd,p denotes the uniform distribution on the Stiefel manifold, and such that the set
G is right-invariant under the action of Op, that is, GR = G whenever R ∈ Od . Here, the
constant γ = γ(D) depends only on D, and the constant κ = κ(E) depends only on E.

For any full rank d × p matrix M, any symmetric positive definite d × d matrix � and
fz̃ ∈ Fd,20(D,E), we define the set

U := U(M,�,fz̃) :=
{

R ∈ Od : R′�1/2M(M′�M)−1/2 ∈ G(fz̃)
}

.

Now take a random matrix U that is uniformly distributed on Od and another random matrix
V that is uniformly distributed on Op, such that U and V are independent, and note that by
right-invariance of G,

νd(U) = P(U�1/2M(M′�M)−1/2 ∈ G)

= P(U�1/2M(M′�M)−1/2V ∈ G) = νd,p(G),

because �1/2M(M′�M)−1/2 ∈ Vd,p and νd,p is characterized by left and right invariance
under the appropriate orthogonal groups. It follows that νd(Uc) is bounded by the expression
on the right-hand side of (12) whenever fz̃ ∈ Fd,20(D,E), which establishes the first claim
of Theorem 4.1. The proof of the second claim is more elaborate.

The results in the preceding paragraph also show that the error e in the working model (4)
is such that E[e‖x] is approximately zero and Var[e‖x] is approximately constant, provided
that R ∈ U: we first re-write the error e in a convenient form. Set θ̃ = R′�1/2θ and M̃ =
R′�1/2M. Then it is easy to see that e = θ̃ ′(Id −PM̃)z̃+ ε and hence

E[e‖x] = θ̃ ′(Id −PM̃)
{
E[z̃‖PM̃z̃]−PM̃z̃

}
and

E[e2‖x]− s2 = θ̃ ′(Id −PM̃)
{
E[z̃z̃′‖PM̃z̃]− ((Id −PM̃)+PM̃z̃z̃′PM̃)

}
(Id −PM̃)θ̃; (13)
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see also (4) and (5). Our goal is to show that the expressions in the preceding two displays
are approximately zero. To this end, we focus on the expressions in curly brackets and use
Cauchy–Schwarz: For each t > 0, we have

P(|E[e‖x]| > t) ≤ P

(∥∥∥E[z̃‖PM̃z̃]−PM̃z̃
∥∥∥ > t/‖(Id −PM̃)θ̃‖

)
and

P(|E[e2‖x]− s2| > t) ≤ P
(∥∥∥E[z̃z̃′‖PM̃z̃]− ((Id −PM̃)+PM̃z̃z̃′PM̃)

∥∥∥> t/‖(Id −PM̃)θ̃‖2
)

.

Now if R ∈ U(M,�,fz̃), then by definition of U, we have M̃(M̃′M̃)−1/2 ∈ G(fz̃). Because
conditioning on PM̃z̃ is equivalent to conditioning on (M̃′M̃)−1/2M̃′z̃, it follows that

P(|E[e‖x]| > t) is bounded from above by (11) with t replaced by t/‖(Id − PM̃)θ̃‖ and

that P(|E[e2‖x]− s2| > t) is bounded by (11) with t replaced by t/‖(Id −PM̃)θ̃‖2.
The consideration in the preceding paragraph suggests that the effect of misspecification

in (4), where E[e‖x] may be nonzero and Var[e‖x] may be nonconstant, may be negligible
in an asymptotic setting where p/ logd becomes small, provided that fz̃ ∈ Fd,20 and that
R ∈ U(M,�,fz̃). This idea is formalized in the following two results, which show that the
distribution of certain statistics is unaffected asymptotically if the error e is replaced by a
substitute error e∗ that has mean zero and constant variance conditional on x. The following
results are stated for sequences where the data-generating model (1) and (2) as well as the
working model (4) are allowed to depend on n, that is, a “triangular array” setting where all
parameters depend on n.

LEMMA A.1. Fix finite positive constants D and E. For every n ∈ N, let pn ≤ dn be
positive integers so that npn/ logdn → 0 as n → ∞. For each n, consider (y,z,x) as in
(1)–(3) but with dn and pn replacing d and p, respectively, with fz̃ ∈ Fdn,20(D,E) and
with R ∈ U(M,�,fz̃). And for each n, consider a sample of n i.i.d. observations (yi,zi,xi),
1 ≤ i ≤ n, of (y,z,x), stack the values of the individual variables into a vector Y and
matrices Z and X, respectively, and write ε = Y −αι−Xβ = (e1, . . . ,en)′ for the vector of
errors from (4). Finally, define a vector ε∗ = (e∗

1, . . . ,e
∗
n)′ of substitute errors through e∗

i =
s(Var[ei‖xi])

−1/2(ei −E[ei‖xi]). Then, for every k ∈ R and (possibly random) symmetric
idempotent n×n matrices Pn,

nk‖ε − ε∗‖/s
p−→ 0 and (14)

nk|ε′Pnε − ε∗′Pnε∗|/s2 p−→ 0, (15)

as n → ∞. As a by product, we also obtain that

max
i=1,...,n

|Var[ei‖xi]/s2 −1| p−→ 0.

Proof. First, note that Var[ei‖xi] = Var[yi‖xi] = Var[θ ′zi‖xi] + σ 2 > 0, so that e∗
i is

well defined (almost surely). For the claim in (14), fix k ∈ R and t > 0, and consider
P(nk‖ε − ε∗‖/s > t) ≤ nP(n2k+1|e1 − e∗

1|2/s2 > t2). Now, using the simple observation

|√Var[e1‖x1]− s| = |Var[e1‖x1]− s2|/|√Var[e1‖x1]+ s| ≤ |Var[e1‖x1]− s2|/s, we get

|e1 − e∗
1|/s = (s2 Var[e1‖x1])−1/2

∣∣∣e1(
√

Var[e1‖x1]− s)+ sE[e1‖x1]
∣∣∣

≤ s√
Var[e1‖x1]

(
|e1|

s

|Var[e1‖x1]− s2|
s2

+ |E[e1‖x1]|
s

)
,
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and furthermore

P(n2k+1|e1 − e∗
1|2/s2 > t2)

≤ P

(
nk+1/2

∣∣∣∣∣ |e1|
s

|Var[e1‖x1]− s2|
s2

+ |E[e1‖x1]|
s

∣∣∣∣∣ > t/
√

2

)

+ P

(
s2

Var[e1‖x1]
> 2

)

≤ P

(∣∣∣∣Var[e1‖x1]

s2
−1

∣∣∣∣ >
1

2

)
+P

(
nk+1/2 |e1|

s

|Var[e1‖x1]− s2|
s2

> t/23/2

)

+P

(
nk+1/2 |E[e1‖x1]|

s
> t/23/2

)

≤ P

(
|Var[e1‖x1]− s2|

s2
>

1

2

)
+P

(
nk+3/2 |Var[e1‖x1]− s2|

s2
> t/23/2

)

+P

( |e1|
s

> n

)
+P

(
nk+1/2 |E[e1‖x1]|

s
> t/23/2

)
. (16)

The claim (14) will follow if each of the four terms in (16) is of the order o(1/n). Because
fz̃ ∈ Fdn,20(D,E) and R ∈ U(M,�,fz̃), the considerations leading up to Lemma A.1 apply.
Also note that ‖(Id −PM̃)θ̃‖2 ≤ s2. For the last term in (16), we obtain, for every t > 0, that

P

(
nk+1/2 |E[e1‖x1]|

s
> t

)
≤ t−1nk+1/2d−1/20

n +4γ
pn

logdn
,

and the upper bound goes to zero as o(1/n) in view of the assumption that npn/ logdn → 0.
For the second-to-last term in (16), we have P(|e1|/s > n) ≤ n−2

E[e2
1/s2] = 1/n2. For the

second term in (16), we proceed like for the last term in (16). In particular, we obtain, for
any t > 0, that

P

(
nk+3/2 |Var[e1‖x1]− s2|

s2
> t

)
(17)

≤ P

(
nk+3/2 |E[e2

1‖x1]− s2|
s2

> t/2

)
+P

(
nk+3/2 |E[e1‖x1]|2

s2
> t/2

)

≤ 2

t
nk+3/2d−1/20 +

(
2

t
nk+3/2

)1/2
d−1/20 +8γ

pn

logdn
. (18)

Again, this upper bound goes to zero as o(1/n) because npn/ logdn → 0. Note that the
considerations in the preceding display also entail that P(maxi=1,...,n |Var[ei‖xi]/s2 −1| >
t) ≤ nP(|Var[e1‖x1]/s2 −1| > t) → 0.

For the claim in (15), write

|ε′Pnε − ε∗′Pnε∗| = |(ε − ε∗)′Pnε + ε∗′Pn(ε − ε∗)|
≤ ‖ε − ε∗‖‖ε‖+‖ε − ε∗‖‖ε∗‖,
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and note that by definition of e∗
1 and the variance decomposition formula, we have

E[e∗
1] = E[E[e∗

1‖x1]] = 0 and Var[e∗
1] = E[Var[e∗

1‖x1]] + Var[E[e∗
1‖x1]] = s2, so that by

independence ‖ε∗‖/s = OP(
√

n). Premultiplying by nk/s2 in the previous display and
applying (14) finishes the proof of the second claim. �

LEMMA A.2. Fix K ∈ (0,∞) and an integer l ≥ −1. Under the assumptions and in the
notation of Lemma A.1, assume that E[|ε/σ |4] ≤ K for each n, that 
 = Var(β ′x)/Var(e) =
O(nl) and that limsupn→∞ pn/n < 1. Define substitute data Y∗ = ια +Xβ +ε∗. Then, for
every k ∈ R, we have

nk
(

F̂n(X,Y)− F̂n(X,Y∗)
) p−→ 0

as n → ∞.

Proof. The idea is to use Lemma A.1 to approximate F̂n(X,Y) by F̂n(X,Y∗). In
particular, we will show that on some event Cn to be defined below, we have

nk
∣∣∣F̂n(X,Y)− F̂n(X,Y∗)

∣∣∣ ≤ nk+l+1|δ(1)
n −1|F̂n(X,Y∗)/nl+1 +nk|δ(2)

n |,

where δ
(1)
n converges to one and δ

(2)
n converges to zero, both at an arbitrary polynomial rate

in n, and where F̂n(X,Y∗)/nl+1 = OP(1). The probability of Cn will be shown to converge
to one. The claim of the lemma follows from this.

Set U = [ι,X], where ι = (1, . . . ,1)′ ∈ R
n. With this, define the event Cn = {detU′U 	=

0,ε′(In − PU)ε > 0,ε∗′(In − PU)ε∗ > 0}. On Cn, by block matrix inversion, we have
[0,Ipn ](U′U)−1U′ = [X′(In −Pι)X]−1X′(In −Pι). Using the abbreviation V = (In −Pι)X,
we thus see that β̂ = β + (V ′V)−1V ′ε and that the F-statistic F̂n(X,Y) can be written as

F̂n(X,Y) = n−pn −1

pn

‖Vβ̂‖2

‖(I −PU)Y‖2
= n−pn −1

pn

ε′PVε +2ε′Vβ +β ′V ′Vβ

ε′(In −PU)ε

= ε∗′(In −PU)ε∗
ε′(In −PU)ε

F̂n(X,Y∗) + ε′PVε − ε∗′PVε∗ +2(ε − ε∗)′Vβ

pnε′(In −PU)ε/(n−pn −1)
.

This establishes a representation F̂n(X,Y) = δ
(1)
n F̂n(X,Y∗) + δ

(2)
n on Cn. On the com-

plement of Cn, we set δ
(1)
n = δ

(2)
n = 0, say. We next show that for every fixed k ∈ R,

nk(δ
(1)
n −1) = oP(1) and nkδ

(2)
n = oP(1).

To verify the claimed properties of these quantities, on Cn, consider first

δ
(1)
n −1 = ε∗′(In −PU)ε∗ − ε′(In −PU)ε

s2(n−pn −1)

s2(n−pn −1)

ε′(In −PU)ε
.

Using Lemma A.1, we see that the first fraction in this representation multiplied by nk

converges to zero in probability. The second fraction obviously equals s2/ŝ2. Define ŝ∗2

like ŝ2 (see the discussion following (6)) but with Y∗ replacing Y. We show that ŝ2/s2 =
ŝ∗2/s2 + (ŝ2 − ŝ∗2)/s2 → 1 in probability. To see this, first note that the convergence to
zero of (ŝ2 − ŝ∗2)/s2 follows again from Lemma A.1. For the ratio ŝ∗2/s2, convergence to
1 in probability follows, e.g., from Lemma C.1 in Steinberger (2016), upon verifying its
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assumptions. To this end, it remains to show that n−1 ∑n
i=1E[(e∗

i /s)4‖xi] = OP(1). Using

(a+b)4 ≤ 23(a4 +b4), for a,b ∈ R, we have

1

n

n∑
i=1

E[(e∗
i /s)4‖xi] ≤ max

j=1,...,n

(
s2

Var[ej‖xj]

)2
1

n

n∑
i=1

E[(ei/σ −E[ei/s‖xi])
4‖xi]

≤ max
j=1,...,n

(
s2

Var[ej‖xj]

)2

24 1

n

n∑
i=1

E[(ei/s)4‖xi].

The maximum in the preceding display converges to one in probability if minj Var[ej/s‖xj]
converges to one in probability, which follows from Lemma A.1. The arithmetic mean of
the conditional fourth moments is OP(1) if the unconditional mean of fourth moments is
bounded in n. To this end, note that we have e = θ̃ ′(Id −PM̃)z̃+ε and s2 = ‖(Id −PB̃)θ̃‖2 +
σ 2; cf. (5) and the discussion right before (13). With this, we get

(ei/s)4 =
(
θ ′(Id −PM̃)z̃i/s+ εi/s

)4 ≤ 23[(θ̃ ′(Id −PB̃)z̃i/s)4 + (εi/s)4]

≤ 23[(θ̃ ′(Id −PB̃)z̃i/‖θ̃ ′(Id −PB̃)‖)4 + (εi/σ)4],

and take expectations. The claim follows now from E[(εi/σ)4] ≤ K and the fact that the
fourth spherical moment of z̃i is uniformly bounded in view of Rosenthal’s inequality
(Rosenthal, 1970, Theorem 3) and the assumption that fz̃ ∈ Fdn,20(D,E). Note that this
also entails P(Cc

n) ≤ P(ŝ∗2 = 0) +P(ŝ2
n = 0) ≤ P(|ŝ∗2/s2 − 1| > 1/2) +P(|ŝ2/s2 − 1| >

1/2) → 0.

To see that also δ
(2)
n behaves as desired, first note that on Cn,

nkδ
(2)
n = nk

pn

(
ε′PVε − ε∗′PVε∗

s2
+ 2(ε − ε∗)′Vβ

s2

)
s2

ŝ2
.

The factor nk/pn can be bounded by κnk−1 for some constant κ by assumption;
the ratio s2/ŝ2 was shown to converge to one in probability in the preceding para-
graph. The difference of quadratic forms converges to zero in probability by Lemma
A.1, even when multiplied by κnk−1. Noting that ‖Vβ‖ = ‖(In − Pι)Xβ‖ ≤ ‖(In −
Pι)X(M̃′M̃)−1/2‖‖(M̃′M̃)1/2β‖, the scaled second term in parentheses, that is, (nk/pn)2(ε−
ε∗)′Vβ/s2, can be bounded by

2κnk+l/2 ‖ε − ε∗‖
s

‖(M̃′M̃)1/2β‖
snl/2

∥∥∥(In −Pι)X(M̃′M̃)−1/2
∥∥∥/n,

where nk+l/2‖ε−ε∗‖/s converges to zero in probability by Lemma A.1 and n−lβ ′(M̃′M̃)β/

s2 = n−l
 = O(1) by assumption. It remains to show that the largest singular value of
(In −Pι)X(M̃′M̃)−1/2/n is bounded in probability. Due to the projection onto the orthogonal
complement of ι, the distribution of this quantity does not depend on the parameter μ,
which is why we may assume that μ = 0 for this part of the argument. Abbreviate
X̄ = X(M̃′M̃)−1/2, x̄i = (M̃′M̃)−1/2xi and consider ‖(In − Pι)X̄/n‖2 ≤ trace(X̄′X̄/n2) =∑n

i=1 ‖x̄i‖2/n2. Taking expectation, noting that E[‖x̄1‖2] = pn and pn/n = O(1), we arrive
at the desired boundedness in probability.
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It remains to show that F̂n(X,Y∗)/nl+1 = OP(1). To this end, recall that ŝ∗2/s2 → 1 in
probability, and one easily verifies that

E

[
ŝ∗2

s2
F̂n(X,Y∗)/nl+1

]
= E

[
(ε∗′PVε∗ +2ε∗′Vβ +β ′V ′Vβ)/(pns2nl+1)

]

= 1

nl+1
+ n−1

npn




nl
= O(1);

here, the first equality is obtained by arguing as in the first paragraph of the proof but with
Y∗ replacing Y, and the second equality follows upon noting that β ′V ′Vβ = trace(In −
Pι)Xββ ′X′ and that Xβ is a vector with i.i.d. components, each of which has variance
β ′M′�Mβ = s2
. �

Proof of Theorem 4.1. Define U = U(M,�,fz̃) as in the beginning of the appendix and
note that the first statement in the theorem, concerning νd(U), has already been established
there. For the second statement, concerning �n, let pn ≤ dn be positive integers so that
n2pn/ logdn → 0 and so that pn/n → ρ ∈ (0,1) as n → ∞. For each n, consider a sample of
i.i.d. observations (yi,zi,xi), 1 ≤ i ≤ n, as in Lemma A.1, so that the underlying quantities
(i.e., M, ϑ , θ , L(ε), μ, �, 
, fz̃, and R) satisfy the restrictions in the suprema in the last
display of Theorem 4.1. For given M, we stress that the restriction on 
 implicitly also
restricts the parameters θ , � and σ 2; see the definition of 
 at the beginning of Section 4
as well as the relations in (5). We have to show that �n → 0 as n → ∞.

Set an = 2(1/pn +1/(n−pn −1)) and bn =
√

(1−(pn+1)/n)(1−1/n)
2pn/n for each n, and define

Y∗ for each n as in Lemma A.2. We first show that

a−1/2
n (F̂n(X,Y∗)−1)−√

n
bn
w−−−−→

n→∞ N(0,1) (19)

by verifying the assumptions of Theorem 2.1(i) in Steinberger (2016) for the sample
(y∗

i ,xi)
n
i=1, with the symbols sn, 
γ and R0 in that reference equal to an, 
, and [0,Ipn ],

respectively. Clearly, under the imposed conditions 
 < γ/
√

n or 
 < g(n) = o(1), we
have 
 = o(p/n), because p/n → ρ ∈ (0,1). In particular, we need to verify conditions
(A1).(a,b,c,d) and (A2) in that reference. The design conditions (A1).(a,c,d) are easily
verified by use of Lemma A.2(i) in Steinberger (2016). And our assumptions that fz̃ ∈
Fdn,20(D,E) and that pn < n−1 imply condition (A1).(b). Assumption (A2) on the scaled
errors e∗

i /s is established by an argument similar to the one also used in the third paragraph
of the proof of Lemma A.2 but for the (8 + κ)-th moment instead of the fourth moment:
Simply decompose e∗

i = e◦
i ε̃i, with e◦

i =
√

s2/Var[ei‖xi] and ε̃i = ei −E[ei‖xi], and use
Lemma A.1 as before to get maxi=1,...,n e◦

i → 1 in probability. Then, the assumption that

E[|ε/σ |8+κ ] ≤ K and the fact that the marginals of z̃ ∈ Fdn,20(D,E) have bounded 20th
moment, together with Rosenthal’s inequality establish the boundedness of E[|ε̃i/s|8+κ ],
which is sufficient for (A2), provided that pn is of the same order as n (cf. Remark 4.3).

Using Lemma A.2, noting that a−1/2
n = O(

√
n), it follows that (19) continues to hold with

F̂n(X,Y) replacing F̂n(X,Y∗).
Now standard arguments conclude the proof: First, note that an appropriately scaled and

centered F-distributed random variable Fpn,n−pn−1,n
 with pn and n − pn − 1 degrees of
freedom and noncentrality parameter n
 is also asymptotically normal, that is,

a−1/2
n (Fpn,n−pn−1,n
 −1)−√

n
bn
w−−−−→

n→∞ N(0,1), (20)
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because pn/n → ρ ∈ (0,1) implies that pn → ∞. Hence, we have

sup
t∈R

∣∣∣P(
F̂n(X,Y) ≤ t

)
−P(Fpn,n−pn−1,n
 ≤ t)

∣∣∣
= sup

t∈R

∣∣∣P(
a−1/2

n (F̂n(X,Y)−1)−√
n
bn ≤ t

)

− P

(
a−1/2

n (Fpn,n−pn−1,n
 −1)−√
n
bn ≤ t

)∣∣∣
≤ sup

t∈R

∣∣∣P(
a−1/2

n (F̂n(Y,X)−1)−√
n
bn ≤ t

)
−�(t)

∣∣∣
+ sup

t∈R

∣∣∣P(
a−1/2

n (Fpn,n−pn−1,n
 −1)−√
n
bn ≤ t

)
−�(t)

∣∣∣,
and the last two suprema converge to zero in view of Polya’s theorem, which establishes
that �n → 0 in case �n equals (7). Finally, it is elementary to verify that �n also converges
to zero in case �n equals (8): This follows from (19) with F̂n(X,Y) replacing F̂n(X,Y∗),

because the quantiles of the central F-distribution satisfy a−1/2
n (F−1

pn,n−pn−1,0(α)− 1) →
�−1(α). �

Remark A.3. Inspection of the proof reveals that the assumption that σ 2 is positive is
used only to guarantee that Var[e‖x] > 0 almost surely (and hence also s2 = Var[e] > 0).
If this assumption is dropped, we thus see that �n (defined in Theorem 4.1) converges to
zero along sequences of parameters as used in the proof of Theorem 4.1, provided that
Var[θ ′z‖x] > 0 almost surely for each n (as then Var[e‖x] = Var[y‖x] > 0 a.s.).
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