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ON THE CONFORMAL DEFORMATION OF
RIEMANNIAN STRUCTURES

YOON-TAE JUNG

In this paper, we study a nonlinear partial differential equation on a compact
manifold;
Au+ru+ Hu® =0, u>0,

where a > 1 is a constant, r is a positive constant, and H is a prescribed smooth
function.

Kazdan and Warner showed that if A\;(g) < 0 and H < 0, where H is the
mean of H, then there is a constant 0 < ro(H) € oo such that one can solve
this equation for 0 < r < ro(H), but not for » > ro(H). They also proved that
if ro(H) = o0, then H(z) < 0(#£0) for all z € M. They conjectured that this
necessary condition might be sufficient.

I show that this conjecture is right; that is, if H(z) <0(#0) forallz e M,
then ro(H) = oo.

1. INTRODUCTION

In this paper, we consider the problem of describing the set of scalar curvature
functions associated with Riemannian metrics on a given connected, but not necessarily
orientable, compact manifold of dimension greater than or equal to 3.

We shall call metrics g and g, pointwise conformal if g; = p(z)g for some positive
function p € C*®(M). Now if a given metric g on M, where dimM = n > 3, has
scalar curvature k € C*°(M) and we seek K € C°(M) as the scalar curvature of the
metric g; = u*/(*~2)g pointwise conformal to g, then u(> 0) must satisfy

(1-1) 4(_n.—_-2i)Au —_ ku + Ku("+2)/("_2) — 0,
n —

where A is the Laplacian in the g metric.

In carrying out analysis of (1.1), the sign of the lowest eigenvalue A;(g) of the
linear part of (1.1), in other words,

(12) 1= -2 g4 ks = M(0)s,
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plays a prominent part because the sign of A;(g) is a conformal invariant. In this paper
our results are proved in the case of A;(g) < 0. For basic existence theorems, we use
the method of upper and lower solutions ([2, p.370-371] or [5, Lemma 2.6)).

2. MAIN RESULTS

Let M be a compact connected n-dimensional manifold, which is not necessarily
orientable and possesses a given Riemannian structure g. We denote the volume element
of this metric by dV', the gradient by V, and the mean value of a function f on M is

written f, that is,
— 1
f= vol(M) /Mf dv.

Welet H, ,(M) denote the Sobolev space of functions on M whose derivatives through
order s are in Ly(M). The norm on H,,,(M) will be denoted by || ||, ,. The usual
L2(M) inner product will be written (,).

LEMMA 1. Assume K < 0. Then K is the scalar curvature of some metric
pointwise conformal to the given metric g if and only if X\;(g) < 0.

PROOF: See Theorem 4.1 in [5]. 0

The above Lemma 1 shows that if X;(g) < 0, then one can always pointwise
conformally deform g to a metric of constant negative scalar curvature ¥ = —c¢, where
¢ > 0 is a constant. Thus (1.1) reads

4n-1)

(2.1) —

Au + cu = —Ku(mt(=2) 4 50,
In order to understand (2.1), one must first free it from geometric considerations
and consider the equation

(2.2) —Lu=Au+ru=~Hu®, u>0,

where @ > 1 and » > 0 are constants, and H € C*°(M). Throughout this paper,
we shall assume that all data (M, metric g, and curvature K, et cetera) are smooth
merely for convenience.

Kazdan and Warner showed that if A;(g) <0 and H < 0, then there is a constant
0 < r¢(H) < oo such that one can solve (2.2) for 0 < 7y < ro(H ), but not for » > ro(H)
(see Proposition 4.8 in [3]). They also showed that if 7o(H) = oo then H(z) < 0 for
all z € M. In fact, they proved that if H(zo) > 0 for some zo € M, then ro(H) < oo
(see Proposition 4.10 in [5]). Since A;(g) < 0, Theorem 2.11 in [5] implies that H # 0.
Kazdan and Warner [5] conjectured that this necessary condition might be sufficient,
such as in Theorem 10.5(a) of [4]. Now we shall prove that this necessary condition is
also a sufficient condition, that is, if H(z) < 0(# 0) for all z € M, then 7o (H) = oo.
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LEMMA 2. (Existence of lower solutions.) Let H € Lp(M) with p > dim M.
If A\, < 0, then given any positive continuous function u on M, there is a function
u_ € Hy 5(M) with 0 < u_ < u satisfying Lu_ < Hu® , thatis, Au_+ru_+Hu® > 0.

PROOF: See Lemma 2.8 in [5], substituting —r for h, where r is a positive con-
stant. 0

We consider the differential operator
(2.3) Ly =—-Av—aHv,

where « is a positive constant and H < 0(# 0). For each a > 0, if A;(a) is the lowest
eigenvalue of (2.3), then

As(a) = min 2l ¥ (02 —aBo)
el

= min ([[o]} + (v, —aHv)), |l =1,v € Hy (M),

vE Hl'z(M)

Note that the eigenfunction is never zero (see Remark 2.4 in [5]). Let ¢, > 0 be the
corresponding eigenfunction of (2.3) with ||¢4)|, =1, that is,

(2.4) A¢a + aHpa = —A1(a)da.

By integrating (2.4) over M, we can see that A;(a) > 0. Now in order to investigate
the behaviour of A1{a) as a — oo, we shall prove the following key lemma.

LEMMA 3. Let M be a connected compact manifold without boundary. Let L be
as in (2.3) and X (a) be the corresponding eigenvalue of L for a > 0. If H < 0(#0),
then A\;(a) — oo as @ — oo.

PROOF: For each a >0,

A¢a + aH¢a = _Al(a)¢a1

where ¢, > 0 is the corresponding eigenfunction with ||¢a]l, = 1. To prove our
conclusion we have several steps.

STEP 1. {Ai(a)}aen is a strictly increasing sequence. Let a; < az. Since Adq, +
a1H¢a1 = _Al(a1)¢al s

/M Aoy 9oy dV + ay /M Héo, $a,dV = —Ai(a1) /M bay PaydV.

But the fact that M = ¢ implies that

/M Do, P, dV = /M bay Do, dV
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and also ¢,, satisfies
Abda, + azHpa, = —A1(a2)de,,

so we find that
(28) (o -0a) [ HbuaydV = (ha(as) = ha(@)} [ fudeydV.

M
Since @oys Pa; > 0 and H < 0(#0) on M and a3 < a3, Aj(a) < A;(az). Hence
{M1(@)}aen is a strictly increasing sequence. From (2.5) we find that
[A1(a@2) — A(e1)| € ||H||o |@1 — az|. This means that A;(a) is continuous with re-
spect to o.

Suppose {A1(a)}aen is bounded. Then there exists Ag such that A;(a) < Ap and
A1(a) = Ao as a — oo.

STEP 2. If A(a) — Ao as @ — oo, then a [ (~H)¢2dV — 0 and a [ (—H)padV — 0
as a — 0o.

The variational characterisation of \;(a) implies that
Ma(a+0) = [Véarel} +(@+0) [ (~H)6dV
—[Vbasdll +a [ (-H)B2 0V +£ [ (BN iV
> Ma(e) + € [ (~B)haadV.
Hence for all £> 0,
M(a+8) - (@) > £ [ (~HME V.
Since Aj(a) — Ap as a — 0o, for all € > 0 there exists @ > 0 such that

Pa(e) = Xl < 2.

Then
£
@+0) [(~Bedv =217 ¢ [ -V
<2 e+ - M)
< ";" o — M(a)| <&

https://doi.org/10.1017/50004972700028458 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700028458

(5] Conformal deformation of Riemannian structures 311

for sufficiently large £ > 0. Hence a [ (—H)¢2dV — 0 as a — oco. By the Halder’s
inequality,

af (-H)mv( <a [1H|¢aav

<o{ ) ] )

= vol (M) - |H]|_ @ / (—H)$2dV, (note H € C=(M))

so the second assertion in Step 2 follows easily.

STEP 3. Since [¢2dV =1 and Ady + aHpa = ~A1(a)éa,
/ |Véa|* dV = a / He2dV + A (a).

But 'anH¢f,dV| — 0 as @ — oo and Aj(a) — Ao, hence {f,, |Véal’ dV}aen is
bounded. Therefore, {¢a}aen is bounded in H; ,(M). By Kondrakov Theorem ({1},
Theorem 2.34), {¢a}taen is compact in Ly(M). Thus there exists ¢g € L2(M) such
that ¢,, — ¢¢ strongly, where {pn,} is a subsequence of {@a}acn. We may assume
that ¢o — ¢o in Lp(M). Since [,,¢2dV =1 and ¢o > 0 on M, [, ¢3dV =1 and
$0 > 0 (#0). (See [1], Proposition 3.43.) Note that [, #odV > 0. But for each a,

(2.6) /M AdodV +a /M HéodV = —\s(a) /M $eodV.
Since A;(a) — Ay and

[ gatv- [ ¢odv| < /M Iba — bl dV

£ constant X |[¢a — ¢ol|§ — 0 as a — oo,

the right side of (2.6) converges to —X [y, $odV # 0. But [, AdodV = 0 and
| oy HdadV| — 0 as @ — oo, 5o the left side of (2.6) converges to 0 as a — oo.

Hence we have a contradiction. Thus {)A;(a)}aen is not bounded, that is, A;(a) — oo

as a — o0.

Using the previous key Lemma 3, we can prove the following main theorem, that
is, the necessary condition H(z) < 0(# 0) for ro (H) = oo is also sufficient.

THEOREM. (Existence of upper solutions). If H(z) < 0(# 0) for all z € M, then
(2.2) has a solution for any positive constant 7, so ro(H) = oco.

PRroOOF: If we show that Lu, > Hu% for some positive function uy > 0 and any
positive constant » > 0, that is,

Au.,. + rug +H‘u.: < 0,
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then Lemma 2 implies that there exists a solution of (2.2), so ro(H) = co. Let r be
any positive constant. If we put u, = e, then Au, = e¥ (A¢ + |V¢|2) . Hence

Duy +ruy + Huf <
<9

0
if and only if O+ |V +r+ He® <0

for some function 9 and ¢ =a -1 > 0.

If Lv = —Av — aHv, then by Lemma 3 the first eigenvalue A;(a) of L converges
to co as @ — oo and A;(a) is continuous with respect to a. Hence there is a constant
a > 0 such that A (a) =r. Let ¢ be the corresponding eigenfunction, that is,

Ap+aHp = -A(a)p = —-rp, ¢>0.

Put ¢ = e¥. Then
2

A$+.V:7: +r+aH=0.

Define ¢ = i + A for some positive constant A. Therefore,
AP+ |VY|* 4+ He™

~ ~ 2 ~
=0+ 'W +r+ He¥te

=—-aH + He";"'a

=H (e";"’"\ - a) <0

for sufficiently large A, since H < 0(# 0). This completes our theorem. 1]
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