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DOES DC IMPLY AC� , UNIFORMLY?

ALESSANDRO ANDRETTA AND LORENZO NOTARO

Abstract. The axiom of dependent choice (DC) and the axiom of countable choice (AC�) are two
weak forms of the axiom of choice that can be stated for a specific set: DC(X ) asserts that any total binary
relation on X has an infinite chain, whileAC�(X ) asserts that any countable collection of nonempty subsets
of X has a choice function. It is well-known that DC ⇒ AC� . We study for which sets and under which
hypotheses DC(X ) ⇒ AC�(X ), and then we show it is consistent with ZF that there is a set A ⊆ R for
which DC(A) holds, but AC�(A) fails.

§1. Introduction. The axiom of choice (AC) is the statement ∀X AC(X ), where

X �= ∅ ⇒ ∃f : P (X ) → X ∀A ⊆ X (A �= ∅ ⇒ F (A) ∈ A). (AC(X))

The function f is a choice function for X. Observe that AC(X ) if and only if “X can
be well-ordered”.

By restricting the choice function we have that AC(X ) ⇒ ACI (X ), where

For any sequence (Ai)i∈I of nonempty subsets of X there is

(ai)i∈I such that ∀i ∈ I (ai ∈ Ai). (ACI (X))

Of particular interest is the case when I = �: the axiom of countable choice (AC�)
is ∀X AC�(X ). (In the literature CC is another name for this axiom.)

Let R be a binary relation on a set X.
• An R-chain is a sequence (xn)n∈� of elements of X such that xi R xi+1 for all
i ∈ �. The element x0 is the starting point of the chain.

• An R-cycle is a finite string x0, ... , xn of elements of X such that xi R xi+1 for
all i < n and xn R x0.

• R is total on X if ∀x ∈ X ∃y ∈ X x R y.
Any R-cycle yields an R-chain.

The axiom of dependent choice (DC) is ∀X DC(X ), where

For any nonempty, total R ⊆ X 2 there is (xn)n∈� such that ∀n ∈ � (xn R xn+1) .
(DC(X))

The axioms DC and AC� are ubiquitous in set theory and figure prominently in
many areas of mathematics, including analysis and topology. They are probably the
most popular weak forms of the axiom of choice, since they are powerful enough to
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2 ALESSANDRO ANDRETTA AND LORENZO NOTARO

enable standard mathematical constructions, yet they are weak enough to avoid the
pathologies given by AC.

It is well-known that DC ⇒ AC� (Theorem 2.4), so one may ask if this result
holds uniformly, that is: does DC(X ) ⇒ AC�(X ) for all X? This implication holds
for many Xs, but in order to prove it in general, AC�(R) must be assumed (Theorem
2.8). In Section 4, we will show that the assumption AC�(R) cannot be dropped, as
it is consistent with ZF that there is a setA ⊆ R for which DC(A) holds, but AC�(A)
fails (Theorem 4.1). In Section 5, we discuss some complementary results along with
the question on the definability of the set constructed in Section 4.

1.1. Notation. Our notation is standard(see, e.g., [3]). We write X � Y to say
that there is an injection from X into Y, and X ≈ Y to say that X and Y are
in bijection. Ordered pairs are denoted by (a, b), finite sequences are denoted by
〈a0, ... , an〉 or by (a0, ... , an), countable sequences are denoted by 〈an | n ∈ �〉 or by
(an)n∈� . The concatenation of a finite sequence s with a finite/countable sequence t
is the finite/countable sequence s�t obtained by listing all elements of s and then all
elements of t. The set of all finite (countable) sequences from X is <�X (respectively:
�X ). The collection of all finite subsets of a set X is [X ]<� .

If Y is a subset of a topological space X, then Cl(Y ) is its closure, and ClA(Y ) :=
Cl(Y ) ∩ A is the closure of Y ∩ A with respect to A ⊆ X .

Following set-theoretic practice, we refer to members of �� or P (�) as “reals”,
and we identify R with the Baire space �� or with the Cantor space �2, depending
on what is most convenient for the argument at hand.

§2. Basic constructions. For the reader’s convenience, let us recall a few notions
and results that will be used throughout the paper.

A set X is finite if X ≈ n for some n ∈ �; otherwise it is infinite. A set X is
Dedekind-infinite if � � X ; otherwise it is Dedekind-finite or simply D-finite. Every
finite set is D-finite, and assuming AC� the converse holds.

It is consistent with ZF that infinite D-finite sets exist (see Section 3.1). By [6], it
is even consistent that every set is the surjective image of a D-finite set.

Let R be a binary relation. With abuse of notation, we write

R(x) := {y | x R y}

for the set of all ys that are related to x, and

R�A := R ∩ (A× A)

for the restriction of R to the set A. The transitive closure of R

R+ := {(x, y) | ∃〈y0, ... , yn〉 (x R y0 R y1 R ... R yn R y)}

is the smallest transitive relation containing R.
The next few results are folklore.

Proposition 2.1. Let X be a set.

(a) If Y is the surjective image of X, then DC(X ) ⇒ DC(Y ).
(b) DC(X ) is equivalent to the seemingly stronger statement: For any total
R ⊆ X × X and for any a ∈ X , there is an R-chain starting from a.
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DOES DC IMPLY AC� , UNIFORMLY? 3

(c) If ∅ �= An ⊆ X and An ∩ Am = ∅, then DC(X ) implies that there is a choice
function for the An’s.

(d) DC(X × �) ⇒ AC�(X ).

Proof. (a) Assume DC(X ) and let R be a total relation on Y and let F : X → Y
be a surjection. The relation S = {(x, x′) ∈ X 2 | (F (x), F (x′)) ∈ R} is total on X,
so by assumption there is an S-chain (xn)n∈� . Then (F (xn))n∈� is an R-chain.

(b) Suppose R ⊆ X 2 is total and let a ∈ X . Observe that S = R�R+(a) is total
on R+(a). By part (a) DC(R+(a)) holds, hence there is an S-chain (yn)n∈� . Let
(x0, ... , xk+1) witness that y0 ∈ R+(a), i.e., x0 = a, xk+1 = y0 and xi R xi+1 for all
i ≤ k: then (x0, ... , xk)�(yn)n∈� is an R-chain starting from a.

(c) Let R be the relation on
⋃
n An ⊆ X defined by

x R y ⇔ ∃n ∈ � (x ∈ An ∧ y ∈ An+1) .

By part (a) DC(
⋃
n An) holds, hence by part (b) there is an R-chain (an)n∈� in⋃

n An starting from any a0 ∈ A0. Observe that any R-chain (an)n∈� with a0 ∈ A0 is
such that an ∈ An for all n ∈ �.

(d) Given ∅ �= An ⊆ X , let Ān = An × {n} ⊆ X × �. By hypothesis and part (c),
there is a sequence (an, n)n∈� such that (an, n) ∈ Ān, hence an ∈ An. �

The gist of part (c) of Proposition 2.1 is that we can use dependent choice rather
than countable choice whenever the sets we choose from are disjoint. Here is an
example of such an application.

Lemma 2.2. Suppose X is a first countable T1 space and a ∈ Cl(A) \ A where
A ⊆ X . Assume DC(A) holds. Then there are distinct an ∈ A such that an → a. In
particular � � A.

Proof. Let {Un | n ∈ �}be a neighborhood base for a, withUn+1 ⊆ Un for every
n. Given that X is T1, we can assume, by passing to a subsequence if needed, that
An = (Un \Un+1) ∩ A is nonempty for every n. Since the Ans are pairwise disjoint
and nonempty, by Proposition 2.1(c) there is a sequence of (an)n∈� of distinct
elements of A such that an ∈ An for every n. �

Lemma 2.3. Let X be a set.

(a) X × 2 � X ⇒ X × � � X .
(b) If X �= ∅, then <�(<�X ) � <�X , so <�X × 2 � <�X .
(c) ∀X ∃Y (X ⊆ Y ∧ <�Y � Y ).

Proof. (a) If f0, f1 : X → X are injections with ran(f0) ∩ ran(f1) = ∅, then
define an injection F : X × � → X as follows:

F (x, 0) = f0(x), F (x, n + 1) = f1 ◦ ··· ◦ f1︸ ︷︷ ︸
n+1 times

◦f0(x).

(b) If X is a singleton, then <�X ≈ �, and the result follows at once. If X has at
least two elements, the result follows from [1, Proposition 2.1].

(c) Given X take Y = V� with sufficiently large limit �. �
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4 ALESSANDRO ANDRETTA AND LORENZO NOTARO

From Lemma 2.3 and Proposition 2.1(d) we obtain at once:

Theorem 2.4. (a) If X × 2 � X , then DC(X ) ⇒ AC�(X ). In particular:
DC(R) ⇒ AC�(R).

(b) ∀X ∃Y (X ⊆ Y ∧ (DC(Y ) ⇒ AC�(Y )).
(c) DC ⇒ AC� .

Lemma 2.5. (a) Let A ⊆ R. Then AC�(A) ⇒ A is separable.
(b) AC�(R) ⇔ ∀A ⊆ R (A is separable).
(c) Suppose A ⊆ R contains a nonempty perfect set, and assume DC(A). Then

DC(R) holds, and hence AC�(A) holds.

Proof. As A is second countable, part (a) of Lemma 2.5 follows.
(b) The direction (⇒) is a direct consequence of part (a). For the other direction,

fix a sequence (An)n∈� of nonempty subsets of �� and consider the setA = {〈n〉�x |
n ∈ � and x ∈ An}. From an enumeration of a dense subset of A (which exists by
assumption), we can extract a choice function for (An)n∈� .

(c) If P ⊆ A is perfect, then P ≈ R, and since A surjects onto P, then DC(R)
holds, and hence AC�(R) holds. �

Note that the implication in part (a) of Lemma 2.5 cannot be reversed: if A ⊆ R
is a witness of the failure of countable choice, then the same is true of the separable
set A ∪Q.

2.1. AC�(X ) follows from DC(X ) together with AC�(R). Let us start with the
following combinatorial result that might be of independent interest. It is stated
for families of sets indexed by an arbitrary set I, but when I = � the assumption
ACI (P (I )) becomes AC�(R).

Lemma 2.6. Let (Xi)i∈I be nonempty sets, and assume ACI (P (I )). Then there are
(Yi)i∈I such that ∅ �= Yi ⊆ Xi and for all i, j ∈ I eitherYi = Yj or elseYi ∩ Yj = ∅.

Proof. Let F :
⋃
i∈I Xi → P (I ), F (x) = {i ∈ I | x ∈ Xi} and let

Ai = {a ∈ ran(F ) | i ∈ a}. Observe that for all x ∈
⋃
i∈I Xi and all i ∈ I

x ∈ Xi ⇔ F (x) ∈ Ai . (1)

In particular, ∅ �= Ai ⊆ P (I ) for all i ∈ I . By ACI (P (I )) pick ai ∈ Ai , and let
Yi = F –1({ai}) ⊆

⋃
i∈I Xi . Then

Yi = {x | F (x) = ai} = {x | {j | x ∈ Xj} = ai},

and since i ∈ ai , then Yi ⊆ Xi . The sets Yi need not be distinct as the ais need not
be distinct, but if ai �= aj , then Yi ∩ Yj = ∅. �

By (1) if the Xis are finite, then so are the Ais. If, moreover, P (I ) is linearly
orderable (e.g., when I is well-orderable), then the ais can be chosen without
appealing to any choice axiom. Therefore:

Corollary 2.7. If P (I ) is linearly orderable and (Xi)i∈I are finite, nonempty sets,
then there are ∅ �= Yi ⊆ Xi such that for all i, j ∈ I eitherYi = Yj or elseYi ∩ Yj = ∅.

Theorem 2.8. Assume AC�(R), then ∀X (DC(X ) ⇒ AC�(X )).
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Proof. Assume DC(X ) and let ∅ �= Xn ⊆ X for n ∈ �. By Lemma 2.6, there are
∅ �= Yn ⊆ Xn such that for all n,m ∈ � either Yn = Ym or else Yn ∩ Ym = ∅. Let
I ⊆ � be such that {Yi | i ∈ I } = {Yn | n ∈ �} and Yi ∩ Yj = ∅ for every distinct
i, j ∈ I . If we can find yi ∈ Yi for all i ∈ I , then we can extend this to a choice
sequence yn ∈ Yn ⊆ Xn for all n ∈ � as required. If I is finite, then the yis can be
found without any appeal to choice. If I is infinite, then I ≈ � so we can find the
yis by Proposition 2.1(c). �

The following result follows from the argument of Theorem 2.8 together with
Corollary 2.7.

Corollary 2.9. ∀X (DC(X ) ⇒ AC<�� (X )), where AC<�� (X ) asserts that every
countable collection of nonempty finite subsets of X has a choice function.

2.2. Does DC(X ) imply AC�(X )? By Theorems 2.4 and 2.8,

∀X (DC(X ) ⇒ AC�(X )) (2)

follows from either one of the following assumptions:
• X × 2 � X for all infinite X,
• AC�(R).

Sageev in [10] proved that “X × 2 � X for all infinite X” does not imply AC�(R),
while Monro in [9] proved that DC (and hence the weaker AC�(R)) does not imply
“X × 2 � X for all infinite X”. So neither assumption implies the other.

The obvious question is if (2) is a theorem ofZF. Suppose that there is a set X such
that DC(X ) ∧ ¬AC�(X ). By the proof of Lemma 2.6 the set A := F [X ] ⊆ P (�) is
such that DC(A) holds, as A is the surjective image of X, and AC�(A) fails, as
otherwise, arguing as in Theorem 2.8, AC�(X ) would hold. Therefore if (2) fails,
then the witness of this failure can be taken to be a subset of R. In Section 4 we
construct a model of ZF in which

∃A ⊆ R
(
DC(A) ∧ ¬AC�(A)) (3)

showing that (2) is not a theorem of ZF.
By Lemma 2.5(c), any A as in (3) cannot contain a nonempty perfect set.

Moreover, such a set A also needs to be Dedekind-infinite: indeed, A cannot be
closed, as otherwise, by the usual Cantor–Bendixson argument, it would either be
countable, contradicting ¬AC�(A), or else it would contain a nonempty perfect
set, which we already excluded; therefore A is not closed, and, by Lemma 2.2, A is
Dedekind-infinite.

It can be shown that (3) fails both in Cohen’s first model (Proposition 3.4) and
in the Feferman–Levy model (Proposition 5.3), and hence in both these models (2)
holds.

2.3. An equivalent formulation of DC. A tree on X is a T ⊆ <�X that is closed
under initial segments, that is if t ∈ T and s ⊆ t then s ∈ T . A tree T on X is pruned
if for every t ∈ T there is s ∈ T such that t ⊂ s . A branch of T is a b : � → X
such that ∀n ∈ � (b�n ∈ T ). A tree T is ill-founded if it has a branch; otherwise it is
well-founded. Let

Any nonempty pruned tree on X is ill-founded (DC�(X))
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6 ALESSANDRO ANDRETTA AND LORENZO NOTARO

and letDC� be ∀X DC�(X ). AsDC is equivalent toDC� (Corollary 2.11), the axiom
of dependent choice is often stated as DC� . The advantage of this formulation is
that it can be generalized to ordinals larger than �.

Proposition 2.10. DC�(X ) ⇔ DC(<�X ), for every nonempty set X.

Proof. (⇒) Suppose R is a binary relation on <�X such that ∀s ∃t (s R t). If
∅ R ∅, then 〈∅, ∅, ...〉 is an R-chain as required, so we may assume otherwise. Let
R′ ⊆ R be the sub-relation on <�X defined by

s R′ t ⇔ s R t ∧ ∀t′ (s R t′ ⇒ lh(t′) ≥ lh(t)).

The relation R′ is total and any R′-chain is an R-chain. Then

T = {t ∈ <�X | ∃s0, ... , sn (∅ R′ s0 R
′ ... R′ sn ∧ t ⊆ s0�s1� ...�sn)}

is a pruned tree on X, so it has a branch. By the minimality assumption of R′,
given a branch b of T one can construct inductively an R′-chain (sn)n∈� such that
s0

�s1� ...�sn ⊆ b for all n.
(⇐) If T is a pruned tree on X, let R ⊆ T × T be defined by

s R t ⇔ s ⊂ t ∧ lh(s) + 1 = lh(t).

As T ⊆ <�X then DC(T ) holds, and since R is total, as T is pruned, there is an
R-chain. Any such chain yields a branch of T. �

Corollary 2.11. DC ⇔ DC� .

Proposition 2.12. Let X be a set.

(a) DC�(X ) ⇒ DC(X ).
(b) DC�(X ) ⇒ AC�(X ).

Proof. X injects into <�X , so part (a) holds by Proposition 2.10.
For part (b) argue as follows. If (An)n∈� is a sequence of nonempty subsets of X,

then {〈x0, ... , xn–1〉 | ∀i < n (xi ∈ Ai)} is a pruned tree on X, and any branch of it
is a sequence (an)n∈� such that an ∈ An for all n ∈ �. �

In light of Proposition 2.12, our main result, Theorem 4.1, tells us it is consistent
with ZF that there is a set A ⊆ R for which DC(A) holds but DC�(A) fails.

§3. Symmetric extensions. The model we construct in Section 4 is an iterated
symmetric extension. For the reader’s convenience, let us recall a few facts about
forcing and symmetric extensions.

If P is a forcing notion, i.e., a preordered set with a maximum 1P, we convene
that p ≤P q means that p is stronger than q. When there is no danger of confusion,
we drop the subscript P. Dotted letters ẋ, ẏ, ... vary over the class of P-names,
x̌ is the canonical P-name for x, while Ġ is the P-name for the generic filter. If
F is a set of P-names, then, following Karagila’s notation [5], F • is the P-name
{(ẋ, 1) | ẋ ∈ F }. This notation extends naturally to ordered pairs and sequences, so
(ẋ, ẏ)• := {{ẋ}•, {ẋ, ẏ}•}• and so on. If G ⊆ P is V-generic, then ẋG is the object
in V[G ] obtained by evaluating ẋ with G.
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Let P be a forcing notion. Every automorphism � ∈ Aut(P) acts canonically on
P-names as follows: given ẋ a P-name,

�ẋ = {(�ẏ, �p) | (ẏ, p) ∈ ẋ}.

Lemma 3.1 (Symmetry Lemma, [3, Lemma 14.37]). Let P be a forcing notion,
� ∈ Aut(P) and ẋ1, ... , ẋn be P-names. For every formula ϕ(x1, ... , xn)

p � ϕ(ẋ1, ... , ẋn) ⇔ �p � ϕ(�ẋ1, ... , �ẋn).

Let G be a subgroup of Aut(P). A nonempty collection F of subgroups of G is a
filter on G if it is closed under supergroups and finite intersections. A filter F on G
is said to be normal if for every H ∈ F and � ∈ G, the conjugated subgroup �H�–1

belongs to F as well.
We say that the triple 〈P,G,F〉 is a symmetric system if P is a forcing notion, G

is a subgroup of Aut(P) and F is a normal filter on G. Given a P-name ẋ, we say
that ẋ is F-symmetric if there exists H ∈ F such that for all � ∈ H , �ẋ = ẋ. This
definition extends by recursion: ẋ is hereditarily F-symmetric, if ẋ is F-symmetric
and every name ẏ ∈ dom(ẋ) is hereditarily F-symmetric. We denote by HSF the
class of all hereditarily F-symmetric names.

Theorem 3.2 [3, Lemma 15.51]. Suppose that 〈P,G,F〉 is a symmetric system
and G ⊆ P is a V-generic filter. Denote by N the class {ẋG | ẋ ∈ HSF}, then N is a
transitive model of ZF, and V ⊆ N ⊆ V[G ].

The class N is also known as a symmetric extension of V. Symmetric extensions
are often used to produce models of ZF in which the axiom of choice fails. We focus
on this notion by discussing the construction due to Cohen of a symmetric extension
in which there is an infinite, D-finite set of reals. This model will be the first step in
the forcing iteration in Theorem 4.1.

3.1. The first Cohen model. Let P0 be the forcing that adds countably many Cohen
reals, i.e.,

P0 = {p | ∃I ⊆ � (p : I → <�2, and I is finite)},

with p ≤ q if dom(p) ⊇ dom(q) and p(n) ⊇ q(n) for all n ∈ dom(q). Although
this is not the standard presentation of such a forcing, this way of defining P0 will
become useful in the Section 4. Let ȧn be the canonical name for the nth Cohen real,
that is,

ȧn = {( ˇ(k, i), p) | p ∈ P0 ∧ n ∈ domp ∧ p(n)(k) = i}. (4)

Observe that Ȧ := {ȧn | n ∈ �}• is forced to be a dense subset of �2.
Every permutation � on � induces an automorphism of P0 as follows: given

p ∈ P0, we let �p ∈ P0 be defined by

∀n ∈ dom(p)
(
�p(�n) = p(n)

)
.

We conflate the notation by using the same symbol � to denote both the permutation
and the automorphism on P0 it induces. Let G0 be the group of all such
automorphisms. For every finite E ⊂ �, let Fix(E) be the subgroup of G0 of all
those automorphisms induced by permutations that pointwise fix the set E. Let F0
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8 ALESSANDRO ANDRETTA AND LORENZO NOTARO

be the filter on G0 generated by {Fix(E) | E ⊂ � finite}. It is easy to check that F0

is actually a normal filter on G0, and hence 〈P0,G0,F0〉 is a symmetric system. Let
G be a V-generic filter for P0, and let N0 be the corresponding symmetric extension,
which we call first Cohen model.

Denote by A the realization of the name Ȧ in V[G ], i.e., the set ȦG . Note that
every ȧn is in HSF0 and so is Ȧ.

Proposition 3.3 [3, Example 15.52] N0 � “A is D-finite”.

InN0, the set A, being infinite and D-finite, is certainly not separable as a subspace
of R—indeed, every infinite, separable T1 space is Dedekind-infinite. Moreover,
DC(A) also fails, as otherwise A would be Dedekind-infinite (see the penultimate
paragraph of Section 2.2).

The simultaneous local failure of both AC� and DC is not accidental—the next
proposition shows that, in the first Cohen model, any X such that DC(X ) holds
must be well-orderable, and hence AC�(X ) holds.

Proposition 3.4. N0 � ∀X
(
DC(X ) ⇒ AC(X )).

Lemma 3.5. Let X be a linearly ordered set, and let Y ⊆ [X ]<� . If � � Y , then
� �

⋃
Y .

Proof. Let ≤ be a linear ordering of X, and let (Zn)n∈� be a sequence of distinct
elements of Y. By passing to a subsequence, we may assume that Zn+1 � Z0 ∪ ··· ∪
Zn, and that Z0 �= ∅. Let z0 be the ≤-least element of Z0, and zn+1 be the ≤-least
element of Zn+1 \ (Z0 ∪ ··· ∪ Zn) for every n. The zns are distinct, and belong to⋃
Y , as required. �

Lemma 3.6. If DC(Y ) with Y ⊆ [R]<� infinite, then � �
⋃
Y .

Proof. If
⋃
Y has no limit points, then it is discrete, so � �

⋃
Y . Suppose

otherwise, and let x ∈ R be a limit point of
⋃
Y . It is enough to show that � � Y

and then apply Lemma 3.5 with X = R. Without loss of generality, we may assume
that {x}, ∅ /∈ Y . For all Z ∈ Y let d (x,Z) = min{|r – x| | r ∈ Z \ {x}} be the
distance of x from the rest of Z. Let R ⊆ Y 2 be the binary relation defined as
follows: for every Z,W ∈ Y ,

R(Z,W ) ⇔ d (x,W ) < d (x,Z).

The relation R is acyclic, and, by our hypothesis on x, it is total. It follows from
DC(Y ) that R has an infinite chain, and hence � � Y . �

Proof of Proposition 3.4. In the first Cohen model, for every set X, there is
a map sX : X → [A]<� , known as the least support map, such that s–1({B}) is
well-orderable for every B ∈ [A]<� [2, Theorem 5.21 and Lemma 5.25].

Let X be such that DC(X ) holds. Then also DC(ran(sX )) holds. If ran(sX ) were
infinite, then lettingY = ran(sX ) in Lemma 3.6 we would have� �

⋃
ran(sX ) ⊆ A,

against the fact that A is D-finite. Hence ran(sX ) is finite, and X, being a finite union
of well-orderable sets, is well-orderable. �
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§4. The main result. This section is devoted to proving the following:

Theorem 4.1. It is consistent with ZF that there is a set A ⊆ R such that DC(A)
and ¬AC�(A).

4.1. Outline of the proof. We prove the theorem via an iteration of symmetric
extensions of length �. We start the iteration with the first Cohen model N0, with
A ∈ N0 being the generic D-finite set of reals (see Section 3.1). As noted right after
Proposition 3.3, in N0 the set A is not separable (in particular AC�(A) fails) and
DC(A) fails. Next, we define a chain of models N0 ⊂ N1 ⊂ ··· ⊂ N� such that, for
each n, Nn+1 is a symmetric extension of Nn that contains a generic set of chains
for all binary relations in Nn that are total and acyclic on A. At the final stage, N� ,
which is our model, is going to be something resembling “the model of sets definable
from finitely many elements of

⋃
nNn”. If we do the construction properly, we can

prove that in N� we have added enough countable subsets of A (or, equivalently,
enough sequences over A) to guarantee DC(A) (Theorem 4.10), but A is still not
separable, in particular AC�(A) fails (Corollary 4.8).

Actually, we don’t only show that A is not separable in our model, but we give
a topological characterization of its separable subsets: among the subsets of A, the
separable ones are precisely those which are scattered with finite scattered height
(Definition 4.5 and Theorem 4.7).

4.2. The symmetric system. We define recursively a sequence 〈Pn,Gn,Fn〉n∈� of
symmetric systems. Let 〈P0,G0,F0〉 be the symmetric system defined in Section 3.1,
i.e., the one that induces the first Cohen model. For each n we denote by ≤n,�n the
ordering and the forcing relation of Pn, respectively, and by HSn the class HSFn , i.e.,
the class of all hereditarily Fn-symmetric Pn-names. We also let

Rn = {Ṙ ∈ HSn | ∀ẋ ∈ dom(Ṙ)∃m, k ∈ � (ẋ = (ȧm, ȧk)•)}, (5)

where the ȧis are as in (4). ThenRn is the set of all “good” hereditarilyFn-symmetric
Pn-names for binary relations on Ȧ.

Recursively on n, we define Pn+1 to be the set of all the sequences p = 〈pk | k ≤
n + 1〉 such that:

(1) p�n + 1 ∈ Pn.
(2) pn+1 : dom(pn+1) → Rn × <�� with dom(pn+1) a finite subset of �.
(3) For each k ∈ dom(pn+1) with pn+1(k) = (Ṙ, 〈m0, ... , mh〉) we have

p�n + 1 �n “Ṙ is total, acyclic and ȧm0 Ṙ ȧm1 Ṙ ... Ṙ ȧmh”,

where, at stage n = 0, we identify the conditions p ∈ P0 with their singleton
sequence 〈p〉.

For each p ∈ Pn+1 and k ∈ dom(pn+1) with pn+1(k) = (Ṙ, s), we denote Ṙ and
s by pRn+1(k) and psn+1(k), respectively. Given p, q ∈ Pn+1 we let p ≤n+1 q if and
only if:

• p�n + 1 ≤n q�n + 1,
• dom(pn+1) ⊇ dom(qn+1),
• ∀k ∈ dom(qn+1) (pRn+1(k) = qRn+1(k) and psn+1(k) ⊇ qsn+1(k)).
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10 ALESSANDRO ANDRETTA AND LORENZO NOTARO

This defines the forcing Pn+1. Now we are left to define the subgroup Gn+1 of
Aut(Pn+1), and the filter Fn+1.

Consider a sequence �� = 〈�0, ... , �n+1〉 with each �i being a permutation of�. By
induction hypothesis1

�� := 〈�0, ... , �n〉 = ���n + 1

induces an automorphism �� ∈ Gn. Note that, as in Section 3.1, we conflate the
notation by using the same symbol to denote both sequences of permutations and
the automorphisms they induce. Now, the sequence �� induces an automorphism
on Pn+1 as follows: given p ∈ Pn+1, we let ��p be the condition in Pn+1 such that
(��p)�n + 1 = ��(p�n + 1) and, for each k ∈ dom(pn+1) withpsn+1(k) = 〈m0, ... , mh〉
and pRn+1(k) = Ṙ,

(��p)Rn+1(�n+1(k)) = ��(Ṙ),

(��p)sn+1(�n+1(k)) = 〈�0(m0), ... , �0(mh)〉.
Let Gn+1 be the group of all such automorphisms on Pn+1, i.e., the ones

induced by sequences (of length n + 2) of permutations of �. For each sequence
�H = 〈H0, ... , Hn+1〉 of subsets of �, we let Fix( �H ) be the subgroup of all those
�� ∈ Gn+1 such that �k pointwise fixes Hk for all k ≤ n + 1. We define Fn+1 as the
filter on Gn+1 generated by {Fix( �H ) | Hk is finite for all k ≤ n + 1}. From now on,
we use the symbol �H to denote finite sequences of finite subsets of �.

This ends the inductive definition of the sequence 〈Pn,Gn,Fn〉n∈� . Note that, for
each n < m, there is a natural complete embedding in,m : Pn → Pm and a natural
embedding jn,m : Gn → Gm. Thus we let P and G be the direct limits of the forcings
Pn and of the groups Gn, respectively.

We now define the normal filter F on G in the expected way: we let F be the filter
generated by

{Fix( �H ) | Hk is finite for all k < lh( �H )},

where, given any �H , Fix( �H ) is the subgroup of G made of all those �� such that �k
pointwise fixes Hk for all k < lh( �H ).

A condition p of the direct limit P is a finite sequence 〈p0, ... , pn〉, and it is
identified with 〈p0, ... , pn, ∅, ... , ∅〉 and with 〈p0, ... , pn, ∅, ∅ ...〉, that is a sequence
obtained by concatenating p with a finite sequence of empty sets or with the infinite
sequence of empty sets. We treat analogously the �H s.

Henceforth 〈P,G,F〉 is our symmetric system, with HS being the class of all
F-symmetric P-names and ≤,� being the ordering and the forcing relation of P,
respectively.

Remark 4.2. Our iterative construction fits into the general framework developed
by Asaf Karagila [5] to deal with iterations of symmetric extensions.

Given an ẋ ∈ HS, we say that �H is a support of ẋ if ��ẋ = ẋ for all �� ∈ Fix( �H ).
Also, given p = 〈p0, ... , pn〉 ∈ P and �H = 〈H0, ... , Hn〉, we write p� �H to denote the
sequence 〈p0�H0, ... , pn�Hn〉. Note that the latter sequence needs not to belong to P.

1At n = 0 we identify each � ∈ G0 with the singleton sequence 〈�〉.
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Lemma 4.3 (Restriction Lemma). Let ϕ(x1, ... , xn) be a formula in the forcing
language, and let ẋ1, ... , ẋn ∈ HS. For any p ∈ P and for any �H , if �H is a support for
each of the ẋi ’s and, for all m > 0, for all k ∈ Hm ∩ dom(pm), �H �m is a support for
pRm(k) and ran(psm(k)) ⊆ H0, then p� �H ∈ P and

p � ϕ(ẋ1, ... , ẋn) ⇔ p� �H � ϕ(ẋ1, ... , ẋn).

Proof. We prove the lemma by induction on the length of �H .
Let’s first assume �H = 〈H0〉 for some finite H0 ⊂ �, then p� �H ∈ P0. Assume

for a contradiction that p� �H �� ϕ(ẋ1, ... , ẋn), then there is a q ≤ p� �H such that
q � ¬ϕ(ẋ1, ... , ẋn). Let �� ∈ G such that �0 pointwise fixes H0 and such that
�0[dom(q0)] ∩ dom(p0) = H0 ∩ dom(p0) and �m[dom(qm)] ∩ dom(pm) = ∅ for all
m > 0. In particular, �� ∈ Fix( �H ). By hypothesis, �H is a support for all the ẋi ’s. Thus,
by the Symmetry Lemma, ��q � ¬ϕ(ẋ1, ... , ẋn). However, p and ��q are compatible,
contradiction.

Now let’s assume that �H = 〈H0, ... , Hm〉.

Claim 4.3.1. p� �H ∈ Pm.

Proof. By induction hypothesis, p�( �H �m) ∈ Pm–1. Fix a k ∈ Hm ∩ dom(pm).
Let Ṙ = pRm(k) and 〈n0, ... , nh〉 = psm(k). Then, by assumption, �H �m is a support
of Ṙ and ni ∈ H0 for every i ≤ h, or, equivalently, H0 is a support for ȧni . By
definition of Pm,

p�m � “Ṙ is total, acyclic and ȧn0 Ṙ ȧn1 Ṙ ... Ṙ ȧnh”.

By induction hypothesis,

(p� �H )�m = p�( �H �m) � “Ṙ is total, acyclic and ȧn0 Ṙ ȧn1 Ṙ ... Ṙ ȧnh”.

Therefore, p� �H ∈ Pm. �

Assume for a contradiction that p� �H �� ϕ(ẋ1, ... , ẋn), then there is a q ≤ p� �H
such that q � ¬ϕ(ẋ1, ... , ẋn). Let �� ∈ G such that �l pointwise fixes Hl for each
l ≤ m and such that �l [dom(ql )] ∩ dom(pl ) = Hl ∩ dom(pl ) for all l ≤ m and
�l [dom(ql )] ∩ dom(pl ) = ∅ for all l > m. In particular, �� ∈ Fix( �H ). Thus, by the
Symmetry Lemma, ��q � ¬ϕ(ẋ1, ... , ẋn).

Claim 4.3.2. p and ��q are compatible.

Proof. It suffices to show that pRl (k) = (��q)Rl (k) and that the sequence
psl (k) is extended by (��q)sl (k), for every l ≤ m and for every k ∈ dom(pl ) ∩
dom((��q)l ). Note that dom((��q)l ) = �l [dom(ql )]. Fix an l ≤ m and a
k ∈ dom(pl ) ∩ �l [dom(ql )]. By the way we chose ��, we must have k ∈ Hl . Also,
as we assumed q ≤ p, we have qRl (k) = pRl (k) and qsl (k) ⊇ psl (k). Moreover, we
assumed �H �l to be a support for pRl (k), and we have picked �� so that �� ∈ Fix( �H ).
In particular, (���l) (pRl (k)) = pRl (k) and �l (k) = k. Therefore, by the definition of
the induced automorphism �� ∈ G,

(��q)Rl (k) = (���l) (qRl (�–1
l (k))) = (���l) (qRl (k)) = (���l) (pRl (k)) = pRl (k).
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Moreover, since we assumed ran(psl (k)) ⊆ H0, and �0 ∈ Fix(H0), we have, for every
i < lh(psl (k)),

(��q)sl (k)(i) = �0(qsl (�
–1
l (k))(i)) = �0(qsl (k)(i)) = �0(psl (k)(i)) = psl (k)(i),

and therefore (��q)sl (k) ⊇ psl (k). �

As before, the fact that p and ��q are compatible yields the desired contradiction
and concludes the proof. �

4.3. The model. For each n, k ∈ �, we let

ḟn,k = {((ľ , ȧm)•, p) | l, m ∈ � ∧ p ∈ Pn+1 ∧ psn+1(k)(l) = m},
Ḟn = {ḟn,k | k ∈ �}•.

Note that these P-names are in HS. These, together with Ȧ and the ȧns, are the
(hereditarily symmetric) names for all the generic sets we are interested in. Observe
that ḟn,k is a Pn+1-name for an R-chain belonging to Nn+1, where R is the relation
with Pn+1-name {(pRn+1(k), p) | p ∈ Pn+1}.

Fix a V-generic filter G for P and, for all n, let Nn be the symmetric extension
obtained from 〈Pn,Gn,Fn〉, and N be the symmetric extension, obtained from
〈P,G,F〉. Clearly we have

V ⊆ N0 ⊆ N1 ⊆ ··· ⊆ N = N� ⊆ V[G ].

For each P-name (e.g., Ȧ), we let its symbol without the dot (i.e., A) be its evaluation
according to G (i.e., ȦG).

Lemma 4.4. For every n ∈ �, for every total and acyclic binary relationR ∈ Nn on
A, there is an an R-chain in Nn+1.

Proof. Let p ∈ G and Ṙ ∈ HSn such that

p � Ṙ ⊆ Ȧ× Ȧ total and acyclic,

and without loss of generality we may assume that p ∈ Pn. We show that ṘG = ṠG
for some Ṡ ∈ Rn as in (5). Let

Ṡ = {((ȧm, ȧk)•, q) | m, k ∈ �, q ∈ Pn, and q � ȧm Ṙ ȧk}.

It readily follows that Ṡ is in Rn and p � Ṙ = Ṡ. Fix any q ∈ Pn+1 with q ≤ p.
Pick anm ∈ � \ dom(qn+1) and consider the finite sequence q′ such that q′l = ql for
every l �= n + 1 and q′n+1 = qn+1 ∪ {(m, (Ṡ, ∅))}. Then q′ ∈ Pn+1, q′ ≤ q and

q′ � ḟn,m is an Ṡ-chain, and Ṡ = Ṙ.

By density,

p � ∃f ∈ Ḟn which is an Ṙ-chain.

Since Fn ∈ Nn+1 we are done. �

Since A is not closed as a set of reals, there exists a total and acyclic binary
relation over A in N0 (see Lemma 2.2). Therefore, by Lemma 4.4, the set A becomes
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Dedekind-infinite already in N1. However, the next proposition tells us that the
range of any generic chain introduced by the iteration is far from being dense in A.
This result is crucial in showing that A is not separable in N .

In order to get to the key proposition, we need to recall the well-known notion of
scattered space (e.g., see [11, Section 8.5]).

Definition 4.5. Given a topological space X, we let by ordinal induction

X (0) = X,

X (α+1) = {x ∈ X (α) | x is a limit point of X (α)},
X (�) =

⋂
α<�

X (α) for � a limit ordinal.

For every space X there is necessarily an ordinal α such that X (α) = X (α+1), and we
call the least such ordinal the scattered height of the space. A topological space X is
scattered if there is an α such that X (α) = ∅.

It is easy to check in ZF that every second countable scattered space is countable
[11, Proposition 8.5.5]. If ∅ �= X ⊆ R is dense in itself, then X (1) = X and X is not
scattered. In particular, A is not scattered.

For each t ∈ <�2, we denote by Ṅt the canonical name for the basic open set Nt ,
i.e., the set of all infinite binary sequences extending t.

Proposition 4.6. For each n, k ∈ �, N �
(
ClA(ran(fn,k)))

(n+2)
= ∅.

Proof. In other words, we want to show that in N (or, equivalently2, in V[G ]),
for every n, k, the closure with respect to A of the range of fn,k is scattered of height
at most n + 2. For any H ⊆ �, let us introduce the P-name

ȦH := {ȧm | m ∈ H}•. (6)

Let (†) be the statement∀n ∈ � (†)n, where (†)n is the following statement: Letk ∈
�, p = 〈p0, ... pn〉 ∈ Pn, Ṙ ∈ Rn with support �H = 〈H0, ... , Hn〉 such that p � Ṙ
is total and acyclic”. Assume also that, for each i ≤ n, dom(pi) = Hi , and, for all
0 < i ≤ n, for all j ∈ Hi , �H �i is a support for pRi (j). Then

p�〈{(k, (Ṙ, ∅))}〉 �
(

ClȦ(ran(ḟn,k))
)(1) ⊆ ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j).

Remarks. (a) The condition p�〈{(k, (Ṙ, ∅))}〉 in the statement of (†)n
belongs to Pn+1 and it is obtained by extending p with the function with
domain {k} ⊆ � such that k �→ (Ṙ, ∅) ∈ Rn × <��. It forces the limit
points of ClA(ran(fn,k)) to belong to the finite union AH0 ∪

⋃
{ran(fi,j) |

i < n and j ∈ Hi+1}.
(b) Note that p�〈{(k, (Ṙ, ∅))}〉 is the ≤-maximum among the conditions q ≤ p

such that qRn+1(k) = Ṙ. Therefore, for any fixed n, k, the set of conditions
p�〈{(k, (Ṙ, ∅))}〉 we are considering in (†)n is pre-dense in Pn+1 (and also
in P).

2Note that the formula ϕ(x, y, α) := “α is an ordinal, x ⊆ y are sets of reals and Cly(x) is scattered
of height ≤ α” is a ΔZF

1 -formula. In particular, it is absolute between models of ZF.
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Claim 4.6.1. Assume (†). For each n, k ∈ �, �
(

ClȦ(ran(ḟn,k))
)(n+2)

= ∅.

Proof. We prove the claim by induction on n. Let n = 0 and fix k ∈ �, p ∈ P0,
Ṙ ∈ R0, �H = 〈H0〉 satisfying the hypotheses of (†)0. By (†)0,

p�〈{(k, (Ṙ, ∅))}〉 � (ClȦ(ran(ḟn,k)))(1) ⊆ ȦH0 .

Since H0 is finite, we have that � “ȦH0 is finite”, so our condition forces that
ClA(ranfn,k) has scattered height ≤ 2, that is,

p�〈{(k, (Ṙ, ∅))}〉 �
(

ClȦ(ran(ḟn,k))
)(2)

= ∅.

By density, the base case follows.
Now the induction step. Let n > 0 and fix k ∈ �, p ∈ Pn, Ṙ ∈ Rn,�H = 〈H0, ... , Hn〉 satisfying the hypotheses of (†)n. By (†)n,

p�〈{(k, (Ṙ, ∅))}〉 �
(

ClȦ(ran(ḟn,k))
)(1) ⊆ ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j).

As theHis are all finite,

p�〈{(k, (Ṙ, ∅))}〉 �
(

ClȦ(ran(ḟn,k))
)(n+2) ⊆

⋃
i<n

j∈Hi+1

(
ClȦ(ran(ḟi,j))

)(n+1)
.

By induction hypothesis, for all i < n and all j ∈ Hi+1

�
(

ClȦ(ran(ḟi,j))
)(n+1)

= ∅,

and hence,

p�〈{(k, (Ṙ, ∅))}〉 �
(

ClȦ(ran(ḟn,k))
)(n+2)

= ∅.

By density, the induction step follows. �

The statement (†) is proved by induction on n ∈ �.
Let n = 0 and fix k ∈ �, p ∈ P0, Ṙ ∈ R0, �H = 〈H0〉 satisfying the hypotheses

of (†)0.

Claim 4.6.2. p�〈{(k, (Ṙ, ∅))}〉 � ran(ḟ0,k) \ ȦH0 is discrete.

Proof. Assume for a contradiction that there are q ≤ p�〈{(k, (Ṙ, ∅))}〉 and
l ∈ � such that

q � ḟ0,k(l) /∈ ȦH0 and ḟ0,k(l) is a limit point of ran(ḟ0,k) \ ȦH0 .

Without loss of generality suppose that lh(qs1 (k)) > l + 1 and let m = qs1 (k)(l),
t = q0(m)—in particular, m /∈ H0 and q � ḟ0,k(l) = ȧm ∈ Ṅt . From our assump-
tion and from the fact that H0 is a finite set, it follows that there must be a z ≤ q
and an h > l such that

z � ḟ0,k(h) ∈ Ṅt \ ȦH0 .

Assume without loss of generality lh(zs1 (k)) > h and let m′ = zs1 (k)(h),
t′ = z0(m′)—in particular,m′ /∈ H0, t′ ⊇ t and z0 � ȧm Ṙ+ ȧm′ . Note thatm′ �= m,
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as otherwise z0 would force Ṙ to have a cycle, which is a contradiction, as z0 extends
p and by hypothesis p forces Ṙ to be acyclic.

Subclaim 4.6.2.1. p′ = z0�(� \ {m}) ∪ {(m, t′)} � ȧm Ṙ+ ȧm′ .

A quick observation: since z0 ≤ q0, z0(m) surely extends t = q0(m), but a priori
z0(m) could be incompatible with t′ = z0(m′) = p′(m), making p′ incompatible
with z0. Thus, our subclaim needs some care.

Proof of the Subclaim. Let m0, m1, ... , mh–l ∈ � be such that
mi = zs1 (k)(l + i) for all i ≤ h – l . Note that m0 = m = qs1 (k)(l) and m1 =
qs1 (k)(l + 1), since z ≤ q. Moreover,mh–l = m′, by definition ofm′. We can assume
that the mis are all distinct, as otherwise z0 would force Ṙ to have a cycle.

Clearly q0 � ȧm0 Ṙ ȧm1 . By the Restriction Lemma, q0�H0 ∪ {m0, m1} forces the
same.

On the other hand, z0 � ȧm1 Ṙ ȧm2 Ṙ ... Ṙ ȧmh–l . Again by the Restriction
Lemma, z0�H0 ∪ {m1, m2, ... , mh–l} forces the same.

The condition p′ = z0�(� \ {m0}) ∪ {(m0, t
′)} extends both q0�H0 ∪ {m0, m1}

and z0�H0 ∪ {m1, m2, ... , mh–l}—here use the fact thatm0 /∈ H0 and that all themis
are distinct. Hence p′ forces ȧm0 Ṙ ȧm1 Ṙ ȧm2 Ṙ ... Ṙ ȧmh–l . �

Let �0 : � → � be the permutation that swaps m andm′ fixing everything else—in
particular, �0 ∈ Fix(H0) and �0Ṙ = Ṙ. Then, by the Symmetry Lemma,

�0p
′ = p′ � ȧm′ Ṙ+ ȧm,

but then p′ both extends p and forces ȧm Ṙ+ ȧm, which is a contradiction, since we
assumed that p forces Ṙ to be acyclic. �

By Claim 4.6.2, condition p�〈{(k, (Ṙ, ∅))}〉 forces that the limit points of
ran(f0,k) belong to the finite set AH0 . The next claim shows that the same is true for
the larger set ClA(ran(f0,k)).

Claim 4.6.3. p�〈{(k, (Ṙ, ∅))}〉 �
(

ClȦ(ran(ḟ0,k))
)(1) ⊆ ȦH0 .

Proof. Suppose for a contradiction that the claim is false. Then there is a
q ≤ p�〈{(k, (Ṙ, ∅))}〉 and an m /∈ H0 such that

q � ȧm is a limit point of ran(ḟ0,k). (7)

Note that, sinceH0 is finite, q actually forces ȧm to be a limit point of ran(ḟ0,k) \ ȦH0 .
Hence, it follows from Claim 4.6.2 that q forces ȧm not to be in the range of ḟ0,k . In
particular, m /∈ ran(qs1 (k)).

The condition q′ = 〈q0, q1�{k}〉 extends p and, by the Restriction Lemma, still
forces (7). Let t be q0(m)—in particular, q′ � ȧm ∈ Ṅt .

We now show q′ � Ṅt ⊆ Cl(ran(ḟ0,k) \ ȦH0), which clearly contradicts
Claim 4.6.2, as every discrete set of reals is nowhere dense. Pick any z ≤ q′ and a
t′ ⊇ t. Fix an m′ /∈ H0 ∪ dom(z0) ∪ ran(qs1 (k)). Define z ′ to be the condition such
that z ′0 = z0 ∪ {(m′, t′)} and z ′i = zi for every i > 0.

Now, z ′ clearly extends z. Moreover, if we let �0 be the permutation of � that
swaps m andm′, z ′ also extends 〈�0〉q′. Indeed, since t′ ⊇ t, it’s clear that z ′0 extends
�0q0. But since both m and m′ do not belong to H0 ∪ ran(qs1 (k)), we also have
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16 ALESSANDRO ANDRETTA AND LORENZO NOTARO

(〈�0〉q′)1 = q′1, and therefore 〈z ′0, z ′1〉 = 〈z ′0, z1〉 extends 〈�0〉q′ = 〈�0q0, q
′
1〉. Overall,

z ′ extends 〈�0〉q′.
By (7) and the Symmetry Lemma,

〈�0〉q′ � ȧm′ ∈ Cl(ran(ḟ0,k) \ ȦH0 ).

Since z ′ extends 〈�0〉q′ and z ′ � ȧm′ ∈ Ṅt′ , we have

z ′ � Ṅt′ ∩ Cl(ran(ḟ0,k) \ ȦH0) �= ∅.

By density,

q′ � Ṅt ⊆ Cl(ran(ḟ0,k) \ ȦH0). �

This proves (†)0.
Here comes the induction step: fix an n > 0 and suppose (†)i holds for every i < n,

towards proving (†)n. Fix k ∈ �, p ∈ Pn, Ṙ ∈ Rn, �H = 〈H0, ... , Hn〉 satisfying the
hypotheses of (†)n. The next claim is the analogue of Claim 4.6.2.

Claim 4.6.4.

p�〈{(k, (Ṙ, ∅))}〉 � ran(ḟn,k) \
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
)

is discrete.

Proof. Suppose for a contradiction that there are q ≤ 〈p, {(k, (Ṙ, ∅))}〉 and
l ∈ � such that

q � ḟn,k(l) /∈ ȦH0 ∪
⋃
i<n

j∈Hi+1

ran(ḟi,j) and ḟn,k(l) is a limit point of

ran(ḟn,k) \
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
)
.

Suppose without loss of generality that lh(qsn+1(k)) > l + 1 and letm = qsn+1(k)(l),
and t = q0(m)—in particular, q � ḟn,k(l) = ȧm ∈ Ṅt . By assumption there must be
a z ≤ q and an h > l such that

z � ḟn,k(h) ∈ Ṅt \
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
)
.

Assume without loss of generality lh(zsn+1(k)) > h and let m′ = zsn+1(k)(h), and
t′ = z0(m′)—in particular t′ ⊇ t and z�n + 1 � ȧm Ṙ+ ȧm′ . Since

z � ȧm, ȧ′m /∈
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
)
,

then, in particular,

m,m′ /∈ H0 ∪
⋃
i<n

j∈Hi+1

ran
(
zsi+1(j)

)
. (8)

Now let

p′ = 〈z0�(� \ {m}) ∪ {(m, t′)}, z1�H1, ... , zn�Hn〉.
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By an argument analogous to the one used in the proof of Subclaim 4.6.2.1, we can
show that

p′ � ȧm Ṙ+ ȧm′ .

If we let �0 : � → � be the permutation that swaps m and m′, then 〈�0〉p′ = p′.
Indeed, it directly follows from the definition of p′ that �0p

′
0 = p′0. Moreover, by

(8), both m andm′ do not belong toH0, hence 〈�0〉 ∈ Fix( �H ). As such, (〈�0〉p′)Ri =
(p′)Ri for every 1 ≤ i ≤ n. Again by (8), m and m′ do not belong to the range of
(p′)si (j) for any 1 ≤ i ≤ n and j ∈ dom(p′i) = Hi , and therefore (〈�0〉p′)si = (p′)si
for every 1 ≤ i ≤ n. Overall, 〈�0〉p′ = p′.

Next note that 〈�0〉Ṙ = Ṙ, as 〈�0〉 ∈ Fix( �H ). By the Symmetry Lemma,

〈�0〉p′ = p′ � ȧm′ Ṙ+ ȧm,

but then p′ both extends p and forces ȧm Ṙ+ ȧm, which is a contradiction, since we
assumed that p forces Ṙ to be acyclic. �

Claim 4.6.5.

p � ȦH0 ∪
⋃
i<n

j∈Hi+1

ran(ḟi,j) is closed with respect to Ȧ.

Proof. Fix q ≤ p and m such that

q � ȧm ∈ ClȦ
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
)
.

We would like to prove that there is a condition z ≤ q such that

z � ȧm ∈ ȦH0 ∪
⋃
i<n

j∈Hi+1

ran(ḟi,j),

so, to avoid trivialities, we assume

q � ȧm ∈
(

ClȦ
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
))(1)
.

As the His are finite, there exists a z ≤ q, an i < n and some j ∈ Hi+1 such
that z � ȧm ∈ (ClȦ(ran(ḟi,j)))(1). But then, by (†)i (here we use our induction
hypothesis),

z � ȧm ∈
(

ClȦ(ran(ḟi,j))
)(1) ⊆ ȦH0 ∪

⋃
l<i

h∈Hl+1

ran(ḟl,h).

By density, the claim follows. �

The next claim is the analogue of Claim 4.6.3.

Claim 4.6.6.

p�〈{(k, (Ṙ, ∅))}〉 �
(

ClȦ(ran(ḟn,k))
)(1) ⊆ ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j).
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18 ALESSANDRO ANDRETTA AND LORENZO NOTARO

Proof. Suppose for a contradiction that this is not the case, then there is a
q ≤ p�〈{(k, (Ṙ, ∅))}〉 and an m such that

q � ȧm is a limit point of ran(ḟn,k) and ȧm /∈ ȦH0 ∪
⋃
i<n

j∈Hi+1

ran(ḟi,j).

From Claim 4.6.5 it follows that

q � ȧm is a limit point of ran(ḟn,k) \
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
)
. (9)

But then, by Claim 4.6.4, q also forces ȧm not to be in the range of ḟn,k . In
particular,

m /∈ H0 ∪ ran(qsn+1(k)) ∪
⋃
i<n

j∈Hi+1

ran(qsi+1(j)). (10)

Let

q′ = 〈q0, q1�H1, ... , qn�Hn, qn+1�{k}〉.
Then q′ extends p and, by the Restriction Lemma, still forces (9). Let t be q0(m)—in
particular q′ � ȧm ∈ Ṅt .

We now show that

q′ � Ṅt ⊆ Cl
(

ran(ḟn,k) \
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
))
,

which contradicts Claim 4.6.4. Pick any z ≤ q′ and t′ ⊇ t. Fix anm′ ∈ � such that

m′ /∈ H0 ∪ dom(z0) ∪ ran(qsn+1(k)) ∪
⋃
i<n

j∈Hi+1

ran(qsi+1(j)). (11)

Define z ′ to be the condition such that z ′0 = z0 ∪ {(m′, t′)} and z ′i = zi for all
i > 0. Now, z ′ clearly extends z. Moreover, if we let �0 be the permutation of � that
swaps m andm′, z ′ also extends 〈�0〉q′. Indeed, since t′ ⊇ t, it’s clear that z ′0 extends
�0q0. But from (10) and (11), it follows that (〈�0〉q′)i = q′i for every 1 ≤ i ≤ n + 1,
and therefore z ′ extends 〈�0〉q′.

By (9) and the Symmetry Lemma,

〈�0〉q′ � ȧm′ ∈ Cl
(

ran(ḟn,k) \
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
))
.

Since z ′ extends 〈�0〉q′ and z ′ � ȧm′ ∈ Ṅt′ , we have

z ′ � Ṅt′ ∩ Cl
(

ran(ḟn,k) \
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
))

�= ∅.

By density,

q′ � Ṅt ⊆ Cl
(

ran(ḟn,k) \
(
ȦH0 ∪

⋃
i<n

j∈Hi+1

ran(ḟi,j)
))
. �
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This completes the proof of (†)n, so by induction (†) holds. By Claim 4.6.1, we
are done.

In light of Proposition 4.6, we can prove that in N every separable subset of A is
scattered with finite scattered height.

Theorem 4.7. In the model N the following holds: for every separable S ⊆ A there
is an n ∈ � such that S(n) = ∅.

Proof. Let S ∈ N be a separable subset of A and fix in N a function f : � → A
such that S ⊆ Cl(ran(f)). Then there must be a p ∈ G such that

p � ḟ : �̌ → Ȧ,

where ḟ ∈ HS is a symmetric name for f, with support �H = 〈H0, ... , Hn〉. We can
assume without loss of generality that dom(pi) = Hi for each i, and that for all
i > 0, for all j ∈ Hi , �H �i is a support for pRi (j). We claim that

p � ran(ḟ) ⊆ ȦH0 ∪
⋃
i<n

j∈Hi+1

ran(ḟi,j),

where ȦH0 is the P-name as in (6). If we manage to do so, then Proposition 4.6 ensures
that ClA(ran(f)) is scattered of height ≤ n + 2, and, a fortiori, that S(n+2) = ∅, as
required.

Suppose that the claim is false, then there exist q ≤ p and l, m ∈ � such that

q � ḟ(l) = ȧm /∈ ȦH0 ∪
⋃
i<n

j∈Hi+1

ran(ḟi,j). (12)

In particular,

m /∈ H0 ∪
⋃
i<n

j∈Hi+1

ran(qsi+1(j)). (13)

Let q′ = 〈q0, q1�H1, ... , qn�Hn〉. Then, by the Restriction Lemma, q′ still forces
(12).

Fix an m′ ∈ � such that

m′ /∈ H0 ∪ dom(q0) ∪
⋃
i<n

j∈Hi+1

ran(qsi+1(j)). (14)

Let �0 be the permutation of � that swaps m and m′, then 〈�0〉q′ and q′ are
compatible. Indeed, since m′ /∈ dom(q′0), then q′0 and �0q

′
0 are clearly compatible.

Moreover, it follows from (13) and (14) that (〈�0〉q′)i = q′i for every 1 ≤ i ≤ n, and
therefore 〈�0〉q′ and q′ are compatible. By the Symmetry Lemma,

〈�0〉q′ � ḟ(l) = ȧm′ .

So q′ and 〈�0〉q′, while being compatible, force ḟ to take different values at l, but
they both extend p, which forces ḟ to be a function. Contradiction. �

Corollary 4.8. N � ¬AC�(A).
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20 ALESSANDRO ANDRETTA AND LORENZO NOTARO

Proof. Assume for a contradiction that AC�(A) holds, then A is certainly
separable. By Theorem 4.7, A would be scattered. But A has no isolated points.
Contradiction. �

Now we are left to prove that DC(A) holds in N . Let Ṅn be the canonical name
for the intermediate model Nn.

Lemma 4.9. Let n ∈ � and ẋ ∈ HS with support �H = 〈H0, ... , Hn〉, then

� ẋ ⊆ Ṅn ⇒ ẋ ∈ Ṅn .

Proof. Fix (ẏ, p) ∈ ẋ. As the set of q such that either q � ẏ ∈ Ṅn or else
q � ẏ /∈ Ṅn is dense below p, there is a maximal antichain D(ẏ,p) below p and a
map h(ẏ,p) : D(ẏ,p) → HSn such that, for each q ∈ D(ẏ,p), either q � ẏ = h(ẏ,p)(q) or
q � ẏ /∈ Ṅn. Let D′

(ẏ,p) = {q ∈ D(ẏ,p) | q � ẏ ∈ Ṅn} and let

C = {��(h(ẏ,p)(q)
)
| (ẏ, p) ∈ ẋ, q ∈ D′

(ẏ,p), �� ∈ Fix( �H )}.

Consider the following Pn-name:

ẇ = {(ẏ, q) | ẏ ∈ C, q ∈ Pn and q � ẏ ∈ ẋ}.

Claim 4.9.1. ẇ ∈ HSn with support �H .

Proof. Let �� ∈ Fix( �H ) and (ẏ, q) ∈ ẇ. By definition, q � ẏ ∈ ẋ, hence
��q � ��ẏ ∈ ẋ. Since ��ẏ ∈ C , this means that (��ẏ, ��q) ∈ ẇ. Hence ��ẇ = ẇ. �

Fix p ∈ P such that p � ẋ ⊆ Ṅn.

Claim 4.9.2. p � ẇ = ẋ.

Proof. Let q ≤ p and ż ∈ HS such that q � ż ∈ ẋ. By definition of C and our
hypothesis on p, there is an r ≤ q and a ẏ ∈ C such that r � ż = ẏ ∈ ẋ. By the
Restriction Lemma, r�n + 1 � ẏ ∈ ẋ, hence (ẏ, r�n + 1) ∈ ẇ and, in particular,
r � ż = ẏ ∈ ẇ. By density, p � ẋ ⊆ ẇ.

The other inclusion is immediate from the definition of ẇ. �

Therefore p � ẋ ∈ Ṅn. By density, � ẋ ⊆ Ṅn ⇒ ẋ ∈ Ṅn. �

Theorem 4.10. N � DC(A).

Proof. Since every binary relation R ∈ N on A is a subset of A× A ∈ N0, it
follows from Lemma 4.9 thatR ∈ Nn for some n. Now, either R is cyclic, but then it
surely has a chain, or it is acyclic, but then Lemma 4.4 says that in Nn+1 ⊆ N there
is a chain for this relation. �

This finishes the proof of Theorem 4.1.

§5. Some complementary results. We collect some facts related to our main
results, and conclude with some open questions.

5.1. Dependent choice propagates under finite unions. By Proposition 2.1, the
axiom DC(X ) is closed under surjective images and, hence, under subsets. The next
result shows that it is also closed under finite unions.
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Theorem 5.1. DC(X ) ∧ DC(Y ) ⇒ DC(X ∪ Y ).

Corollary 5.2. DC(X ) ⇒ DC(X × n), for all sets X and all n ∈ �.

The natural progression from Corollary 5.2 would be to prove that DC(X ) ⇒
DC(X × �), but this cannot be established in ZF, since DC(X × �) implies AC�(X )
(part (d) of Proposition 2.1) and we know from Theorem 4.1 that DC(X ) does not
necessarily imply AC�(X ).

If a binary relation R is such that ran(R) ⊆ dom(R), then it is total on its domain.
The largest R′ ⊆ R such that ran(R′) ⊆ dom(R′) is

D(R) =
⋃

{S ⊆ R | ran(S) ⊆ dom(S)}.

By part (a) of Proposition 2.1 it is easy to see that

DC(X ) ⇔ ∀R ⊆ X 2 (D(R) �= ∅ ⇒ there is a D(R)-chain). (15)

Proof of Theorem 5.1. Suppose DC(X ) and DC(Y ), and let R ⊆ (X ∪ Y )2 be
total, towards proving that there is an R-chain. Without loss of generality, we may
assume that X and Y are nonempty and disjoint. If D(R�X ) �= ∅, then by DC(X )
and (15) there is a D(R�X )-chain, which is, in particular an R-chain. Similarly, if
D(R�Y ) �= ∅, then there is an R-chain. Therefore, without loss of generality, we may
assume that R is acyclic, and that

D(R�X ) = D(R�Y ) = ∅. (16)

Recall that R+ is the smallest transitive relation containing R. If x ∈ X ∪ Y and
R+(x) ⊆ X , thenR�R+(x) would witness that D(R�X ) �= ∅, against (16). Similarly
R+(x) cannot be included in Y. Therefore

∀x ∈ X ∪ Y (R+(x) � X ∧R+(x) � Y ). (17)

Here is the idea of the proof. By (16), any R-chain (zn)n∈� must visit both X and
Y infinitely often, so (zn)n∈� can be seen as the careful merging of two sequences
(xn)n∈� in X and (yn)n∈� in Y. The sequence (xn)n∈� is obtained by applyingDC(X )
to a total relation RX on X such that R�X ⊆ RX ⊆ R+. Using (xn)n∈� , a suitable
total relation RY on some Y ′ ⊆ Y is defined, and by DC(Y ) the required sequence
(yn)n∈� is obtained. Here come the details.

Let RX be the relation on X given by R�X , together with all pairs (x, x′) such
that x R y0 R y1 R ... R yn R x

′ for some finite sequence of elements of Y :

RX = (R�X )∪{(x, x′) ∈ X 2 | ∃m ≥ 1 ∃s ∈ mY
(x R s(0) ∧ s(m – 1) R x′ ∧ ∀i < m – 1 (s(i) R s(i + 1)))}.

It is immediate that RX ⊆ R+.

Claim 5.2.1. RX is total on X.

Proof. We must show that dom(RX ) = X . Let x ∈ X . If R(x) ∩ X �= ∅, then
x ∈ dom(R�X ) ⊆ dom(RX ).

Now suppose otherwise. By (3) R+(x) � Y , so there are y0, ... , yn ∈ Y and x′ ∈
X such that x R y0 R ... R yn R x

′. Thus (x, x′) ∈ RX , so x ∈ dom(RX ). �
By DC(X ) there is an RX -chain (xn)n∈� .
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Claim 5.2.2. ∀n ∃m > n ¬(xm R xm+1).

Proof. Towards a contradiction, suppose that there is n̄ ∈ � such that xm R
xm+1 for everym ≥ n̄. ThenR�{xm | m ≥ n̄} is total on {xm | m ≥ n̄} and contained
in R�X , against (16). �

Let (nk)k∈� be the sequence enumerating the set of ms such that ¬(xm R xm+1).
By the definition of RX , each xnk is linked to xnk+1 via R through some finite path
in Y, and let Yk be the collection of all places visited by these paths:

Yk :=
⋃ {

ran(s) | ∃m
(
s ∈ m+1Y ∧ xnk R s(0)∧s(m) R xnk+1 ∧

∀i < m (s(i) R s(i + 1))
)}
.

Claim 5.2.3. The Yks are nonempty, pairwise disjoint subsets of Y.

Proof. For each k we have (xnk , xnk+1) ∈ RX \R. This means that there is some
〈y0, ... , ym〉 ∈ <�Y such that xnk R y0 R ... R ym R xnk+1. In particular, Yk �= ∅.

Towards a contradiction, suppose there are indices k < j such that Yk ∩ Yj �= ∅.
Pick y ∈ Yk ∩ Yj . Then y R+ xnk+1 R

+ xnj R
+ y, if xnk+1 �= xnj , or y R+ xnk+1 =

xnj R
+ y otherwise. Either way, this contradicts our assumption that R is acyclic. �

Now we let RY be the relation on
⋃
k∈� Yk⋃

k∈�
(R�Yk) ∪

⋃
k∈�

{(y, y′) ∈ Yk × Yk+1 | y R xnk+1 and xnk+1 R y
′}.

It readily follows from the definition that RY ⊆ R+.

Claim 5.2.4. RY is total on
⋃
k∈� Yk .

Proof. Pick k ∈ � and y ∈ Yk , towards proving that y ∈ dom(RY ). Then there
is a finite sequence 〈y0, ... , ym〉 of elements of Yk such that xnk R y0 R ... R ym R
xnk+1, and y = yi for some 0 ≤ i ≤ m. If i < m, then y R yi+1. If i = m then y RY
y′ for any y′ ∈ Yk+1 such that xnk+1 R y

′. In either case y ∈ dom(RY ). �
By DC(Y ), there is an RY -chain (yn)n∈� . By part (b) of Proposition 2.1 we can

suppose that y0 ∈ Y0 and that xn0 R y0. As the Yks are disjoint, for every n there is
a unique k such that yn ∈ Yk , and let i(n) be this k.

Claim 5.2.5. The set Ik = {n ∈ � | i(n) = k} is a finite interval of natural
numbers.

Proof. By definition of RY it follows that either i(n + 1) = i(n) or else i(n +
1) = i(n) + 1, so it is enough to show that Ik is finite. Towards a contradiction,
suppose Ik̄ is infinite, for some k̄ ∈ �. This means that there is n̄ such that i(n) = i(n̄)
for all n ≥ n̄, that is {yn | n ≥ n̄} ⊆ Yk̄ . But then R�{yn | n ≥ n̄} would be a total
on {yn | n ≥ n̄} and contained in R�Y , against (16). �

Let mk = max(Ik) so that I0 = [0;m0] and Ik+1 = [mk + 1;mk+1]. Then

〈x0, ... , xn0〉
�〈y0, ... , ym0〉

�〈xn0+1, ... , xn1〉
�〈ym0+1, ... , ym1〉

� ...

...�〈xnk+1, ... , xnk+1〉
�〈ymk+1, ... , ymk+1〉

� ...

is the required R-chain. �
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5.2. The Feferman–Levy model. Feferman and Levy showed that the following is
consistent relative to ZF:

R is the countable union of countable sets. (FL)

(See [2, p. 142] for an exposition of the Feferman–Levy model.)
The next result shows that in the Feferman–Levy model, the statement of Theorem

4.1 fails, that is, there is no set A ⊆ R such that DC(A) and ¬AC�(A).

Proposition 5.3. FL implies that if DC(A) holds with A ⊆ R, then A is countable.

We need a preliminary result.

Lemma 5.4. Assume FL. Then there is a sequence of nonempty, countable, pairwise
disjoint sets (Xn)n∈� such that R =

⋃
n Xn, and no infinite subsequence of (Xn)n∈�

has a choice function.

Proof. Fix a bijection � : R → R� , and for eachm ∈ � let �m : R → R be defined
as �m(x) = �(x)m. If Y ⊆ R and f : � → Y is surjective, then Ỹ , the closure of Y
under the �ms, is also countable, as

f̃ : <�� × � → Ỹ (〈n0, ... , nk〉, m) �→ �nk ◦ ··· ◦ �n0 ◦ f(m)

is surjective. By FL let (Yn)n∈� be a sequence of countable sets such that R =
⋃
n Yn,

and without loss of generality we may assume that each Yn is closed under every
�m. Then let Xn = Yn \

⋃
m<n Ym for each n ∈ �. If necessary, we can pass to a

subsequence to get them to be nonempty.
We claim that no infinite subsequence of (Xn)n∈� has a choice function. Otherwise

there would be an infinite sequence (xn)n∈� ∈ R� whose range intersects infinitely
many Xns. Let x ∈ R be such that �(x) = (xn)n∈� . Then x ∈ Xk ⊆ Yk for some
k ∈ �, and hence

∀n ∈ �
(
xn = �n(x) ∈ Yk ⊆ X0 ∪ ··· ∪ Xk)

as Yk is closed under the �ns. But this contradicts the assumption that {xn | n ∈ �}
intersects infinitely many Xns. �

Proof of Proposition 5.3. Fix (Xn)n∈� as in Lemma 5.4. Let A ⊆ R such that
DC(A) holds, and let I = {n ∈ � | A ∩ Xn �= ∅}. If I is infinite then, by part (c) of
Proposition 2.1, DC(A) would imply the existence of a choice function for the family
{A ∩ Xn | n ∈ I }, which is, in particular, a choice function for {Xn | n ∈ I }, against
Lemma 5.4. So I must be finite, that is A ⊆ X0 ∪ ··· ∪ Xk for some k. But the finite
union of countable sets is countable, so A is countable. �

5.3. Definability of the counterexample. Theorem 4.1 shows that the statement
(3) is consistent with ZF, that is to say, it is consistent that there is a set A ⊆ R such
that DC(A) and ¬AC�(A). The set A constructed in the proof of Theorem 4.1 is a
set of Cohen reals, so it is not ordinal definable. But what is the possible descriptive
complexity of a set A as above?

By part (c) of Proposition 2.5, the set A cannot contain a perfect set. Recall
that a set has the perfect set property if it is either countable or else it contains
a perfect subset. Assuming AC�(R), every Borel set has the perfect-set property.
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In a choice-less context the situation becomes murky. Assuming FL, every set of reals
is F�� (i.e., countable union of F� sets), and by taking complements it is also G�� (i.e.,
countable intersection of G� sets), so every set is Δ0

4, as F� = Σ0
2 ⊂ Π0

3, and hence
F�� ⊆ Σ0

4. Therefore FL collapses the Borel hierarchy at level 4. Moreover FL implies
that there is an uncountable set in Π0

3 without a perfect subset [8, Theorem 1.3].
On the other hand A. Miller has shown in ZF that Σ0

3 �= Π0
3 [7, Theorem 2.1], and

that every set in Σ0
3 has the perfect-set property [8, Theorem 1.2].

Recall that a subset of R is Π1
n if it is the complement of a Σ1

n, and it is Σ1
n if it

is the projection of a Π1
n–1 set C ⊆ R× R, where Π1

0 is the collection of closed sets.
The lightface hierarchy 	1

n,

1
n is obtained by replacing Π1

0 with 
 1
0 , the collection

of recursively-closed sets (see [4, Chapter 3, Section 12]). Working in ZF, every Σ1
1

set has the perfect set property, and by a theorem of Mansfield and Solovay (see [4,
Chapter 3 and Corollary 14.9]) every Σ1

2 set is either well-orderable, being included
in L[a] for some real a, or else it contains a perfect set.

By part (c) of Lemma 2.5 we obtain the following:

Corollary 5.5. If A ⊆ R is Σ0
3 or Σ1

2 and DC(A) holds, then AC�(A).

We conclude with a question.

Question 5.6. Is it consistent with ZF that there is a 
 1
2 set A ⊆ R such that

DC(A) and ¬AC�(A)?
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