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Abstract

It is known that the minimal 3-spheres of CR type with constant sectional curvature have been classified
explicitly, and also that the weakly Lagrangian case has been studied. In this paper, we provide some
examples of minimal 3-spheres with constant curvature in the complex projective space, which are neither
of CR type nor weakly Lagrangian, and give the adapted frame of a minimal 3-sphere of CR type with
constant sectional curvature.
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1. Introduction

It is known that the minimal surfaces in the complex projective space CP" have been
studied by many geometricians in the past few decades, and various perfect results
were obtained. Since the surface has a natural complex structure, most of the profound
results more or less depend on the theory of a single complex variable. However, there
is no complex structure on the general higher dimensional manifolds, which enhances
the difficulty in studying the higher dimensional submanifolds in CP". It is known that
complex analytic submanifolds and totally real submanifolds are two typical classes
among all the submanifolds of a Kéhler manifold. In this paper we wish to study a
special family of higher dimensional submanifolds in CP", that is, S* with constant
sectional curvature in CP".

Let f : M — CP" be an immersion and let F : TM — TM be defined by (F(X),Y) =
STQUX, Y), where f*Q is the pullback of the Kéhler form of CP"; the submanifold
M is a weakly Lagrangian (or totally real) submanifold if F =0. Also, M is a
CR submanifold if there is a direct sum decomposition of an F-invariant subbundle
™ =V, ® V, such that F|y, =0 and (F |v2)2 = —id. The immersion f is said to be
weakly Lagrangian if M is a weakly Lagrangian submanifold. The immersion f is of
CR type if M is a CR submanifold.
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Bando and Ohnita [1] proved that minimal S2 in CP" with constant curvature
must be homogeneous and Bolton et al. [2] proved some results about the curvature,
Kihler angle pinching and rigidity of conformal minimal S?> in CP". For the higher
dimensional case, Li [6] studied weakly Lagrangian (totally real) and CR kinds of
minimal $3 with constant sectional curvature in CP". Li and Tao [8] studied the
equivariant Lagrangian minimal immersion of S3 into CP°.

It is well known that the minimal S? immersed into CP" with constant curvature has
rigidity, which is one of the Veronese sequences. So, one may ask whether the minimal
S3 with constant sectional curvature isometrically immersed into CP" also has rigidity.
Li [6] and Li and Huang [7] proved that this is true for the minimal S* of CR type with
constant sectional curvature in CP".

Fei et al. [5] characterized the minimal weakly Lagrangian (totally real) isometric
immersions from S to CP" by some standard examples. In this paper, besides the
CR-type examples in [6], we give some new examples by the unitary representation
of SU(2), which are neither weakly Lagrangian nor of CR type. By using the method
of moving frames in [4], we get the adapted frame of the minimal S* of CR type with
constant sectional curvature in CP", and also give a new proof of the rigidity theorem
in [7].

2. The unitary representation of SU(2)

In this section, we recall some results about the unitary representation of the special
unitary group SU(2).
The special unitary group SU(2) is defined by

a b
SU@) = {g= (_13 a)
which is homeomorphic to S* = {(a, b) € C? | |al> + |b|* = 1} in the natural way. The
Lie algebra of SU(2) is
ix
su2) = {(_)-) —)z)'x)

where i> = —1. We define a basis {¢], &, £3} of su(2) by
i 0 01 0 i
812(0 —i)’ 822(_1 O)’ 83:(1' 0),

e, &2] = 2&3, [&3,81] =28, [&2,83] =2¢;.

WP+ bR =1.a.be c},

xGR,yEC},

which satisfy

The Maurer—Cartan form of SU(2) is given by

N -1 _ iwg wy + w3
©=dgg = (—a)z + w3 —iw1

The Maurer—Cartan equation d® = ® A @ gives

dw; =2wr AN w3, dwy =2w3 Awy, dws=2w A w;.
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Let V, be the (n+ 1)-dimensional complex vector space of all complex
homogeneous polynomials of degree n with respect to the two complex variables z
and w. The Hermitian inner product ¢, ) on V,, is defined by

n

(F8) = ) abik!(n - ).

k=0

for =3/ arfw'*, g = 20 b w* eV, So, {tgn = Wk A=k 0 <
k < n} is a unitary basis for V,. The unitary representation p, of SU(2) on V,, is defined
by

on(@f(zw) = f((zyw)g™ ") = f(az + bw, —bz + aw)

for g € SU(2) and f € V,,. The action of su(2) on V,, is described as follows:

d
uk,ndpn(g) = E(Pn(eXP tg)(”k,n))lt:O
for 0 < k < n and € € su(2). In particular,
Ui ndpn(&1) = (n = 2k)iug (2.1)

U ndpn(&2) = Vk(n —k + Dug—1 — Nk + D(n = K)ger 1.0, (2.2)
U ndpy(3) = Vk(n —k + Diug_y,, + \(k + 1)(n = k)ivtgy1, (2.3)

forO<k<n.

It is well known that every finite-dimensional complex representation of su(2)
can be extended uniquely to a complex representation of sl(2,C). Thus, we obtain
the representation of sl(2,C), which will be denoted also by dp,. Select the basis
{o1, 07,03} of sl(2,C), where

(10 (01 (00
n=lo 21) w=foo) ==(i0

and denote dp,(01), dp,(02), —dp,(03) by H, A, B, respectively. By (2.1)-(2.3),

U = (n =201y, uppA = Nk + 1) = KDugerpn,  upaB = Vk(n—k+ Dy
2.4)

for 0 < k < n. From the Lie algebra homomorphism dp,, between sl(2, C) and End(V,,),
[H,A] =2A, [H,B]=-2B, [A,B]=H.
The pullback of the Maurer—Cartan form of Aut(V,) is
dp,p," = iHw, + Ap — Bp,

where ¢ = w; + iws.

Set A =n—2k,vyn=ur, for 0 <k<n. An element in A, ={Ao, 4y, ..., A}
is called a weight of the unitary representation p,, and Ay is called the highest
weight. The representation space V,, decomposes into V, , ® V4, ,, @ ---® V), ,,, where
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dim¢V,, . =1 and V,,, = spangs{v,,,} is called the weight space with respect to the
weight A;. By the terminology of weight, (2.4) can be rewritten as

VarH = AWy, VipA =aipVaon, VaaB = banvison, A€A,,

where ay,, = \/(n + 1)2 = (1= 1)/2and by, = \/(n + 1)2 = (1 + 1)/2. Clearly, we have
Are2n = b/l,ns A_pn = bn,n =0.

It is well known that {(V,,p,) |n=0,1,2,...} are all inequivalent irreducible
unitary representations of SU(2), and any unitary representation of SU(2) is completely
reducible. Up to an isomorphism, a unitary representation p of SU(2) can be written
as p = pp, ®pp, ®--- ® p,, for some nonnegative integers n; > ny > --- > n;. The
corresponding representation spaceis V=V, & V,, ®--- @V, . Similarly, we have the
weight space decomposition V =@’ _ (B, Vi) = D, Vo, where Vi =B’ _, Vi,

is the weight space with respect to the weight A. There are also similar operators
H, A, B € End(V) associated to the representation p.
3. The minimal 3-folds in CP"
In this section, we follow the Einstein convention and the ranges of indices:

0<A,BC,...<n, 1<a,B,y,...<n, 1<1i,j,k,...<3.

Let f : M — CP" be an isometric immersion, where (M, d:vz) is a three-dimensional

manifold and ds? = ?:1 &)12 Choose a unitary frame {Zy,Zi,...,Z,} of C"!,

(Zu,Zg) = 648, such that f = [Zy]. Suppose that dZ, = 64pZp; then
d6ap = 6ac AN Ocp, Oap +0Opa = 0.

The Fubini-Study metric on CP" is ds%s = Bpoboe and its Kihler form is Q =

V—1/2604 A Bo,. Let {e], €2, €3} be a local orthonormal frame of TM and {&, @3, @3}
its dual frame. Suppose that f*Q = J;@; A @;, where J;; = f*Q(e;, e;). Clearly,

0<|f QP = _ <2

ij

We know that [f*Q[*> = 0 if and only if f is weakly Lagrangian (or totally real) and
|F*QJ* = 2 if and only if f is of CR type.

In the following, we will analyze the minimal condition of f. By the isometric
condition,

3
ds* = f'dsts = )" af.
=1

Then the first structure equation of ds? is

do; = —(I)[j A (I)j. (3.1
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Without fear of confusion, set

Ooa = [ 000 = foili, (3.2)
where the f,; are some complex functions. Taking the exterior differentiation of (3.2)
and, by (3.1),

Dfm' A = fmjd)] A@; =0,
where, by definition,
Jaij@j = dfai — foj@ji + f3ifsa — faiboo,
fm’j = faji-

We know that f is minimal if and only if 253:1 fui=0,a=1,...,n;see [3].

In the rest of this section, we assume that M = S, which, through the
homeomorphism to SU(2), is endowed with the bi-invariant metric with constant
sectional curvature c. So,

L
Ve

Define $ = @, + i3 and let

&= —=wi, @n=Vows, @1 = Vewy, @3 = Vew;. (3.3)

dZy = X101 + X0, + X303 mod Zy,
Xi = foilas
then
DX; = dX; — X;&; — oo X;

= dfoiZa + fpi0sala + [5i0p0Z0 — faj®jila — faiB00Za

= DfoiZo + f5iflpoZo

= faij@®iZo + f3ip0Zo

= foijwjZ, mod Zy
and set

X=X,Y=X—-iX3)/2,W =(X, +iX3)/2.
By the relation (3.3),

dZy = X101 + Xowy + X303 mod Z
=X + Y3+ W@ mod Z,

DX = DX, = dX, — Xo@, — X3@31 — 00X,
= dX + VeXods — VeXa@r — OpoX
=dX — iNcYP +iVeWd — 0o X,

DX, = dX; — X1@12 — X332 — 6o X2
= dX, — VeX @3 + VeXs@y — 0pXa,
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DX; = dX; — X113 — X3@23 — Op0 X3
= dX; + VcXi1@2 — VeXo@y — 000X,
DY = (DX, —iDX3)/2
= dy - % VEXE + i VY@, — Yo,
DW = (DX, + iDX3)/2
- dW + % VEXG — i NeWd, — W,

Set
DX = p\@&y + 1@ + @ mod Z,
DY = p2&)1 + QQ¢ + rzé mod Z(),
DW = p3@; + q3p + r3p mod Zy;
then

p1 = fibqi = (fia —if13)/2,r1 = (fiz + if13)/2,
P2 = (1 —ifs1)/2,q2 = (f2 — f33 = 2if23)/4, 12 = (f22 + f33)/4,
p3 = (21 +if31)/2,q3 = (f2 + f33)/4, 12 = (f22 — f33 + 2if23) /4,

where fj; = fu;jZ,. Consequently, we get the following theorem.

Tueorem 3.1. Let f : S* — CP" be an isometric immersion; then f is minimal if and
only if one of the following conditions holds: (1) py +4r, =0; (2) p; +4q3 = 0.

Proor. It is enough to just note that p; + 4r, = p; + 4q3 = Z?Zl fi = Z?:l JeiiZa- O

4. The minimal S* of CR type in CP"

Two maps f,g:S°> — CP" are said to be equivalent if there is a holomorphic
isometry A : CP" — CP" such that f = A o g, and f is said to be equivariant if there is
a homomorphism E : S* — U(n + 1) of a Lie group such that f is equivalent to 7 o E,
wherer: Un+1) > CP"=Um+ 1)/U) X Un).

In [6], Li provided the following example, which is an equivariant minimal
immersion of CR type with constant sectional curvature ¢ = 1/(m? — 1).

ExampLE 4.1. For a given integer m > 2, put

k=m-2)m+1), I=@m+2)(m-1),

2, M= 1 2= ™ +1
cos’t= —, St = s
2m 2m

where 1 € (0, 7/2). Let

f z JEowre. s Z MR
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where (z,w) € S3 ={(z,w) € C? : zz+ ww = 1} and {eo, ..., &, £y ---» &} 1s the
natural basis of CK+*2 = CK+1 @ C*!. Define f = [eo] : S> — CP**'*!, where ¢) =
(costfi,sintfr).

In [6], Li proved the following result.

Turorem 4.2. Let f:S3 — CP" be an equivariant minimal immersion of CR type
with constant sectional curvature c. If f is linearly full, then ¢ =2/(n + 1), where
n =2m? = 3 for some integer m > 2. Moreover, up to an isometry of S°, f is equivalent
to the immersion defined in Example 4.1.

Suppose that f : S> — CP" is a minimal immersion of CR type which is linearly
full, and that the induced metric by f is

3 1 3
d 2 _ o —
s = wja)j = - wja)j.
- C £
j=1 =1

Jj=

Choose a unitary frame {eg, e, ..., e,} on S3 such that f = [ey]. Since f is of CR type,
we assume that

i i
900 = -Ww1 = —d)l.
¢ Ve

Set
1

Ooa = Aqj@;j = $aajwj, 1<a<n,

e;=aajea, 1<j<3;

then, by the CR-type condition,

i 1 , | B
dey = Oyep + Opaa = Ewleo + —wie] + —Cgoez.

NN

So, in the following, we assume that the unitary frame {eg, ey, ..., e,} on S3 satisfies
i
deg = —wiey + prwie) + ryes,
c

where p; = r, = 1/ y/c. Taking the exterior differentiation of 6y, 6y,

ipre A@ = pi1(6oo — 011) A wy + 12 A by,
2irwi A @ =r(6o0 — 622) A @ + prwi A 12,

that is,

.P1

012 = prp, pr=i—,
r
(Boo — 011) A w1 =0,
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2
. p
9()0 - 922 = 1(2 - —21)(,()1.
r
Taking the exterior differentiation of 6y, = 0,3 < @ < n,
pi1wi A 010 + re A 6, =0.

Also, we note that Theorem 3.1 leads to

Boo — 011 = 2iwy,
Olo N = 0.

Choose e3 such that
013 = rp3e, 01,=0, 4<a<n;
by (4.1) and (4.2), we can choose e4 such that

03 = p1p3w1 + pir3g,
04 = priag, 0,=0, 5<as<n

Taking the exterior differentiation of 6,1, 8y, 03,

1
lrapsl* = i 2-|pal

r3 =0, 63 =ppw,
2

011 — 033 = l(2+ p—zl)(l_)l
3
Taking the exterior differentiation of 6;, = 0,4 < @ < n,

03a/\¢,o=0,

so we can set 034 = psp. Taking the exterior differentiation of 6,,, 653, 64,

1 p?
prraf = = + P + ool - (2= 53,
C r2
D4 = Zi&,
T4
2
922 — 944 = i(2 - 2p—§)w1.
Ty

Taking the exterior differentiation of 6,, = 0,5 < @ < n,
3w A O3q + 140 A Oy = 0.
By (4.5), we can choose e5 such that

O35 = rapsp, 63, =0, 6<a<n
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and, by (4.6), we can choose eg such that

045 = p3psw1 + p3rse,
Os6 = p3r6p, 04o=0, T<a<n.

Taking the exterior differentiation of 633, 834, 655,

) 1 2 2 p%
rpsl = =+ lrapal + I = (44 23,
Cc }"2
rs =0, Oi5 = p3pswi,
2
633 — 055 = l(2 + 2p—23)a)1
r
4
Taking the exterior differentiation of 83, = 0,6 < a < n,
Os¢ A =0, 4.7

so we can set 055 = pey. Taking the exterior differentiation of 44, 045, b6,

1 i .n
Iparsl = = +Ipiraf + Ipaf = (4= 23 =253},
c r r

2 4
Pe = 32,
e
2
944 - 966 = i(2 - 3p—25)w1.
3

Taking the exterior differentiation of 64, = 0,7 < @ < n,
Pswi A Osq + rep A Bg = 0.
By (4.7), we can choose e; such that
Os7 = repr¢, 65¢=0, 8<a<n (4.8)
and, by (4.8), we can choose eg such that

067 = psp7w1 + ps5r7¢,
068 = psrzp, s =0, 9<a<n.
Iterating the above process, we reach the following result.

Turorem 4.3. Let f : §3 — CP" be a minimal immersion of CR type with constant
sectional curvature ¢ which is linearly full; then there is a unitary frame {ey, ey, . . ., e,}
of C"*! such that the pullbacks of the Maurer—Cartan forms of U(n + 1) are

i 1 1
boo = —w1, o1 = prw1 = —wi, b =nY=——7p,
c Ve

Ve

Or—12k = P2kp,  Ork—12k+1 = Nk D2+ 195
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02k 2k+1 = Pok—1P2k+1W1, O, 2k+2 = Pok-172%429;
k=1

Pai
Boo — G212k~ 1—1(2 - +2k)w1,
1

J=
k3
900—92k,2k=l( Z 2 +2k)w1,

J=1 2j
where
e
lrakpaxsl* = = + Irak-2pai1* = Ipul* = ZJ I — 2k,

J=1 r2/

1 Pz 1
|pak_irapsal® = = ot |par—aral® + Ipul* + Z J ] - 2k, 4.9

j=1 3

p2k=kp2k_l i, ro=0, p-1=1, k>1.

Ik

From Theorem 4.3, we conclude that a minimal immersion of CR type is equivariant
and, when k = 1, from (4.9) we know that 0 < ¢ < 1/3. Together with Theorem 4.2,
we also get the following rigidity result [7].

Turorem 4.4, Let f: 83 — CP" be a minimal immersion of CR type with constant
curvature c. If f is linearly full, then ¢ = 2/(n + 1), where n = 2m* — 3 for some integer
m > 2. Moreover, up to an isometry of S°, f is equivalent to the immersion defined in
Example 4.1.

5. The construction of examples

In this section, we will construct some examples of minimal S* in CP" based on the
unitary representation of SU(2). Let

Zy = avypr + by prs
where |a|® + |b|> = 1,]+ k-1 =n and Vi1, Vsi are as in the Section 2. Then
dZy = av,dp; + bvkdpy
=av,(iHw, + Ap — Bp)p; + by (iHw, + Ap — Bo)py
= i(tav, + sbvsp)w; + (agaviag + asxbvsa ke
= (briavisag + bsibvsio k)@,
600 = (dZo, Zo) = i (tlal’ + slbP w1 = iNwy,
(dZo,dZo) = (Plal’ + S’ + (a7, + bilal + (@3 + b3 DIb e

(12+2l—t | |2+k +2%— 2
2 “ 2

= (PlaP + P’ + 1bF Jos.
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ds* = [Plal* + s*|b* - (tlal* + sIbl*)*]w?

P+20-1 K? + 2k — s?
+ (Sl + e,

dZy = X, +Yp+ WE mod Z,

where
X = eli(t = NYavypr + i(s = N)bvggpxl,
Y = Vlayavieaipr + aspbv—a kol
W = Nel=byiavieap1 — bs bV xpil,

DX =dX —iNcYp + iVeWd — 0poX
= —c[(t = N)*avypi + (s = NV bvspilio
+ic[(t =N = Dagavio,p; + (s = N = Dagkbvy_2 1oi )@
—ic[(t = N + Dby avier o1 + (s = N + Dby kbvyo 101,
DY = dY — é VEXE + i VeYdy — b
=ic[(t = N — Dagjavi01 + (s = N — Daskbvs—a yor] @1
+ claiaaavig1p1 + g2 1 A5k bV 440K
+cl(51 = 5N = byga)avep + (35 = 3N = by ks )bvs xpil &,
DW = dW + % VEX@ — i NEWa, — OpoW
= —ic[(t = N + Dbsavioio1 + (s = N + Dby bvgis iorloy
— (31 = 3N + anaibi)avip; + (35 = 3N + g ibsi)bVs i) @
+ C[br2,1brjaVisa pr + Do ks g bVsia k1P

So,
p1 = —cl(t = NYavypr + (s = NYbvgrox] + c(t = $)*lal* bl (avipr + bvyior)s
q1 = ic[(t = N = Dagavi 01+ (s = N = Dasxbvs—a xpx],
ry = —ic[(t = N + Dbyjavii01 + (s = N + )by ibvgia iorl,
p2 = iclt = N = Dagavi2101 + (s = N = Dasxbvs—a ko],
G2 = c(a1-2,1011aV1-4,101 + 52 kA5 )bV -4 kPK),

ry = c(5t = N = biosa)avypr + (55 = 5N = by, )bvipr
+ c(braarlal’ + by asilbP)(@vipr + by, rpr),

p3 = —ic[(t = N + Dbgjavi 01 + (s = N + Db xbvsia iporl,

gz = —c[(31 = AN + apaibi)avip; + (35 = 3N + agkbs)bvsipr]
+ caobrilal® + ag s ibP)avepr + bvg i),

r3 = c(brs2,1b11aV114.101 + bsi24kDs kY54 kpk)-

From Theorem 3.1, we have the following result.
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Turorem 5.1. Let f =[Zy] : S — CP" be an immersion; then f is isometrically
minimal if and only if the following conditions hold:

P+20-1 K + 2k - 5°
() Plaf + PP = (dal + b)Y = —S—lal + ——

Q) -9 (a -1P)-P -2+ +k +2k—-s>=0,

IbI*;

where |a* + |b* = 1.

The above theorem gives
a? (=52 +P+20-1—k* -2k +s*
a

2(t — 5)? ’
P = (t—sP—P =20+ +k>+2k—s%
B 2t — 5)>

In the following examples, we denote by {¢;,,0 <i < n} the Veronese surfaces
determined by the holomorphic map [¢,] : S> — CP".
ExampLE 5.2. For a given integer m > 2, we put

t=l=m+2)(m-1), s=k=m-2)(m+ 1),

then
m+1 |b|2_m—1

2
|al” =

2m T 2m

Zy = avyp; + bvipr = ago; + by
The curvature is
1 1

CcC = =
2lal?® + s?b* — (tlal® + slb?)>  m? -1

and the pullback of the Kahler form is

[ 1
Q== —%d@oo = S Ndw;
= Nwy A w3z = Ncy N w3 = Wy N 3.

So, we know that |Q|2 =2, that is, f = [Z], is of CR type. Note that this example is
the one in Li [6].

ExampLe 5.3. For an integer m such that [, k > 0, we put

t=1-2, 1=3m*+13m+8 (or=3m?>—-Tm-2),
s=k—=2, k=3m*>+7Tm—-2 (or=23m*>—-13m+38);

then

, m+1 , m—1
- Copp=t=
lal o |b| o
Zy = avi_p,101 + bvioxpr = adi; + by .

https://doi.org/10.1017/5144678871400086X Published online by Cambridge University Press


https://doi.org/10.1017/S144678871400086X

[13]

The minimal $3 with constant sectional curvature in CP" 75

The curvature is

1 1 1
2lal? + s2b|> - (tlal* + sb2)2 ~ (3m +2)(3m + 8) (or ~ (B3m—-2)(3m - 8))

and the square of the pullback of the Kéhler form is

3m? + 10m+4
Bm +2)(Bm + 8)

. 3m* — 10m + 4
QP = 2INef? =2 ( me - om

= Bm=2Gm-3)

)

It is easy to verify that 0 < |Q? < 2, so the immersion f = [Z] is neither weakly
Lagrangian nor of CR type.
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