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Abstract

It is known that the minimal 3-spheres of CR type with constant sectional curvature have been classified
explicitly, and also that the weakly Lagrangian case has been studied. In this paper, we provide some
examples of minimal 3-spheres with constant curvature in the complex projective space, which are neither
of CR type nor weakly Lagrangian, and give the adapted frame of a minimal 3-sphere of CR type with
constant sectional curvature.
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1. Introduction
It is known that the minimal surfaces in the complex projective space CPn have been
studied by many geometricians in the past few decades, and various perfect results
were obtained. Since the surface has a natural complex structure, most of the profound
results more or less depend on the theory of a single complex variable. However, there
is no complex structure on the general higher dimensional manifolds, which enhances
the difficulty in studying the higher dimensional submanifolds in CPn. It is known that
complex analytic submanifolds and totally real submanifolds are two typical classes
among all the submanifolds of a Kähler manifold. In this paper we wish to study a
special family of higher dimensional submanifolds in CPn, that is, S3 with constant
sectional curvature in CPn.

Let f : M→ CPn be an immersion and let F : TM→ TM be defined by 〈F(X),Y〉 =

f ∗Ω(X, Y), where f ∗Ω is the pullback of the Kähler form of CPn; the submanifold
M is a weakly Lagrangian (or totally real) submanifold if F ≡ 0. Also, M is a
CR submanifold if there is a direct sum decomposition of an F-invariant subbundle
TM = V1 ⊕ V2 such that F|V1 = 0 and (F|V2 )2 = −id. The immersion f is said to be
weakly Lagrangian if M is a weakly Lagrangian submanifold. The immersion f is of
CR type if M is a CR submanifold.
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Bando and Ohnita [1] proved that minimal S2 in CPn with constant curvature
must be homogeneous and Bolton et al. [2] proved some results about the curvature,
Kähler angle pinching and rigidity of conformal minimal S2 in CPn. For the higher
dimensional case, Li [6] studied weakly Lagrangian (totally real) and CR kinds of
minimal S3 with constant sectional curvature in CPn. Li and Tao [8] studied the
equivariant Lagrangian minimal immersion of S3 into CP3.

It is well known that the minimal S2 immersed into CPn with constant curvature has
rigidity, which is one of the Veronese sequences. So, one may ask whether the minimal
S3 with constant sectional curvature isometrically immersed into CPn also has rigidity.
Li [6] and Li and Huang [7] proved that this is true for the minimal S3 of CR type with
constant sectional curvature in CPn.

Fei et al. [5] characterized the minimal weakly Lagrangian (totally real) isometric
immersions from S3 to CPn by some standard examples. In this paper, besides the
CR-type examples in [6], we give some new examples by the unitary representation
of SU(2), which are neither weakly Lagrangian nor of CR type. By using the method
of moving frames in [4], we get the adapted frame of the minimal S3 of CR type with
constant sectional curvature in CPn, and also give a new proof of the rigidity theorem
in [7].

2. The unitary representation of SU(2)

In this section, we recall some results about the unitary representation of the special
unitary group SU(2).

The special unitary group SU(2) is defined by

SU(2) =

{
g =

(
a b
−b̄ ā

) ∣∣∣∣∣ |a|2 + |b|2 = 1, a, b ∈ C
}
,

which is homeomorphic to S3 = {(a, b) ∈ C2 | |a|2 + |b|2 = 1} in the natural way. The
Lie algebra of SU(2) is

su(2) =

{( ix y
−ȳ −ix

) ∣∣∣∣∣ x ∈ R, y ∈ C
}
,

where i2 = −1. We define a basis {ε1, ε2, ε3} of su(2) by

ε1 =

( i 0
0 −i

)
, ε2 =

( 0 1
−1 0

)
, ε3 =

(0 i
i 0

)
,

which satisfy
[ε1, ε2] = 2ε3, [ε3, ε1] = 2ε2, [ε2, ε3] = 2ε1.

The Maurer–Cartan form of SU(2) is given by

Φ � dgg−1 =

( iω1 ω2 + iω3
−ω2 + iω3 −iω1

)
.

The Maurer–Cartan equation dΦ = Φ ∧ Φ gives

dω1 = 2ω2 ∧ ω3, dω2 = 2ω3 ∧ ω1, dω3 = 2ω1 ∧ ω2.
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Let Vn be the (n + 1)-dimensional complex vector space of all complex
homogeneous polynomials of degree n with respect to the two complex variables z
and w. The Hermitian inner product 〈 , 〉 on Vn is defined by

〈 f , g〉 �
n∑

k=0

akb̄kk!(n − k)!

for f =
∑n

k=0 akzkwn−k, g =
∑n

k=0 bkzkwn−k ∈ Vn. So, {uk,n = zkwn−k/
√

k!(n − k)! | 0 ≤
k ≤ n} is a unitary basis for Vn. The unitary representation ρn of SU(2) on Vn is defined
by

ρn(g) f (z,w) � f ((z,w)g−1) = f (āz + b̄w,−bz + aw)

for g ∈ SU(2) and f ∈ Vn. The action of su(2) on Vn is described as follows:

uk,ndρn(ε) �
d
dt

( ρn(exp tε)(uk,n))|t=0

for 0 ≤ k ≤ n and ε ∈ su(2). In particular,

uk,ndρn(ε1) = (n − 2k)iuk,n, (2.1)

uk,ndρn(ε2) =
√

k(n − k + 1)uk−1,n −
√

(k + 1)(n − k)uk+1,n, (2.2)

uk,ndρn(ε3) =
√

k(n − k + 1)iuk−1,n +
√

(k + 1)(n − k)iuk+1,n (2.3)

for 0 ≤ k ≤ n.
It is well known that every finite-dimensional complex representation of su(2)

can be extended uniquely to a complex representation of sl(2,C). Thus, we obtain
the representation of sl(2,C), which will be denoted also by dρn. Select the basis
{σ1, σ2, σ3} of sl(2,C), where

σ1 =

(1 0
0 −1

)
, σ2 =

(0 1
0 0

)
, σ3 =

(0 0
1 0

)
and denote dρn(σ1), dρn(σ2),−dρn(σ3) by H, A, B, respectively. By (2.1)–(2.3),

uk,nH = (n − 2k)uk,n, uk,nA =
√

(k + 1)(n − k)uk+1,n, uk,nB =
√

k(n − k + 1)uk−1,n
(2.4)

for 0 ≤ k ≤ n. From the Lie algebra homomorphism dρn between sl(2,C) and End(Vn),

[H, A] = 2A, [H, B] = −2B, [A, B] = H.

The pullback of the Maurer–Cartan form of Aut(Vn) is

dρnρ
−1
n = iHω1 + Aϕ − Bϕ̄,

where ϕ = ω2 + iω3.
Set λk � n − 2k, νλk ,n = uk,n for 0 ≤ k ≤ n. An element in ∆n = {λ0, λ1, . . . , λn}

is called a weight of the unitary representation ρn, and λ0 is called the highest
weight. The representation space Vn decomposes into Vλ0,n ⊕ Vλ1,n ⊕ · · · ⊕ Vλn,n, where
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dimCVλk ,n = 1 and Vλk ,n = spanC{νλk ,n} is called the weight space with respect to the
weight λk. By the terminology of weight, (2.4) can be rewritten as

νλ,nH = λνλ,n, νλ,nA = aλ,nνλ−2,n, νλ,nB = bλ,nνλ+2,n, λ ∈ ∆n,

where aλ,n =
√

(n + 1)2 − (λ − 1)/2 and bλ,n =
√

(n + 1)2 − (λ + 1)/2. Clearly, we have
aλ+2,n = bλ,n, a−n,n = bn,n = 0.

It is well known that {(Vn, ρn) | n = 0, 1, 2, . . .} are all inequivalent irreducible
unitary representations of SU(2), and any unitary representation of SU(2) is completely
reducible. Up to an isomorphism, a unitary representation ρ of SU(2) can be written
as ρ = ρn1 ⊕ ρn2 ⊕ · · · ⊕ ρns for some nonnegative integers n1 ≥ n2 ≥ · · · ≥ ns. The
corresponding representation space is V = Vn1 ⊕ Vn2 ⊕ · · · ⊕ Vns . Similarly, we have the
weight space decomposition V =

⊕s
α=1(

⊕
λ Vλ,nα) =

⊕
λ Vλ, where Vλ =

⊕s
α=1 Vλ,nα

is the weight space with respect to the weight λ. There are also similar operators
H, A, B ∈ End(V) associated to the representation ρ.

3. The minimal 3-folds in CPn

In this section, we follow the Einstein convention and the ranges of indices:

0 ≤ A, B,C, . . . ≤ n, 1 ≤ α, β, γ, . . . ≤ n, 1 ≤ i, j, k, . . . ≤ 3.

Let f : M→ CPn be an isometric immersion, where (M, ˜ds2) is a three-dimensional
manifold and ˜ds2 =

∑3
i=1 ω̃

2
i . Choose a unitary frame {Z0, Z1, . . . , Zn} of Cn+1,

〈ZA,ZB〉 = δAB, such that f = [Z0]. Suppose that dZA = θABZB; then

dθAB = θAC ∧ θCB, θAB + θ̄BA = 0.

The Fubini–Study metric on CPn is ds2
FS = θ0αθ̄0α and its Kähler form is Ω =

√
−1/2θ0α ∧ θ̄0α. Let {e1, e2, e3} be a local orthonormal frame of TM and {ω̃1, ω̃2, ω̃3}

its dual frame. Suppose that f ∗Ω = Jijω̃i ∧ ω̃ j, where Jij = f ∗Ω(ei, e j). Clearly,

0 ≤ | f ∗Ω|2 �
∑

ij

J2
ij ≤ 2.

We know that | f ∗Ω|2 = 0 if and only if f is weakly Lagrangian (or totally real) and
| f ∗Ω|2 = 2 if and only if f is of CR type.

In the following, we will analyze the minimal condition of f . By the isometric
condition,

˜ds2 = f ∗ds2
FS =

3∑
i=1

ω̃2
i .

Then the first structure equation of ds2 is

dω̃i = −ω̃ij ∧ ω̃ j. (3.1)
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Without fear of confusion, set

θ0α = f ∗θ0α = fαiω̃i, (3.2)

where the fαi are some complex functions. Taking the exterior differentiation of (3.2)
and, by (3.1),

D fαi ∧ ω̃i � fαijω̃ j ∧ ω̃i = 0,

where, by definition,
fαijω̃ j = d fαi − fα jω̃ ji + fβiθβα − fαiθ00,

fαij = fα ji.

We know that f is minimal if and only if
∑3

i=1 fαii = 0, α = 1, . . . , n; see [3].
In the rest of this section, we assume that M = S3, which, through the

homeomorphism to SU(2), is endowed with the bi-invariant metric with constant
sectional curvature c. So,

ω̃i =
1
√

c
ωi, ω̃12 =

√
cω3, ω̃31 =

√
cω2, ω̃23 =

√
cω1. (3.3)

Define ϕ̃ = ω̃2 + iω̃3 and let

dZ0 ≡ X1ω̃1 + X2ω̃2 + X3ω̃3 mod Z0,

Xi = fαiZα;

then

DXi � dXi − X jω̃ ji − θ00Xi

= d fαiZα + fβiθβαZα + fβiθβ0Z0 − fα jω̃ jiZα − fαiθ00Zα
= D fαiZα + fβiθβ0Z0

= fαijω̃ jZα + fβiθβ0Z0

≡ fαijω̃ jZα mod Z0

and set
X = X1,Y = (X2 − iX3)/2,W = (X2 + iX3)/2.

By the relation (3.3),

dZ0 ≡ X1ω̃1 + X2ω̃2 + X3ω̃3 mod Z0

≡ Xω̃1 + Yϕ̃ + W ¯̃ϕ mod Z0,

DX = DX1 = dX1 − X2ω̃21 − X3ω̃31 − θ00X1

= dX +
√

cX2ω̃3 −
√

cX3ω̃2 − θ00X
= dX − i

√
cYϕ̃ + i

√
cW ¯̃ϕ − θ00X,

DX2 = dX2 − X1ω̃12 − X3ω̃32 − θ00X2

= dX2 −
√

cX1ω̃3 +
√

cX3ω̃1 − θ00X2,
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DX3 = dX3 − X1ω̃13 − X3ω̃23 − θ00X3

= dX3 +
√

cX1ω̃2 −
√

cX2ω̃1 − θ00X3,

DY = (DX2 − iDX3)/2

= dY −
i
2
√

cX ¯̃ϕ + i
√

cYω̃1 − Yθ00,

DW = (DX2 + iDX3)/2

= dW +
i
2
√

cXϕ̃ − i
√

cWω̃1 −Wθ00.

Set

DX ≡ p1ω̃1 + q1ϕ̃ + r1 ¯̃ϕ mod Z0,

DY ≡ p2ω̃1 + q2ϕ̃ + r2 ¯̃ϕ mod Z0,

DW ≡ p3ω̃1 + q3ϕ̃ + r3 ¯̃ϕ mod Z0;

then

p1 = f11, q1 = ( f12 − i f13)/2, r1 = ( f12 + i f13)/2,
p2 = ( f21 − i f31)/2, q2 = ( f22 − f33 − 2i f23)/4, r2 = ( f22 + f33)/4,
p3 = ( f21 + i f31)/2, q3 = ( f22 + f33)/4, r2 = ( f22 − f33 + 2i f23)/4,

where fij = fαijZα. Consequently, we get the following theorem.

Theorem 3.1. Let f : S3 → CPn be an isometric immersion; then f is minimal if and
only if one of the following conditions holds: (1) p1 + 4r2 = 0; (2) p1 + 4q3 = 0.

Proof. It is enough to just note that p1 + 4r2 = p1 + 4q3 =
∑3

i=1 fii =
∑3

i=1 fαiiZα. �

4. The minimal S3 of CR type in CPn

Two maps f , g : S3 → CPn are said to be equivalent if there is a holomorphic
isometry A : CPn → CPn such that f = A ◦ g, and f is said to be equivariant if there is
a homomorphism E : S3 → U(n + 1) of a Lie group such that f is equivalent to π ◦ E,
where π : U(n + 1)→ CPn = U(n + 1)/U(1) × U(n).

In [6], Li provided the following example, which is an equivariant minimal
immersion of CR type with constant sectional curvature c = 1/(m2 − 1).

Example 4.1. For a given integer m ≥ 2, put

k = (m − 2)(m + 1), l = (m + 2)(m − 1),

cos2t =
m − 1

2m
, sin2t =

m + 1
2m

,

where t ∈ (0, π/2). Let

f1 =

k∑
j=0

√(k
j

)
z jwk− jε j, f2 =

l∑
j=0

√(l
j

)
z jwl− jε′j,
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where (z, w) ∈ S3 = {(z, w) ∈ C2 : zz̄ + ww̄ = 1} and {ε0, . . . , εk, ε
′
0, . . . , ε

′
l} is the

natural basis of Ck+l+2 = Ck+1 ⊕ Cl+1. Define f = [e0] : S3 → CPk+l+1, where e0 =

(cos t f1, sin t f2).

In [6], Li proved the following result.

Theorem 4.2. Let f : S3 → CPn be an equivariant minimal immersion of CR type
with constant sectional curvature c. If f is linearly full, then c = 2/(n + 1), where
n = 2m2 − 3 for some integer m ≥ 2. Moreover, up to an isometry of S3, f is equivalent
to the immersion defined in Example 4.1.

Suppose that f : S3 → CPn is a minimal immersion of CR type which is linearly
full, and that the induced metric by f is

ds2 =

3∑
j=1

ω̃ jω̃ j =
1
c

3∑
j=1

ω jω j.

Choose a unitary frame {e0, e1, . . . , en} on S3 such that f = [e0]. Since f is of CR type,
we assume that

θ00 =
i
c
ω1 =

i
√

c
ω̃1.

Set

θ0α = aα jω̄ j =
1
√

c
aα jω j, 1 ≤ α ≤ n,

e′j = aα jeα, 1 ≤ j ≤ 3;

then, by the CR-type condition,

de0 = θ00e0 + θ0αeα =
i
c
ω1e0 +

1
√

c
ω1e′1 +

1
√

c
ϕe′2.

So, in the following, we assume that the unitary frame {e0, e1, . . . , en} on S3 satisfies

de0 =
i
c
ω1e0 + p1ω1e1 + r2ϕe2,

where p1 = r2 = 1/
√

c. Taking the exterior differentiation of θ01, θ02,

ip1ϕ ∧ ϕ̄ = p1(θ00 − θ11) ∧ ω1 + r2ϕ ∧ θ21,

2ir2ω1 ∧ ϕ = r2(θ00 − θ22) ∧ ϕ + p1ω1 ∧ θ12,

that is,

θ12 = p2ϕ, p2 = i
p1

r2
,

(θ00 − θ11) ∧ ω1 = 0,
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θ00 − θ22 = i
(
2 −

p2
1

r2
2

)
ω1.

Taking the exterior differentiation of θ0α = 0, 3 ≤ α ≤ n,

p1ω1 ∧ θ1α + r2ϕ ∧ θ2α = 0. (4.1)

Also, we note that Theorem 3.1 leads to

θ00 − θ11 = 2iω1,

θ1α ∧ ϕ = 0. (4.2)

Choose e3 such that

θ13 = r2 p3ϕ, θ1α = 0, 4 ≤ α ≤ n;

by (4.1) and (4.2), we can choose e4 such that

θ23 = p1 p3ω1 + p1r3ϕ,

θ24 = p1r4ϕ, θ2α = 0, 5 ≤ α ≤ n.

Taking the exterior differentiation of θ11, θ12, θ13,

|r2 p3|
2 =

1
c
− 2 − |p2|

2, (4.3)

r3 = 0, θ23 = p1 p3ω1, (4.4)

θ11 − θ33 = i
(
2 +

p2
1

r2
2

)
ω1. (4.5)

Taking the exterior differentiation of θ1α = 0, 4 ≤ α ≤ n,

θ3α ∧ ϕ = 0, (4.6)

so we can set θ34 = p4ϕ. Taking the exterior differentiation of θ22, θ23, θ24,

|p1r4|
2 =

1
c

+ |r2|
2 + |p2|

2 −

(
2 −

p2
1

r2
2

)
,

p4 = 2i
p3

r4
,

θ22 − θ44 = i
(
2 − 2

p2
3

r2
4

)
ω1.

Taking the exterior differentiation of θ2α = 0, 5 ≤ α ≤ n,

p3ω1 ∧ θ3α + r4ϕ ∧ θ4α = 0.

By (4.5), we can choose e5 such that

θ35 = r4 p5ϕ, θ3α = 0, 6 ≤ α ≤ n
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and, by (4.6), we can choose e6 such that

θ45 = p3 p5ω1 + p3r5ϕ,

θ46 = p3r6ϕ, θ4α = 0, 7 ≤ α ≤ n.

Taking the exterior differentiation of θ33, θ34, θ35,

|r4 p5|
2 =

1
c

+ |r2 p3|
2 + |p4|

2 −

(
4 +

p2
1

r2
2

)
,

r5 = 0, θ45 = p3 p5ω1,

θ33 − θ55 = i
(
2 + 2

p2
3

r2
4

)
ω1.

Taking the exterior differentiation of θ3α = 0, 6 ≤ α ≤ n,

θ5α ∧ ϕ = 0, (4.7)

so we can set θ56 = p6ϕ. Taking the exterior differentiation of θ44, θ45, θ46,

|p3r6|
2 =

1
c

+ |p1r4|
2 + |p4|

2 −

(
4 −

p2
1

r2
2

− 2
p2

3

r2
4

)
,

p6 = 3i
p5

r6
,

θ44 − θ66 = i
(
2 − 3

p2
5

r2
6

)
ω1.

Taking the exterior differentiation of θ4α = 0, 7 ≤ α ≤ n,

p5ω1 ∧ θ5α + r6ϕ ∧ θ6α = 0.

By (4.7), we can choose e7 such that

θ57 = r6 p7ϕ, θ5α = 0, 8 ≤ α ≤ n (4.8)

and, by (4.8), we can choose e8 such that

θ67 = p5 p7ω1 + p5r7ϕ,

θ68 = p5r8ϕ, θ6α = 0, 9 ≤ α ≤ n.

Iterating the above process, we reach the following result.

Theorem 4.3. Let f : S3 → CPn be a minimal immersion of CR type with constant
sectional curvature c which is linearly full; then there is a unitary frame {e0, e1, . . . , en}

of Cn+1 such that the pullbacks of the Maurer–Cartan forms of U(n + 1) are

θ00 =
i
c
ω1, θ01 = p1ω1 =

1
√

c
ω1, θ02 = r2ϕ =

1
√

c
ϕ,

θ2k−1,2k = p2kϕ, θ2k−1,2k+1 = r2k p2k+1ϕ,
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θ2k,2k+1 = p2k−1 p2k+1ω1, θ2k,2k+2 = p2k−1r2k+2ϕ,

θ00 − θ2k−1,2k−1 = i
( k−1∑

j=1

j
p2

2 j−1

r2
2 j

+ 2k
)
ω1,

θ00 − θ2k,2k = i
(
−

k∑
j=1

j
p2

2 j−1

r2
2 j

+ 2k
)
ω1,

where

|r2k p2k+1|
2 =

1
c

+ |r2k−2 p2k−1|
2 − |p2k|

2 −

k−1∑
j=1

j
p2

2 j−1

r2
2 j

− 2k,

|p2k−1r2k+2|
2 =

1
c

+ |p2k−3r2k|
2 + |p2k|

2 +

k∑
j=1

j
p2

2 j−1

r2
2 j

− 2k, (4.9)

p2k = k
p2k−1

r2k
i, r0 = 0, p−1 = 1, k ≥ 1.

From Theorem 4.3, we conclude that a minimal immersion of CR type is equivariant
and, when k = 1, from (4.9) we know that 0 ≤ c ≤ 1/3. Together with Theorem 4.2,
we also get the following rigidity result [7].

Theorem 4.4. Let f : S3 → CPn be a minimal immersion of CR type with constant
curvature c. If f is linearly full, then c = 2/(n + 1), where n = 2m2 − 3 for some integer
m ≥ 2. Moreover, up to an isometry of S3, f is equivalent to the immersion defined in
Example 4.1.

5. The construction of examples

In this section, we will construct some examples of minimal S3 in CPn based on the
unitary representation of SU(2). Let

Z0 = aνt,lρl + bνs,kρk,

where |a|2 + |b|2 = 1, l + k − 1 = n and νt,l, νs,k are as in the Section 2. Then

dZ0 = aνt,ldρl + bνs,kdρk

= aνt,l(iHω1 + Aϕ − Bϕ̄)ρl + bνs,k(iHω1 + Aϕ − Bϕ̄)ρk

= i(taνt,l + sbνs,k)ω1 + (at,laνt−2,l + as,kbνs−2,k)ϕ

− (bt,laνt+2,l + bs,kbνs+2,k)ϕ̄,

θ00 = 〈dZ0,Z0〉 = i (t|a|2 + s|b|2)ω1 � iNω1,

〈dZ0, dZ0〉 = (t2|a|2 + s2|b|2)ω2
1 + [(a2

t,l + b2
t,l)|a|

2 + (a2
s,k + b2

s,k)|b|2]ϕϕ̄

= (t2|a|2 + s2|b|2)ω2
1 +

( l2 + 2l − t2

2
|a|2 +

k2 + 2k − s2

2
|b|2

)
ϕϕ̄,
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ds2 = [t2|a|2 + s2|b|2 − (t|a|2 + s|b|2)2]ω2
1

+

( l2 + 2l − t2

2
|a|2 +

k2 + 2k − s2

2
|b|2

)
ϕϕ̄,

dZ0 ≡ Xω̃1 + Yϕ̃ + W ¯̃ϕ mod Z0,

where

X =
√

c[i(t − N)aνt,lρl + i(s − N)bνs,kρk],
Y =

√
c[at,laνt−2,lρl + as,kbνs−2,kρk],

W =
√

c[−bt,laνt+2,lρl − bs,kbνs+2,kρk],

DX = dX − i
√

cYϕ̃ + i
√

cW ¯̃ϕ − θ00X
= −c[(t − N)2aνt,lρl + (s − N)2bνs,kρk]ω̃1

+ ic[(t − N − 1)at,laνt−2,lρl + (s − N − 1)as,kbνs−2,kρk]ϕ̃
− ic[(t − N + 1)bt,laνt+2,lρl + (s − N + 1)bs,kbνs+2,kρk] ¯̃ϕ,

DY = dY −
i
2
√

cX ¯̃ϕ + i
√

cYω̃1 − θ00Y

= ic[(t − N − 1)at,laνt−2,lρl + (s − N − 1)as,kbνs−2,kρk]ω̃1

+ c[at−2,lat,laνt−4,lρl + as−2,kas,kbνs−4,kρk]ϕ̃
+ c[( 1

2 t − 1
2 N − bt−2,lat,l)aνt,lρl + ( 1

2 s − 1
2 N − bs−2,kas,k)bνs,kρk] ¯̃ϕ,

DW = dW +
i
2
√

cXϕ̃ − i
√

cWω̃1 − θ00W

= −ic[(t − N + 1)bt,laνt+2,lρl + (s − N + 1)bs,kbνs+2,kρk]ω̃1

− c[( 1
2 t − 1

2 N + at+2,lbt,l)aνt,lρl + ( 1
2 s − 1

2 N + as+2,kbs,k)bνs,kρk]ϕ̃
+ c[bt+2,lbt,laνt+4,lρl + bs+2,kbs,kbνs+4,kρk] ¯̃ϕ.

So,

p1 = −c[(t − N)2aνt,lρl + (s − N)2bνs,kρk] + c(t − s)2|a|2|b|2(aνt,lρl + bνs,kρk),
q1 = ic[(t − N − 1)at,laνt−2,lρl + (s − N − 1)as,kbνs−2,kρk],
r1 = −ic[(t − N + 1)bt,laνt+2,lρl + (s − N + 1)bs,kbνs+2,kρk],
p2 = ic[(t − N − 1)at,laνt−2,lρl + (s − N − 1)as,kbνs−2,kρk],
q2 = c(at−2,lat,laνt−4,lρl + as−2,kas,kbνs−4,kρk),
r2 = c( 1

2 t − 1
2 N − bt−2,lat,l)aνt,lρl + ( 1

2 s − 1
2 N − bs−2,kas,k)bνs,kρk

+ c(bt−2,lat,l|a|2 + bs−2,kas,k|b|2)(aνt,lρl + bνs,kρk),
p3 = −ic[(t − N + 1)bt,laνt+2,lρl + (s − N + 1)bs,kbνs+2,kρk],
q3 = −c[( 1

2 t − 1
2 N + at+2,lbt,l)aνt,lρl + ( 1

2 s − 1
2 N + as+2,kbs,k)bνs,kρk]

+ c(at+2,lbt,l|a|2 + as+2,kbs,k|b|2)(aνt,lρl + bνs,kρk),
r3 = c(bt+2,lbt,laνt+4,lρl + bs+2,kbs,kbνs+4,kρk).

From Theorem 3.1, we have the following result.
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Theorem 5.1. Let f = [Z0] : S3 → CPn be an immersion; then f is isometrically
minimal if and only if the following conditions hold:

(1) t2|a|2 + s2|b|2 − (t|a|2 + s|b|2)2 =
l2 + 2l − t2

2
|a|2 +

k2 + 2k − s2

2
|b|2;

(2) (t − s)2(|a|2 − |b|2) − l2 − 2l + t2 + k2 + 2k − s2 = 0,

where |a|2 + |b|2 = 1.

The above theorem gives

|a|2 =
(t − s)2 + l2 + 2l − t2 − k2 − 2k + s2

2(t − s)2 ,

|b|2 =
(t − s)2 − l2 − 2l + t2 + k2 + 2k − s2

2(t − s)2 .

In the following examples, we denote by {φi,n, 0 ≤ i ≤ n} the Veronese surfaces
determined by the holomorphic map [φ0,n] : S2 → CPn.

Example 5.2. For a given integer m ≥ 2, we put

t = l = (m + 2)(m − 1), s = k = (m − 2)(m + 1);

then

|a|2 =
m + 1

2m
, |b|2 =

m − 1
2m

,

Z0 = aνl,lρl + bνk,kρk = aφ0,l + bφ0,k.

The curvature is

c =
1

t2|a|2 + s2|b|2 − (t|a|2 + s|b|2)2 =
1

m2 − 1

and the pullback of the Kähler form is

Ω = f ∗Ω = −
i
2

dθ00 =
1
2

Ndω1

= Nω2 ∧ ω3 = Ncω̃2 ∧ ω̃3 = ω̃2 ∧ ω̃3.

So, we know that |Ω|2 = 2, that is, f = [Z0], is of CR type. Note that this example is
the one in Li [6].

Example 5.3. For an integer m such that l, k ≥ 0, we put

t = l − 2, l = 3m2 + 13m + 8 (or = 3m2 − 7m − 2),
s = k − 2, k = 3m2 + 7m − 2 (or = 3m2 − 13m + 8);

then

|a|2 =
m + 1

2m
, |b|2 =

m − 1
2m

,

Z0 = aνl−2,lρl + bνk−2,kρk = aφ1,l + bφ1,k.
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The curvature is

c =
1

t2|a|2 + s2|b|2 − (t|a|2 + s|b|2)2 =
1

(3m + 2)(3m + 8)

(
or =

1
(3m − 2)(3m − 8)

)
and the square of the pullback of the Kähler form is

|Ω|2 = 2|Nc|2 = 2
∣∣∣∣∣ 3m2 + 10m + 4
(3m + 2)(3m + 8)

∣∣∣∣∣2 (
or = 2

∣∣∣∣∣ 3m2 − 10m + 4
(3m − 2)(3m − 8)

∣∣∣∣∣2).
It is easy to verify that 0 < |Ω|2 < 2, so the immersion f = [Z0] is neither weakly
Lagrangian nor of CR type.
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