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A new paradigm of rheological characterization, oscillatory simple shear with infinite
forcing amplitudes, is introduced by Khair (J. Fluid Mech., vol. 791, 2016, RS).
This pushes the technique of large-amplitude oscillatory shear (LAOS) to have
two extremely large amplitudes (both strain-rate and strain), which we might call
XXLAOS. Model-specific analytical predictions are derived for a suspension of
nearly spherical rigid particles subject to Brownian rotational diffusion. The work
illuminates a new regime of rheological characterization that may serve as a distinct
proving ground for constitutive model selection and for probing the flow physics of
rheologically complex fluids.
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1. Introduction

Rhelogically complex fluids have non-trivial constitutive equations for the stress
tensor o, which responds to the time-dependence and forcing amplitude of the flow.
To probe the complexity of the stress tensor o, simple velocity fields v are typically
used. Flows that evoke transient and/or nonlinear stress responses help in inferring
underlying physics and comparing experiments to models.

The most common rheological characterization flow is laminar, homogeneous,
simple shear with a single velocity component v, = y(¢)y. Although the scheduling
of y(t) could be arbitrary, sinusoidal oscillations of the form y (f) = y, cos(wt) have
proven very useful. With finite forcing amplitudes that produce a nonlinear response,
the technique is called large-amplitude oscillatory shear (LAOS) characterization (for
a review see Hyun et al. (2011)). Sinusoidal oscillations are experimentally convenient
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(avoiding step changes, allowing for signal averaging with multiple cycles) and allow
for decomposition of energy storage and loss concepts.

The Pipkin map (Pipkin 1972) organizes the two-dimensional response of
time-dependent and amplitude-dependent rheological complexity (see the title
figure, adapted from Bharadwaj & Ewoldt (2014)). For oscillatory characterization,
the Pipkin map is defined by the flow reversal frequency w (abscissa) and flow
amplitude (ordinate), e.g. strain-rate amplitude y, or strain amplitude y, = yy/w. The
coordinates can be made dimensionless with a characteristic stress relaxation time t
of the material, in which case the Deborah number De = tw and the Weissenberg
number Wi = ty, define the abscissa and ordinate, respectively (whereas De = tw
determines the viscoelastic features, the forcing amplitude determines the nonlinearity,
e.g. shear thinning is observed when Wi is sufficiently large).

All Newtonian fluids occupy only a single point of the Pipkin map, the origin, since
the relaxation time 7 — O for Newtonian fluids. We might call this the ‘southwest’
corner of the Pipkin space (the lower left). Various limits can be taken to explore the
extreme edges, or coasts, around the Pipkin map. Three familiar limits were described
by Pipkin (1972). Along the south coast (infinitely small forcing) is the limit of linear
viscoelasticity, the west coast (De — 0) is nonlinear purely viscous, and the east coast
(De — 00) is the limit of nonlinear purely elastic.

Of the interior region, Pipkin remarked that ‘Nothing very systematic is known...".
Indeed, the full map, and the interior region specifically, boasts a zoo of responses,
bringing experimental challenges, data reduction challenges and a broad range of
model-specific predictions (Pipkin 1972; Giacomin & Dealy 1993; Hyun et al. 2011).

The northern coast of the Pipkin map has never been considered as a limit to
explore, until now. Khair (2016) takes the limit of infinite forcing amplitudes as a
key paradigm, introducing a new concept for LAOS flow characterization. As Khair
shows, both the strain-rate amplitude and strain amplitude must approach infinity to
achieve this limit. Since two amplitudes must be ‘extra’ large, we might use the
term extra-extra-large-amplitude oscillatory shear (XXLAOS) to identify the regime.
Using a paradigmatic model of dilute nearly spherical colloids, an analytical result is
derived. This is mathematically non-trivial; although forcing amplitudes are extremely
large, the forcing oscillates and thus also goes through zero. These ‘turning regions’
require special mathematical attention. Khair shows us the way, deriving the results,
and setting the stage for experimental validation and analytical solutions to other
constitutive models in this limit.

2. Overview

The limit of strongly nonlinear LAOS, or XXLAOS, is novel and a bit weird:
the shear rate oscillates between positive and negative ‘infinity’, but in finite time!
The response depends on how quickly (w) the flow reverses. Of course, the forcing
amplitude does not actually need to reach infinity. Concepts of limits, dimensionless
groups and comparison of terms allow for the limit to be taken.

Unique challenges exist for XXLAOS compared to other limits. For example, the
limit of small amplitude oscillatory shear (SAOS), the linear viscoelastic regime,
is defined by 3 — 0 and yy, — 0O; in this case the flow strength is always small,
anywhere in the oscillatory cycle. Similarly, an expansion to asymptotically nonlinear
forcing amplitude, sometimes called medium-amplitude oscillatory shear (MAOS), has
oscillatory signals that are also sufficiently small throughout the entire oscillation. In
contrast, the XXLAOS regime is defined by the flow forcing being extremely large,


https://doi.org/10.1017/jfm.2016.265

https://doi.org/10.1017/jfm.2016.265 Published online by Cambridge University Press

Predictions for the northern coast of the shear rheology map: XXLAOS 3

yet since the flow reverses, the instantaneous strain rate y(f) and accumulated strain
y(t) also take values of zero. These somewhat contradictory limits require proper
mathematical treatment.

The successful mathematical approach is to use a ‘multi-scale’ or ‘two-timing’
expansion of the response. Importantly, this requires WKBJ theory (Hinch 1991) to
identify a suitable ‘fast’ timescale. With this approach, the core regions of high shear
rate and the turning regions with near-zero shear rate can be individually solved and
reconciled.

The key result of Khair (2016) is that an analytical solution is derived for this
strongly nonlinear LAOS limit for the entire stress tensor o. Fast oscillations are
observed in the high shear rate portions of the curve as the particles are advectively
rotated by the vorticity of the flow (Jeffery orbits). In what Khair calls the turning
regions, the shear rate is low (near zero), and the dynamics are dominated by
rotational diffusion. The analytical results rationalize the timescales of the observed
dynamics and provide explicit predictions of scaling with respect to the Weissenberg
number Wi =1y, and Deborah number De =tw (i.e. 8 and «, respectively, in Khair’s
notation).

The predicted hysteresis curves (a.k.a. Lissjous curves) are perhaps the most
unique in the published literature. They exhibit multiple self-intersections due to fast
oscillations on timescales much smaller than the periodic timescale T = 27w /w. This
is a provocative prediction, although it is consistent with the predicted response in
start-up of steady shear of the same model (Leal & Hinch 1972), and experimental
rheo-optics observations of suspensions of spheroidal particles. This raises several
interesting questions: is this a general feature of all models in this limit? Even if
a model does not predict ‘fast’ oscillations during the periodic cycle, is it true that
the response in the turning region could still dominate the rheological response, as
observed with the Wi scaling here?

The frequency dependence is not discussed in detail by Khair, but the predictions
are contained in the analytical solution. It will prove very interesting to compare
the frequency dependence in this regime with other limits in the Pipkin space, in
particular the small- and medium-amplitude regimes. In SAOS, there would be an
analogy to frequency-dependent signatures of the linear viscoelastic moduli G'(w) and
G'(w), and for MAOS an analogy to the four measurable asymptotically nonlinear
shear material functions [e¢;](w), [e3](w), [vi](w) and [v;](w), which can be used to
compare and contrast different material and constitutive models (Bharadwaj & Ewoldt
2015). Similar comparisons in the strongly nonlinear LAOS regime may further help
distinguish materials and constitutive models while still being accessible to analytical
solutions.

Some context should be noted regarding other research efforts in LAOS characteri-
zation. Khair’s contribution here is not a new way to describe LAOS oscillatory
signals; in that category of signal processing are Fourier transforms, Chebyshev
polynomials and various local measures (Ewoldt, Hosoi & McKinley 2008; Hyun
et al. 2011; Rogers 2012). Rather, Khair gives a paradigm of using the limit of
‘infinite’ forcing amplitudes for LAOS characterization. This is a specific region of
the Pipkin map, complementing other limits such as SAOS and MAOS. Indeed, these
results may inspire a trend of solving other model equations to see how similar or
different rheological fingerprints may be in this limit.

3. Future

Several new questions arise with the concept of infinite forcing amplitude as a
distinct regime for oscillatory characterization.
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Experimentally, there are questions general to this technique and specific to these
model predictions. Are experiments possible in this regime? A key challenge is
the inherent assumption of negligible fluid inertia. Experimental forcing is typically
imposed by boundary-driven flow and must deal with viscoelastic shear waves (Schrag
1977). Additional experimental challenges at extremely large amplitude (even modest
amplitude) include edge fracture, slip at the boundary or slip within the fluid sample,
all of which violate the assumptions of homogeneous simple shear flow. It may
be possible to surmount these challenges with carefully chosen materials with long
relaxation timescales and small critical strains, or by using smaller length-scale
microrheology (either small confinement or small embedded probe microrheology).

If experiments are possible, then there are specific questions related to the model
predictions of Khair (2016): can the core regions of fast oscillations be observed?
What of the Weissenberg-number scaling or the frequency-dependent signatures?
More generally, how different are these XXLAOS rheological signatures for different
material systems?

There are more questions regarding theoretical understanding. How different are
the responses for different constitutive models in this limit? Is anything general, as
it is in the low Deborah number limit for SAOS and MAOS (Bharadwaj & Ewoldt
2014)? Are analytical results achievable for many models? For those that are, the
mathematical challenges may have a similar flavour to the multi-scale expansions
demonstrated here by Khair (2016), but this remains to be explored.

More broadly, the concept of strongly nonlinear oscillations may be applicable to
other fields beyond rheology, e.g. dielectric, electrochemical, magnetic and mechanical
systems. Analogous Pipkin spaces may have their own northern coasts in the limit
of infinite forcing amplitude. These curious questions can now be asked, and some
guidance provided, thanks to the work of Khair.
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