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The efficacy of steady large-amplitude blowing/suction on instability and transition
control for a hypersonic flat plate boundary layer with Mach number 5.86 is investigated
systematically. The influence of the blowing/suction flux and amplitude on instability is
examined through direct numerical simulation and resolvent analysis. When a relatively
small flux is used, the two-dimensional instability critical frequency that distinguishes
the promotion/suppression mode effect closely aligns with the synchronisation frequency.
For the oblique wave, as the spanwise wavenumber increases, the suppression effects
would become weaker and the mode suppression bandwidth diminishes/increases in
general in the blowing/suction control. Increasing the blowing/suction flux can effectively
broaden the frequency bandwidth of disturbance suppression. The influence of amplitude
on disturbance suppression is weak in a scenario of constant flux. To gain a deeper
insight into disturbance suppression mechanism, momentum potential theory (MPT) and
kinetic energy budget analysis are further employed in analysing disturbance evolution
with and without control. When the disturbance is suppressed, the blowing induces
the transport of certain acoustic components along the compression wave out of the
boundary layer, whereas the suction does not. The velocity fluctuations are derived from
the momentum fluctuations of the MPT. Compared with the momentum fluctuations,
the evolutions indicated by each component’s velocity fluctuations greatly facilitate the
investigations of the acoustic nature of the second mode. The rapid variation of disturbance
amplitude near the blowing is caused by the oscillations of the acoustic component
and phase speed differences between vortical and thermal components. Kinetic energy
budget analysis is performed to address the non-parallel effect of the boundary layer
introduced by blowing/suction, which tends to suppress disturbances near the blowing.
Moreover, viscous effects leading to energy dissipation are identified to be stronger in
regions where the boundary layer is rapidly thickening. Finally, it is demonstrated that a
flat plate boundary layer transition triggered by a random disturbance can be delayed by
a blowing/suction combination control. The resolvent analysis further demonstrates that
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disturbances with frequencies that dominate the early transition stage are dampened in the
controlled base flow.

Key words: compressible boundary layers, instability control, transition to turbulence

1. Introduction

Laminar-to-turbulent transition control is a major challenge in studying hypersonic flow,
and maintaining the laminar boundary layer can effectively reduce wall friction and
surface thermal loading. Previous studies have shown that under small disturbance
conditions, the transition first undergoes mode growth (Morkovin 1969). In the context
of two-dimensional (2-D) hypersonic flow, the initial stages of transition are frequently
associated with the receptivity and amplification of the first and second Mack modes.

The least stable instability in high-speed boundary layers, typically above Mach 4,
is the 2-D second mode (Mack 1984), as also demonstrated in previous experimental
investigations (Stetson & Kimmel 1992; Casper et al. 2009). The second mode corresponds
to inherently inviscid instabilities, while the first mode represents viscous instability, an
extension of the Tollmien–Schlichting wave for an incompressible boundary layer. The
second mode, which belongs to the family of trapped acoustic waves, can be visualised
as acoustic rays trapped between the wall and the sonic line (Knisely & Zhong 2019). The
sonic line is where the disturbance phase speed satisfies c = Ū + a, where Ū represents the
local mean flow velocity over time, and a denotes the local mean sound speed calculated
by mean flow variables, respectively. Unnikrishnan & Gaitonde (2019) analysed the second
mode using momentum potential theory (MPT), revealing that the flux line demonstrates
distinct wave-trapped properties for the acoustic and entropic (thermal) components.
Although the vortical component has the greatest amplitude, the acoustic component is
the most dynamically active within the amplifying range of the second mode.

Fedorov & Tumin (2011) analysed the second mode from the perspective of receptivity,
using the nomenclature of mode S (slow acoustic mode), mode F (fast acoustic mode), and
continuous modes (the vortical and entropy modes). At the leading edge, the phase speeds
of modes S and F tend to be c = 1 − 1/Ma and 1 + 1/Ma, respectively. Usually, mode
S becomes unstable due to the interaction between mode S and the slow acoustic wave,
with Mack first mode being the first unstable mode. The fast acoustic wave decelerates,
and the slow acoustic wave accelerates downstream. Downstream of the synchronisation
point, where the phase speeds of F and S modes are identical, mode S becomes unstable,
and the second mode is referred to as S mode after F–S mode synchronisation.

In recent years, significant progress has been made in the development of passive
or active control methods for controlling the second mode. Experimental studies have
demonstrated that porous walls are effective at suppressing transitions (Rasheed et al.
2002; Wagner et al. 2013). Theoretical modelling showed that ultrasound-absorbing
materials can effectively suppress the second mode and slightly destabilise the first mode
(Fedorov et al. 2003). According to theoretical predictions, an experimental investigation
by Maslov et al. (2008) revealed a weakening of high-frequency disturbances and an
increase in low-frequency disturbances. The results of 2-D direct numerical simulations
(DNS) confirmed that the second mode can be suppressed by porous walls (Egorov
et al. 2007). Based on theoretical modelling and stability analysis, investigations were
conducted into regular and irregular porosity (Fedorov et al. 2006; Maslov et al. 2006).
Additionally, parameter studies were conducted to investigate the optimal thickness of
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Hypersonic boundary layer instability control

porous wall coatings (Lukashevich et al. 2012). The positions of porous strips relative to
the synchronisation point were determined by parametric studies of their placement, which
then influenced the control effect (Duan, Wang & Zhong 2013). The damping of the second
mode by porous walls is due to increased dissipation caused by viscosity in the porous wall.
Subsequent studies have shown that the suppression effect is also correlated with acoustic
scattering performance (Brès et al. 2013). The diffraction effect of adjacent porous holes
was taken into account to improve theoretical modelling (Zhao et al. 2018a). A recent
investigation indicates that wall impedance is more significant than viscous dissipation in
mode suppression (Zhao et al. 2019b). On the basis of these aforementioned investigations,
Tian et al. (2022) carried out the design optimisation of porous materials.

Early experiments showed that the roughness of the surface could also have a certain
suppression effect on the transition (Holloway & Sterrett 1964). The DNS studies on
roughness indicated that roughness modified boundary layer stability properties and
suppressed disturbances within a specific frequency bandwidth (Marxen, Iaccarino &
Shaqfeh 2010). The location of the synchronisation point in relation to the roughness also
influences the ultimate control effect (Marxen et al. 2010). The parametric investigation
of frequency for fixed-position roughness revealed the existence of a critical frequency
close to the synchronous frequency, above or below which disturbances are facilitated or
suppressed (Zhao, Dong & Yang 2019a). An investigation into the effect of wall shapes
indicated a correlation between energy reduction and pressure gradients (Sawaya et al.
2018). The mechanisms for control of the second mode by roughness, according to the
theoretical investigation, stem from mean flow modification and second-order scattering
effects (Dong & Zhao 2021). The scattering effects are also observed in investigations of
short rectangular indentations (Dong & Li 2021). Additionally, some other passive control
methods, such as wall heating/cooling striping (Fedorov et al. 2015; Zhao et al. 2018b;
Jahanbakhshi & Zaki 2021) and wavy wall (Bountin et al. 2013; Si et al. 2019), have also
been found to be effective in controlling instability within a specific frequency range.

In addition to passive control methods, some studies have also attempted active
control methods, such as adding CO2 into high-enthalpy boundary layer flows (Leyva
et al. 2009a,b) or introducing blowing/suction (Wang & Lallande 2020; Hader & Fasel
2021). The DNS investigations showed that unsteady blowing and suction can induce
S modes effectively (Wang & Zhong 2009). When positioned upstream/downstream of
the synchronisation point, concave/convex-type blowing and suction can slightly suppress
the second mode (Wang & Lallande 2020). The DNS results demonstrated that constant
blowing was effective in suppressing fundamental resonance (Hader & Fasel 2021).
Furthermore, a DNS investigation of transition control on a flared cone has found that
the large-amplitude blowing/suction can suppress the transition triggered by random
disturbances, and the short-term response of delay effect is investigated in detail (Hader
& Fasel 2022). The theoretical analysis found that mass injection can increase both
primary and secondary growth rates over a blunt cone (Kumar & Prakash 2022). Unsteady
blowing and suction were also found to be effective in suppressing the second mode, and
they exhibited a tendency towards greater control efficacy with increasing frequency or
amplitude (Zhuang et al. 2023). Moreover, by placing the optimised constant blowing
after the synchronisation point, the second mode was effectively suppressed (Poulain
et al. 2023b). More recently, based on the gradient analysis of optimal gain obtained
via resolvent analysis, Poulain et al. (2024) comprehensively analysed the control effect
of small amplitude blowing/suction and wall heating/cooling on the non-modal growth
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of different frequency/wavenumber perturbations, which includes the first mode, second
mode and streaks.

As mentioned above, new progress is emerging in controlling second mode and
transition, and active control based on blowing and suction on the wall has become a
potential method. However, previous studies on steady blowing and suction employed
small amplitudes (10−5–10−4 U∞) and could not achieve a significant mode suppression
effect. Interestingly, recent studies with larger amplitudes (10−2–10−1 U∞), such as
second mode suppression via synthetic jets (Zhuang et al. 2023) or fundamental
resonance suppression based on steady blowing and suction (Hader & Fasel 2021),
can achieve better mode control effects; however, the incoming flow disturbances
in these studies are characterised by a single frequency. It should be noted that in
successful random-perturbation-triggered flared cone transition control based on blowing
and suction, the frequencies of perturbations are still concentrated around a certain
fixed frequency during the early linear evolution stage of the transition (Hader &
Fasel 2022). Due to the increased experimental challenges, the impact of blowing
and suction on the suppression of the second mode in hypersonic flows has received
relatively limited attention in previous studies. Notably, the actual transition process, as
observed in the experiments, will typically entail disturbances at multiple frequencies.
The transition delaying effect will thus be determined by the frequency range of instability
suppression for any control method, as indicated in the second mode controlled by
shallow cavities (Chen & Lee 2021). The work of Poulain et al. (2024) has provided
the suppression frequency/wavenumber range for blowing/suction control with small
amplitude conditions. However, the effectiveness of this control remains unclear when
applied to large-amplitude conditions, where the base flow was significantly altered.
Therefore, it is worth investigating whether stronger blowing or suction can suppress
disturbances at various frequencies. Consequently, this study investigates the suppression
of instability by employing blowing/suction with larger magnitudes, and examines the
influence of blowing/suction flux and amplitude on the control effect. Furthermore,
a comprehensive examination of the corresponding control mechanisms is conducted.
Finally, a delayed transition triggered by random disturbances is performed to verify the
ability of blowing/suction to dampen instability.

The rest of the paper is organised as follows. The governing equations, resolvent
analysis and simulation set-up, including flow conditions and blowing/suction parameters,
are introduced in § 2. Section 3 focuses on the mean flow modification caused by
the blowing/suction. Then the control effect on the instability obtained by DNS and
resolvent analysis is presented in § 4. To reveal the instability suppression mechanism,
the evolution of the fluid-thermodynamic components, encompassing vortical, acoustic
and thermal components, obtained by MPT and the non-parallelism/viscous effect near
the blowing/suction, are examined in § 5. Then the transition delay based on the
blowing/suction is introduced in § 6. The major findings are summarised in § 7.

2. Numerical procedure

2.1. Governing equations
The flow in this study is governed by the three-dimensional compressible Navier–Stokes
equations, which are written in non-dimensional form as follows:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)
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∂(ρv)

∂t
+ ∇ · (ρvv + pI − τ ) = 0, (2.2)

∂(ρE)
∂t

+ ∇ · ((ρE + p)v − τ · v − q) = 0, (2.3)

where ρ, v and p are density, velocity vector and pressure, respectively. Here, E =
p/[ρ(γ − 1)] + v · v/2 denotes the total energy, and I is the identity matrix. The viscous
stress τ and heat flux vector q are expressed according to

τ = μMa∞
Re

(
∇v + ∇vT − 2

3
(∇ · v)I

)
, (2.4)

q = μMa∞
(γ − 1)Pr Re

∇T, (2.5)

where Ma∞ is the Mach number, defined as Ma∞ = u∞/a∞, and u∞ and a∞ are
the free-stream velocity and sound speed, respectively. The free-stream quantities are
denoted by subscript ∞. The Reynolds number Re is defined as Re = ρ∗∞u∗∞l∗ref /μ

∗∞, in
which l∗ref is the reference length. The superscript ∗ denotes dimensional variables. The
Prandtl number Pr is set to 0.72. The dynamic molecular viscosity μ is approximated by
Sutherland’s law:

μ(T) = T3/2 T∗
s /T

∗∞ + 1
T∗

s /T∗∞ + T
, (2.6)

where T∗
s = 110.4 K. Here, ρ∗∞, c∗∞, ρ∗∞c∗2∞ and T∗∞ are employed in sequence to

non-dimensionalise the density, velocity, pressure and temperature, respectively.
The in-house high-order finite-difference Navier–Stokes solver HiResX is used to solve

the discretised governing equations, which has been well validated in previous studies (Ye
et al. 2020; Zhuang et al. 2023). To ensure numerical stability, a robust shock-capture
scheme, the fifth-order AF-WENO, is utilised to treat the inviscid fluxes, and a sixth-order
central difference scheme is used to discretise the viscous fluxes. For time advancement,
the three-stage total variation diminishing Runge–Kutta method is utilised.

2.2. Resolvent analysis
We employ resolvent analysis to determine the most unstable disturbance characteristics
of the mean flow with/without control. The concept and calculation of the resolvent can
be found in Poulain et al. (2023a). Here, we provide a concise introduction to resolvent
analysis.

By applying a forcing f , we have rewritten (2.1)–(2.3) to obtain the form

dq
dt

= N(q)+ f , (2.7)

where q = [ρ, ρv, ρE]T, N is the discretised compressible Naiver–Stokes equation, and
f represents the disturbances caused by the environment’s noise, actuators, nonlinear
interactions between disturbances, etc. Decompose q as q = q̄ + q′, in which q̄ is base
flow and q′ is disturbance. Considering that the amplitudes of disturbance q′ and forcing

990 A17-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

53
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.539


G.-H. Zhuang, Z.-H. Wan, N.-S. Liu, D.-J. Sun and X.-Y. Lu

f are small, we then obtain

dq′

dt
= Aq′ + f . (2.8)

The Jacobian matrix A is obtained as A = dN/dq|q̄. We suppose that the harmonic
forcing with a spatial structure is f (x, y, t) = f̃ (x, y) eiωt, and its response with the form
q′(x, y, t) = q̃(x, y) eiωt is established as

q̃ = Rf̃ , (2.9)

where R = (iωI − A)−1 is the resolvent operator, and ω is the angular frequency.
To evaluate the energy of q̃, the definition in Chu (1965) and George & Sujith (2011) is

used, which is written as

EChu = ‖q̃‖2
E = 1

2

∫
Ω

(
ρ̄ |ṽ|2 + T̄

γ Ma2∞ ρ̄
|ρ̃|2 + ρ̄

(γ − 1)γ Ma2∞ T̄
|T̃|2

)
dΩ, (2.10)

where Ω is the integration domain. It is selected to be the whole computational domain in
this study. The definition of ‖q̃‖2

E can also be written in the form ‖q̃‖2
E = q̃TQEq̃, in which

QE is a discrete Hermitian matrix. Superscript T means the transconjugate operator. It
is commonly employed for investigating the global behaviour of compressible flows due
to its inclusion of terms pertaining to both thermodynamic and kinetic disturbances. To
evaluate the energy of f̃ , the discrete inner product is utilised:

‖ f̃ ‖2
F =

∫
Ω

ρ̄−1f̃
T

f̃ dΩ. (2.11)

The definition ‖ f̃ ‖2
F can be rewritten with a Hermitian matrix QF as ‖ f̃ ‖2

F = f̃ TQF f̃ .
A prolongation/restriction matrix P is introduced to restrict the region of forcing in the
flow or to specify the components. In this investigation, only the momentum components
are chosen for the forcing field. Replacing f̃ by P f̃ , we can find a specific solution that
has the maximum gain

g̃2(ω) = sup
f̃ /=0

‖q̃‖2
E

‖ f̃ ‖2
F

= sup
f̃ /=0

f̃ TPTRTQERPf̃

f̃ TQF f̃
. (2.12)

The corresponding f̃ and q̃ are called optimal forcing and response mode, respectively.
The optimisation problem can be converted into the generalised Hermitian eigenvalue
problem:

PTRTQERPf̃ = μ2QF f̃ . (2.13)

To obtain the optimal gain, it is necessary to compute the largest eigenvalue of
the positive generalised eigenvalue problem. The calculations of resolvent analysis
are performed with the solver BROADCAST (Poulain et al. 2023a). To calculate the
Jacobian matrix A, a high-order FE-MUSCL (flux-extrapolated-MUSCL) scheme is used
to discretise the convective flux, and a five-point compact scheme to discretise the viscous
flux.
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Boundary layer

Figure 1. Sketch of the DNS domain over a flat plate, along with the boundary conditions.

2.3. The DNS set-up
A Mach number 5.86 plate boundary layer is used to investigate the control effect on
the instability of steady blowing/suction. The free-stream temperature is T∗∞ = 55 K,
density is ρ∗∞ = 0.0443 kg m−3, and velocity is U∗∞ = 870 m s−1, which are the
same as in a previous investigation (Zhang, Duan & Choudhari 2017). A sketch
of the computational domain is shown in figure 1, and the reference length l∗ref
satisfies Re = ρ∗∞U∗∞l∗ref /μ

∗∞ = 38 300. The inflow boundary starts at x0 = 0, with
its distance d∗

0 to the leading edge satisfying Re0 = √
Red0 = √

ρ∗∞U∗∞d∗
0/μ

∗∞ =
1000. The computational domain length in the streamwise direction is L∗, satisfying
ReL = √

ρ∗∞U∗∞(d∗
0 + L∗)/μ∗∞ = 4500. The length in the wall-normal direction is 50l∗ref ;

5120 grid points are used in the streamwise direction, while 300 grid points are clustered
near the wall in the wall-normal direction.

The inlet disturbances are introduced as eigenmodes obtained from spatial linear
stability theory (Malik 1990). To ensure that the disturbance evolves linearly, its amplitude
is set to be of the order of 10−5. Free-stream conditions are imposed at the outer
and downstream regions of the boundary layer, while adiabatic and no-slip boundary
conditions are applied at the wall. Buffer zones are employed upstream and downstream
of the boundary layer to mitigate disturbances.

The blowing/suction slot is located at [x1, x2], where x1 is fixed at 89.9, and x2 = x1 + d,
with d representing the slot width. The control of blowing/suction is represented by the
model

v(x, t) =
{

Ac, x ∈ [x1, x2],
0, x /∈ [x1, x2].

(2.14)

The density in the slot remains constant at ρwall = 0.152. For convenience, the flux of
control can be defined as Fc = Acd. The control parameters are summarised in table 1.
In each case, eleven uniformly spaced frequency disturbances between F = 4.5 × 10−5

and F = 7.5 × 10−5 are employed, where F = 2πf ∗/(ρ∗∞U∗2∞), in which f ∗ denotes
dimensional frequency. These frequencies are chosen to be around the synchronisation
frequency. In the DNS investigation, the spanwise wavenumber β of disturbance is selected
as 0, 4.5 × 10−5 (β1) and 9 × 10−5 (β2) for each frequency, in which the reference
length used to define β is μ∗∞/(ρ∗∞U∗∞). Each spanwise wavelength is resolved by 30
grid points when the spanwise wavenumber is not zero. For cases with slot width 1,
approximately 20 grid points are used to resolve the slot. Additionally, it is noteworthy
that the implementation of such control measures in practical applications may also be
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Cases Fc/A0 Ac/A0 d Cases Fc/A0 Ac/A0 d

B0A0 0 0 0
B2A2 2 2 1 B2AH 2 0.5 4
B3A3 3.2 3.2 1 B3AH 3.2 0.5 6.4
B6A6 6 6 1 B6AH 6 0.5 12
S3A3 −3.2 −3.2 1 S3AH −3.2 −0.5 6.4
S2A2 −2 −2 1 S6A6 −6 −6 1

Table 1. Simulation parameters for various cases. A0 is 0.01U∗∞. The B or S in the notation indicates the flux
of blowing or suction control and A indicates the amplitude.

60 70 80

x x

p

90 100 110
0.5

0.6

0.7

0.8

0.9

1.0
No control
B2A2
B3A3
B6A6
S3A3

60 70 80 90 100 110

0.65

0.70

0.75

0.80

0.85

0.90
No control
B2AH
B3AH
B6AH
S3AH

(a) (b)

Figure 2. The streamwise evolution of pressure near the wall in cases (a) B2A2, B3A3, B6A6, S3A3, and
(b) B2AH, B3AH, B6AH, S3AH. The grey rectangular background represents the streamwise range of the
blowing/suction in (a). The purple, yellow, red and green rectangular backgrounds represent the streamwise
ranges of slots for cases B2AH, B3AH, B6AH and S3AH, respectively.

anticipated in future, according to some previous experiment investigations (Miró Miró
et al. 2019; Prokein & von Wolfersdorf 2019).

3. Mean flow modified by blowing or suction

The linear evolution of the flow downstream is determined by the characteristics of the new
base flow for the small-amplitude disturbances of the incoming flow that we investigate.
As a result, the initial depiction focuses on the characteristic changes in the mean flow.

Figure 2 depicts the near-wall pressure evolution for all cases. It is seen that the pressure
gradually rises upstream of the blowing slot, resulting in an adverse pressure gradient
for each blowing case. Meanwhile, within the blowing slot interval, the pressure returns
to the downstream amplitude, resulting in a zone of favourable pressure gradient. Hence
for a narrower blowing slot, such as case B2A2 illustrated in figure 2(a), it induces a
rapid pressure drop, whereas for wider slots, as in case B2AH shown in figure 2(b), the
length of the favourable pressure gradient zone would be extended to approximately 4. The
pressure peak increases correspondingly with an increased blowing amplitude under the
same blowing flux. The suction creates two regions characterised by a favourable pressure
gradient and an adverse pressure gradient, respectively, which is in direct contrast to the
blowing. Furthermore, it should be emphasised that the zone of adverse pressure gradient
extends beyond the leading edge of the suction and encompasses the entire suction slot.
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Figure 3. The streamwise velocity contours in (a) case B3A3 and (b) case S3A3. The black line is the sonic
line (c = U + a) whose phase speed is c = 5.5 without control (solid line) and with control (dashed line).

As shown in figure 3, the waveguide, which consists of the wall surface and the sonic
line, becomes wider and then narrows slightly near the blowing; it undergoes an opposite
trend near the suction region. Previous studies (Mack 1990; Fedorov 2011) have suggested
that the second mode can be interpreted as acoustic rays reflecting between the sonic
line and wall surface. Hence an analysis of variations in the sonic line is conducted to
describe qualitatively how boundary layer thickness or thinness induced by blowing or
suction influences disturbance development. Currently, the phase speed chosen to extract
the sonic line is 5.5, which corresponds to the phase speed (using c at x ≈ 90) of a
perturbation whose synchronisation point is located at the control position. The sonic line
rises/falls rapidly upstream during blowing/suction, then falls/rises to a height above/below
the uncontrolled height downstream. It is evident that a strong non-parallel effect occurs,
and its impact on the growth of disturbances will be analysed in § 5. Here, we focus on the
influence on the disturbance phase speed.

The phase speed of the perturbed wave is analysed to investigate the variation
in the near-wall pressure disturbance using the fast Fourier transform (FFT) and
synchrosqueezed wavelet analysis (Daubechies, Lu & Wu 2011). The FFT is used to
obtain the specific frequency response. The synchrosqueezed wavelet transform is an
effective signal-processing technique that combines wavelet analysis with a process called
synchrosqueezing. By combining these two techniques, synchrosqueezed wavelet analysis
provides a powerful tool for analysing signals with time-varying frequency content, such as
non-stationary signals encountered in many real-world applications. Presently, this method
is employed mainly to ‘sharpen’ the space–wavenumber representation compared with
conventional wavelet analysis. The Bump wavelet is employed to analyse the instantaneous
pressure at the line y = 0.1 between x ≈ 10 and x = 200 for two typical cases, i.e.
B3A3 and S3A3. The results near the blowing or suction are shown in figure 4. For a
low-frequency disturbance with F = 4.8 × 10−5 in case B3A3, the wavenumber of the
disturbance increases gradually upstream of the blowing, resulting in a decrease in the
phase speed. However, the wavenumber decreases gradually near the blowing. The change
in wavenumber and the change in height of the sonic line follow essentially the same
trend. As shown in figure 4(b), for a high-frequency disturbance with F = 7.2 × 10−5,
there is also a tendency for the phase speed to decrease upstream of the blowing, while
a relatively new disturbance with a higher wavenumber appears downstream. Then the
new disturbance decays, and the predominant disturbance becomes the second mode
downstream. The opposite result for suction can be observed in figures 4(c,d), where
for high frequencies, the phase speed of the disturbance decays more significantly. This
may be related to the different wavelengths of the disturbances, as longer waves are more
susceptible to changes in their phase speed. Moreover, as shown in figure 4(d), it is also
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Figure 4. The wavenumber evolution obtained by the wavelet analysis operated on the pressure near the wall:
(a) F = 4.8 × 10−5 in case B3A3, (b) F = 7.2 × 10−5 in case B3A3, (c) F = 4.8 × 10−5 in case S3A3,
(d) F = 7.2 × 10−5 in case S3A3.

found that the disturbance with F = 7.2 × 10−5 is enhanced more significantly by suction
control; the underlying mechanism of this enhancement is attributed mainly to the reduced
boundary layer thickness, which will be analysed further in the following. In summary, it
can be concluded that there is a tendency for the phase speed of the perturbed wave to
decrease as the height of the sonic line increases, and vice versa, with the degree of change
being frequency-dependent.

4. The control effect of blowing/suction flux and amplitude

This section presents the control effect of blowing/suction on disturbances of different
frequencies and then analyses the influence of blowing/suction flux and amplitude on
the control effect, which is based on DNS and resolvent analysis, respectively. The DNS
analyse the spatial growth of local eigenmodes at each streamwise station since disturbance
is added from the inlet in the form of eigenmodes obtained from local spatial stability
analysis. If the base flow does not change drastically in the streamwise direction with
control, then DNS can be replaced by tools such as linear spatial stability analysis, as
demonstrated in previous studies (Fedorov et al. 2015; Dong & Zhao 2021). In contrast to
DNS, resolvent analysis focuses on the global eigenmodes of a specific zone, which can
be regarded as the dominant amplification mode for spatially distributed disturbances at a
given frequency in terms of sensitivity. For hypersonic boundary layers, resolvent analysis
can also yield Mack first/second modes that are essentially equivalent to those obtained
through local stability analysis, as described in Nibourel et al. (2023).

4.1. Control effect on the mode amplitude
Before discussing the control effect of blowing and suction, it is crucial to define the
amplification coefficient (CA) to evaluate its effectiveness. In this study, the amplification
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Figure 5. The streamwise evolution of mode amplitude for defining the amplification coefficient (a) in a
relatively long distance, (b) near the blowing/suction.

coefficient is defined as the ratio between the maximum values of |u′| obtained with
and without blowing/suction in a sufficiently long computational domain that allows
reaching the disturbance’s maximum value. Figure 5 presents the streamwise evolution
of mode amplitude without and with blowing or suction. We find that the control effects
are frequency-dependent. For instance, the disturbance with frequency F = 4.8 × 10−5

is amplified, reaching amplification coefficient 1.38 by comparing case B6A6 with case
B0A0. However, for frequency F = 5.1 × 10−5, the disturbance is damped and reaches
a corresponding coefficient 0.40 by comparing case S3A3 with case B0A0. Meanwhile,
it is noted that the evolution of the disturbance near the blowing has a strong influence
on the amplification factor. For example, as shown in figure 5(b), for case B6A6, the
disturbance amplitude drops from 0.6 × 10−3 to 0.2 × 10−3 approximately in the range
x ∈ [89, 95]. The dramatic changes in the vicinity of blowing or suction will decrease the
overall amplification factor.

Figure 6 presents the amplification coefficients for different disturbance frequencies in
control cases. The most dangerous 2-D instability is examined first. It is important to note
that there exists a critical frequency for blowing control, beyond which the disturbance is
suppressed within a specific frequency range, while below this frequency, it continues
to amplify. For instance, in case B2A2, the critical frequency is approximately F =
5.4 × 10−5, as shown in figure 6(a). When the disturbance has a frequency greater than
F = 7.2 × 10−5, its amplification coefficient reaches 1 since the location where the mode
reaches its maximum amplitude is far upstream of the blowing. Within the suppression
band, there exists a minimum amplification coefficient 0.3 at frequency approximately
F = 6 × 10−5 in case B2A2. Additionally, among the calculated frequencies, there also
exists a maximum value within an amplification band with maximum amplification
coefficient 4 at approximately F = 4.8 × 10−5. Figures 6(a)–6(c) all show that there is
a slight discrepancy in the amplification coefficients for cases with slot width 1 and
control amplitude 0.5. This implies that the influence of blowing amplitudes on the control
effect, including critical frequency and minimum amplification coefficient, is relatively
insignificant when considering the same blowing flux.

Previous studies (Duan et al. 2013; Zhao et al. 2019a) have suggested that the
synchronisation frequency may act as the critical frequency. Therefore, in figure 6, we
mark the synchronisation frequency. When the control flux is relatively small, such as
in case B2A2, the critical frequency is close to the synchronisation frequency. However,
as the blowing flux increases, the critical frequency rapidly shifts to lower frequencies
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Figure 6. The dependency of amplification coefficient CA on the frequencies for different fluxes. Blowing
control with the flux of (a) Fc = 2, (b) Fc = 3.2 and (c) Fc = 6. Suction control with the flux of
(d) Fc = −3.2. The blue vertical dashed line is the synchronisation frequency.

and widens the suppression frequency band. As the flow flux increases from 2 to
6, the critical frequency decreases from approximately 5.4 × 10−5 to 4.8 × 10−5. The
increase in flux also improves the suppression effect, resulting in a decrease in the
minimum amplification factor from 0.3 to 0.13. However, for all cases of increased
flux levels, there are only slight changes around 6 for the corresponding frequencies of
minimum amplification factors, indicating that relatively small changes occur at these
frequencies. Additionally, with an increase in blowing flux level, there is a slight increase
in discrepancy between amplification coefficients of different amplitudes at the same
flux levels, suggesting that local base flow changes due to blowing or suction have a
greater impact on mode growth rate. Figure 6(d) illustrates the suppression effect of
suction control, which also has a critical frequency (approximately F = 6.1 × 10−5 in
this case). Unlike blowing control, suction control suppresses disturbances below the
critical frequency while promoting higher-frequency disturbances. Additionally, for the
disturbances studied here with frequency band 4.5 × 10−5 < F < 6 × 10−5, the suction
cases all show similar suppression effects. Disturbances with higher frequencies are
promoted, which is also observed in figure 4(d). The maximum promoted effect is achieved
around the frequency of 6.9 × 10−5 approximately. When the suction flux is constant, the
influence of suction amplitude on the control effect of disturbances with frequencies less
than or equal to 6.0 × 10−5 is nearly negligible.

Next, we shift our focus to the control effects on the oblique waves. In general,
the suppression/promotion effect of blowing on the lower spanwise wavenumber (β1)
instability is essentially similar to the results of the control effect on the 2-D instability,
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i.e. suppressing the high-frequency disturbances while promoting lower-frequency
disturbances, as shown in figure 6. However, for the β1 disturbances, the critical frequency
is shifted to a higher value, resulting in a narrow suppression frequency band. Meanwhile,
the overall promotion or suppression effects become weaker compared with the control on
the 2-D disturbances, and the frequencies corresponding to the maximum promotion and
suppression effects are shifted to higher values. For instance, for 2-D mode, the maximum
promotion effect is obtained at F ≈ 4.8 × 10−5, while this frequency moves to F = 5.4 ×
10−5 for the β1 disturbance. The increase in blowing flux leads to a corresponding shift of
the critical frequency towards lower values, resulting in a wider suppression bandwidth.
The maximum promotion or suppression effects become stronger. Additionally, compared
to the control on 2-D disturbances, for suction control, the critical frequency increases and
its suppression bandwidth widens within the studied parameter range. The amplification
factor remains similar in the low-frequency band 4.5 × 10−5 < F < 6.0 × 10−5, while
in the high-frequency band, the amplification effect weakens. The impact of amplitude
variation on the mode suppression effect is less significant compared to the control
flux. For a disturbance with a higher spanwise wavenumber (β2), the critical frequency
continues to shift towards higher frequencies, and the overall suppression effects become
much weaker and even disappear within the investigated frequency range. In B2A2, it is
seen that the suppression effect exists only in the high-frequency band (F > 7.2 × 10−5),
and the lower-frequency disturbances are weakly promoted. As the control amplitude
increases, the promoting effect is slightly enhanced, while the critical frequency moves
towards a higher value. In B6A6, the suppression effect disappears within the investigated
frequency range. As control flux increases, the peak frequency of the promotion effects
is reduced, shifting from F = 6.6 × 10−5 at B2A2 to 6.0 × 10−5 at B6A6, and the trend
is the same as that of suppression. Similarly, the control on higher spanwise wavenumber
disturbances under suction control exhibits a weaker suppression effect in the frequency
band.

4.2. Control effect on the optimal disturbance
In this subsection, we evaluate the control effect by comparing the gain of optimal
disturbance obtained with and without blowing or suction. A larger gain indicates that
input at the same energy norm induces a response with higher global energy, i.e. a
larger mode growth. The computational domain used for resolvent analysis is [0, 200],
discretised with 1000 uniform grid points. The normal computational domain is [0, 5],
and the normal grid consists of 150 points, distributed in the same manner as in previous
studies (Poulain et al. 2023a), clustering near the wall. We choose x = 200 as the end
of the current computational domain, which is far downstream from the blowing and
suction. It should be noted that the streamwise size of the computational domain generally
affects gain calculation, but it is sufficient for our purpose of analysing control effects. For
the disturbance with frequency F = 6.0 × 10−5, there are 14 grid points per wavelength,
approximately. This resolution has been shown to be sufficient in previous studies (Poulain
et al. 2023a) (12 grid points per wavelength). The base flow used for resolvent analysis is
obtained through DNS.

Figure 7 shows the optimal gain given by resolvent analysis in uncontrolled case B0A0
within the parameter space of frequency and spanwise wavenumber (F, β). Two peak
regions can be observed from the background and are the F–β range important for
transition control. Those two peak regions of optimal gain are consistent with previous
investigations (Guo, Hao & Wen 2023; Poulain et al. 2024). To measure the control effect,
we define a ratio μc/μuc, where μc denotes the optimal gain with control, and μuc denotes
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the optimal gain without control. Figure 8 illustrates the contours of μc/μuc in controlled
cases, where the curve of μc/μuc = 1 in the high optimal region is defined as the critical
curve. In blowing control cases, the 2-D disturbances (β = 0) with lower frequencies
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are generally promoted (μc/μuc > 1), while those with higher frequencies are damped
(μc/μuc < 1). In figure 8(a), the critical frequency is approximately F = 5.6 × 10−5 with
β = 0 in case B2A2. With an increased β, the critical frequency of the three-dimensional
disturbance tends to shift towards a higher frequency. As the control amplitude increases
from 2A0 to 6A0, the critical frequency for 2-D disturbances decreases from F = 5.6 ×
10−5 to F = 5.0 × 10−5, approximately, the suppression effect is enhanced, and the
critical curve moves towards the lower frequency direction, as shown in figures 8(a–c).
This trend is also summarised clearly in figure 7. When comparing figure 8(c) with
figure 8(a), it is further found that the maximum value of μc/μuc is enhanced. The critical
curve form for suction control resembles that of blowing control; however, suction mainly
suppresses low-frequency disturbances while promoting high-frequency ones, as depicted
in figures 8(d– f ). With increased suction amplitude, the critical curve shifts towards a
higher frequency direction, as illustrated in figure 7.

Figure 9 compares contours with the same blowing flux but different blowing
amplitudes, and it is demonstrated that the effect of blowing control amplitude on the
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F = 4.5 × 10−5. The green dashed line is the GIP near the boundary edge.

optimal gain distribution concerning F and β is relatively weak. For a small blowing
flux, the contours align closely; however, for higher blowing amplitudes, they exhibit
slight discrepancies primarily in areas corresponding to relatively high optimal gain.
Additionally, suction results were analysed (see figure 9d) and found to show relatively
consistent contours, albeit with some deviations in regions of high gain. In short, the major
findings of resolvent analysis for blowing/suction control are generally consistent with
those obtained from DNS, including variations in the critical frequency as the blowing
flux changes and the maximum suppression effect is achieved at different blowing fluxes.
Additionally, we note that varying the blowing/suction amplitude at a constant control flux
yields minor effects on the control outcomes.

The forcing and response modes were examined in figure 10 to better understand the
changes in the optimal forcing and response modes under control for disturbances with
F = 4.5 × 10−5 in cases B3A3 and S3A3, under which condition disturbances are all
suppressed. Previous results of the hypersonic boundary layer without control (Nibourel
et al. 2023; Poulain et al. 2023a) show that the forcing modes are distributed primarily
around the generalised inflection point (GIP), with amplification mechanisms related to
the convective-type non-normality and component-type non-normality (Orr mechanism)
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(Bugeat et al. 2019; Nibourel et al. 2023). In the case of blow control, the forcing modes
remain predominantly distributed around the GIP, although blowing causes a local upward
bias of the GIP, and the inclined pattern also suggests that there is no change in the
amplification mechanism. Two new features emerge in the response mode: first, an outward
radiating component is present in proximity to blowing; second, there is a rapid decrease
in amplitude as disturbance crosses through the control jet, which aligns with suppression
observed in DNS (see figure 5). The forcing modes of suction control are distributed
mainly near the GIP, resulting in a local downward bias of the GIP. Additionally, there
is a new sensitive region near suction at x = 90, possibly due to an increased local shear
rate caused by suction. However, its corresponding mode only exhibits thinning of the
boundary layer downstream of suction.

5. The control mechanisms

In the previous section, it was found that disturbances with a higher frequency are
dampened for blowing control, while disturbances with a lower frequency are dampened
for suction control. In this section, we aim to reveal the control mechanisms behind mode
suppression. Far away from the blowing or suction, the growth rate of disturbances is
determined mainly by stability characteristics. The base flow can be seen as a thickened
or thinned boundary layer, which supports the idea that when the boundary layer becomes
thicker/thinner, the critical frequency becomes lower/higher because the new base flow
synchronisation frequency tends to become lower/higher. Moreover, high-frequency
disturbances tend to be suppressed due to a shorter instability range when the boundary
thickens. However, near the blowing/suction, the thickness of the base flow varies rapidly,
with a noticeable adverse/favourable pressure gradient and a compression/rarefaction
wave. These changes significantly impact the overall amplification factor. Analysing the
local disturbance evolution mechanism contributes to a comprehensive understanding of
mode suppression, particularly for lower-frequency disturbances in suction control. In
this section, the analysis focuses on the evolution of disturbance with frequency F =
5.7 × 10−5 in cases B3A3 and S3A3 near the blowing/suction region, as the disturbance is
effectively suppressed under both blowing and suction control. The analysis is conducted
using MPT and kinetic energy budget analysis.

5.1. Fluid-thermodynamic components evolution near the blowing/suction
Compared to stability theory, MPT is better suited for analysing the disturbance evolution
caused by rapid changes in the base flow near blowing or suction. The MPT decomposes
the flow into vortical, acoustic and entropic (or thermal) components (Doak 1989). In
line with the terminology used in Unnikrishnan & Gaitonde (2019), we also refer to
these classifications as fluid-thermodynamic (FT) components. The MPT allows for more
physical analysis of how disturbances evolve in the presence of compression/rarefaction
waves in the base flow. The second mode of hypersonic boundary layers heavily
involves acoustic and thermal components (Unnikrishnan & Gaitonde 2019), and previous
studies have shown that part of the acoustic component propagates outwards along
alternating compression/rarefaction waves induced by the synthetic jet (Zhuang et al.
2023). Therefore, we initially examine the evolution of the FT component. A brief
introduction to MPT and its derivation is provided in Appendix A, while a detailed
description can be found in the investigations by Doak (1989) and Unnikrishnan &
Gaitonde (2019).
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Figure 11. Flux lines of the (a,b) vortical, (c,d) acoustic and (e, f ) thermal components in (a,c,e) case B3A3
with F = 5.7 × 10−5, and (b,d, f ) case S3A3 with F = 5.7 × 10−5. The control slots are all located in the
range x ∈ [89.9, 90.9]. The arrow directions denote the blowing or suction. The contours are coloured by each
component’s magnitude.

The flux lines of the vortical and acoustic components in the blowing control are
shown in figures 11(a,c), with the component amplitude contours in the background. It
can be observed that when the vortical component passes through the blowing slot, it
forms a new structure consisting of alternating counter-rotating recirculation cells outside
the boundary layer. The amplitude contours show that the amplitude of the outwardly
propagated vortical component is relatively small. A similar evolution process occurs in
the acoustic component, forming a new tilted source/sink structure outside the boundary
layer. Furthermore, downstream from the control slot near x = 93, there is a split in the flux
line; one part propagates away from the boundary layer, while another part evolves back
into it. Combining this with figure 12(a), where pressure contours serve as the background
for the acoustic flux line, we find that the outward propagating acoustic component
follows along compression wave evolution. However, the background of the amplitude
contours indicates the relative importance of the outwardly propagated part. Therefore,
we can conclude that acoustic components propagate outside the boundary layer due to
the compression wave. In contrast, the thermal component continues to evolve within the
boundary layer, as shown in figure 11(e).

As shown in figures 11(b,d) and 12(b), although parts of the vortical and acoustic
components evolve out of the boundary layer, their amplitudes are relatively small above
the rarefaction wave. A distinct difference is that the inclination of the vortical and
acoustic components is different with blowing and suction control. In blowing control, the
component phase at a higher position is advanced, while for suction control, the phase at a
higher position is delayed. This may be caused by the change in phase speed, as discussed
in § 3. The thermal component also develops only within the boundary layer for suction
control, as shown in figure 11( f ).

For the purpose of analysing quantitatively the velocity fluctuation changes, it is
more common to analyse velocities in mode evolution. Thus we derived the velocity
fluctuations of the FT components from the momentum fluctuations based on the small
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Figure 12. The acoustic component flux lines for (a) blowing control in case B3A3 with F = 5.7 × 10−5,
and (b) suction control in case S3A3 with F = 5.7 × 10−5. The contours are coloured by the average pressure.
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Figure 13. The streamwise evolution of (a) momentum components and (b) velocity components in MPT.
The disturbance frequency is F = 5.4 × 10−5, and the vertical dashed line marks the synchronisation point.

perturbation assumption and the assumption that density/velocity fluctuation can also
be decomposed into vortical, acoustic and thermal parts. Interestingly, we find that
compared with momentum fluctuations used in previous investigations (Unnikrishnan
& Gaitonde 2019, 2021), the velocity fluctuations are more reflective of the acoustic
properties of the second mode from an amplitude perspective. The detailed derivations
are given in Appendix C. Taking the velocity of the acoustic component as an example,
it can be expressed as u′

A = [(ρu)′A − ρ′
Aū)]/ρ̄. Accordingly, the momentum and velocity

component evolution of the disturbance’s FT components with F = 5.4 × 10−5 are shown
in figures 13(a,b), respectively. The vortical component (B′) has the largest amplitude and
is close to the original momentum fluctuation (ρu)′, while the thermal component (T ′)
is approximately 3–5 times smaller. The acoustic component (A′), on the other hand,
is approximately 10 times smaller than (ρu)′. This aligns with the fact that the sum
of the vortical and thermal components (B′ + T ′) closely matches (ρu)′. Therefore, in
terms of amplitude, the contribution of acoustic component fluctuations to momentum
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Figure 14. The streamwise evolution of (a) acoustic component, (b) vortical component, (c) thermal
component, and (d) the sum of vortical and thermal components, in cases B3A3 and S3A3, with frequency
F = 5.7 × 10−5.

fluctuations is minimal. This is not the case for the velocity fluctuations, where the
velocity fluctuations of the acoustic component (u′

A) are actually very important for
the original velocity fluctuations (u′), as shown in figure 13(b). The amplitude of the
acoustic component fluctuations is always of the same order of magnitude as the original
velocity fluctuations. Near the synchronisation point, their amplitudes differ by a factor of
2–3 at most. Further downstream, the difference between the amplitude of the acoustic
component and the original velocity fluctuation is even smaller, and by x = 200, the
amplitude of u′

A even exceeds that of u′. This better reflects the acoustic properties of the
second mode. Additionally, the amplitudes of vortical (u′

B) and thermal (u′
T ) component

velocity fluctuations are nearly identical, but their phases are almost opposite, which
can be indicated by their summation (u′

B + u′
T ) being much smaller than their individual

amplitudes. This may better reflect the vortical–entropy coupling suggested by Crocco’s
theorem. The sum u′

B + u′
T is of the same order of magnitude as u′, and as they evolve

downstream, the sum develops from being almost the same as u′ to deviating from u′
until it deviates more than u′

A. This consists of the evolution of the disturbance from
the Mack first mode (expansion of the Tollmien–Schlichting wave) to the Mack second
mode (acoustic properties). Also, it should be mentioned that the velocity vector field
does not have irrotational (acoustic and thermal component) or divergence-free (vortical
component) properties.

For instability control, figure 14 presents the FT component velocity evolution for the
cases B3A3 and S3A3 with frequency F = 5.7 × 10−5. In the vicinity of the blowing
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region 85 < x < 90, the vortical, acoustic and thermal components all amplify rapidly,
indicating that the modified base flow is more unstable. Downstream (90 < x < 93),
the acoustic and vortical components decay rapidly, while the thermal component is
maintained. This is consistent with the phenomenon that some acoustic and vortical
components propagate out of the boundary layer. Meanwhile, we noticed that the acoustic
component oscillates near the blowing, while intriguingly, neither the vortical nor thermal
components display individual oscillations; however, the sum of them demonstrates
oscillations. This may be caused by the difference in their phase speeds as they pass
through the compression wave. The oscillatory behaviour of the FT components results
in the velocity oscillation near the blowing, which can also be observed in figure 5(b).

However, unlike blowing, the vortical, acoustic and thermal components in the vicinity
of suction (85 < x < 92, approximately) evolve in different ways. The acoustic component
is promoted, the vortical component is suppressed, and the thermal component remains
almost unchanged. In addition, the increasing sum of the vortical and thermal components
indicates that the phase lags of the vortical and thermal components change when the
disturbance passes through the rarefaction wave. Further downstream (x > 95), all of the
FT components show a tendency to be suppressed.

5.2. Non-parallel and viscous effects
Although the MPT provides the evolution of the FT component in the vicinity of the
compression/rarefaction wave, the suppression mechanism of the disturbance remains
obscure, especially in understanding why the disturbance is suppressed near the suction.
Consequently, the kinetic energy budget analysis is adopted to analyse the disturbance
evolution, which classifies the terms corresponding to the growth of the disturbance kinetic
energy into a production term P , a pressure term Π , a non-parallel term Ξ , and a viscous
term V . A detailed derivation can be found in Appendix B.

The blowing and suction control induces a stronger non-parallel effect, as mentioned in
§ 3, and its influence on the evolution of disturbance in the vicinity of blowing/suction
needs to be clarified. Because the non-parallel effect will affect the evolution of
disturbance in the boundary layer (Fasel & Konzelmann 1990; Dong & Zhao 2021),
it is also considered to be related to the outward development of acoustic and vortical
components in the boundary layer, leading to a stabilising effect (Zhuang et al. 2023). In
addition, viscosity generally plays a stabilising role and is considered to have less impact
on mode growth (Chen, Zhu & Lee 2017; Tian & Wen 2021). However, the validity of this
conclusion needs to be checked for rapidly varying base flows.

To compare the roles of each term in (B12) for different control conditions or
different streamwise stations, a normalisation with |u′

max|2 is employed. This normalisation
effectively disregards the effect of the mode amplitude on the magnitude of the viscous
term, and instead highlights the effect of variations in the mode profile and the base flow
on each term.

Figure 15 presents the streamwise evolution of each term for the control case B3A3
with F = 5.7 × 10−5. Under blowing control, the destabilising effect of non-parallelism
is stronger than that of base flow without control. However, in the vicinity of the blowing
(80 < x < 90), this effect acts as a stabiliser. Downstream, the destabilising effect weakens
gradually. The stabilisation effect of non-parallelism is assumed to be related to the
propagation of vortical and acoustic components outwards, as mentioned in § 5.1. In
suction control, the non-parallel term varies drastically along the streamwise direction.
To better understand the variation in the non-parallel term, figures 15(c,d) analyse the
evolution of Ξ1 and Ξ2, two components of the non-parallel term. The first term contains
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Figure 15. The streamwise evolution of L, P , Ξ , Π and V in the linear energy transfer term of (a) blowing
control and (b) suction control. The streamwise evolution of Ξ , Ξ1 and Ξ2 in the non-parallel term for
(c) blowing control and (d) suction control.

the effect of the stronger local wall-normal velocity induced by blowing or suction on
the energy, as the normal velocity in the boundary layer without control is smaller. The
remaining term contains mainly the effect of streamwise changes in the boundary layer
base flow. The term Ξ1 in the blowing control suppresses mode growth, while Ξ1 in
the suction control promotes mode growth, as shown in figures 15(c,d). The wall-normal
velocity can transport energy outside the boundary layer or inside the suction slot, and
it consists of the phenomenon in the blowing control, as blowing transports part of the
acoustic component out of the boundary layer. But for suction, the Ξ1 promotes mode
growth, which should be related to the change in the phase difference between the mode
and corresponding force terms. Overall, the term Ξ1 will destabilise the disturbance near
the suction. As shown in figures 15(a,b), the viscous effects near the blowing/suction were
all enhanced with control. The region of rapid viscosity enhancement is located in the
interval where the boundary layer rapidly thickens, such as when x ranges from 80 to 89
in the blowing control, and from 90 to 91 in the suction. In particular, for suction control,
the viscous term increases by a factor of approximately 3.

6. Transition delaying based on a combination of blowing and suction

In this section, we demonstrate that a combination of blowing and suction is effective
in suppressing hypersonic flat plate boundary layer transitions under random incoming
flow disturbances. Although blowing and suction are common tools for flow control
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Figure 16. (a) The Cf evolution of transition flow without and with the steady blowing/suction control. The
instantaneous wall pressure contours (b) without control and (c) with control.

(Fan et al. 2022; Kneer, Guo & Kloker 2022; Li & Zhang 2022), they have not been
found to be as effective as porous walls, rough elements, and so on, in terms of transition
delaying, either experimentally or numerically. Here, we find that a suitable combination
of blowing and suction can delay the transition to some extent.

Three-dimensional DNS are utilised to verify the transition delay effect. The parameters
of far-field flow are the same as those in the investigation by Zhuang et al. (2023).
The Rel in the inlet of the computational domain is Rel = 2150, and the streamwise,
wall-normal and spanwise lengths of the computation domain are Lx = 500δ0, Ly = 50δ0
and Lz = 16δ0, where δ0 is the inlet boundary layer thickness. The grid resolution of the
physical domain is 10450 × 220 × 240. The mesh spacings are chosen to be x+ = 2.80,
y+

wall = 0.43 and z+ = 3.58 to resolve the transition simulation. The wall boundary layer
is chosen as an adiabatic no-slip wall surface, and the upstream, downstream, and upper
boundary layer regions are the far-field boundary layer with buffer zones imposed on damp
disturbances.

The random free-stream disturbance form follows that implemented in the DNS
investigation by Hader & Fasel (2018, 2022), in which the numerical results are in
agreement with the experiment. However, there exist slight disparities in specific aspects.
In our study, we introduce a random pressure disturbance to each grid point within the y–z
plane at x = 5, whereas previous studies (Hader & Fasel 2018, 2022) applied them within
the x–y plane by considering a range of 5 grid points in the x direction near the inlet. It
should emphasised that randomness is currently introduced to the spanwise wavenumber
of triggering disturbances, thereby imposing more difficulties for control. The skin friction
is adopted to evaluate the transition position, calculated as

Cf = 2
Ma Re

μ
∂u
∂y

∣∣∣∣
y=0

. (6.1)

Figure 16(a) shows the evolution of mean skin friction coefficients (C̄f ) averaged over
the spanwise direction and time over 100δ0/c. This shows that C̄f starts to increase at
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Figure 17. The grey background shows optimal gain with respect to F and β for base flow (a) without control
and (b) with control. The solid lines denote those contours of different μc/μuc, in which μc is the optimal gain
with control, andμuc is the optimal gain without control. The frequency spectrum evolution of 2-D disturbances
(c) without control and (d) with control. The dashed line marks the peak frequency of the resolvent analysis of
the uncontrolled base flow.

x ≈ 260, indicating the start of the transition. Figure 16(b) presents the wall pressure
disturbance, and it can be observed that the major instability includes the 2-D second
mode instability upstream transition even though the forcing is randomly perturbed in the
spanwise direction. To delay the transition, the blow strips are positioned at [149.6, 150.4]
and [219.6, 220.4]. The suction strips are positioned at [151.2, 152] and [221.2, 222]. The
amplitudes of blowing and suction are set to 0.1U∞. Figure 16(c) shows the wall pressure
contours with control. The 2-D second mode is significantly damped near the control
strip, and downstream of the second control strip, disturbances with specific wavenumbers
dominate the flow evolution until the onset of the transition. The C̄f evolutions with
and without control are compared in figure 16. In order to assess the effect of transition
delay, the transition Reynolds numbers are defined as the location where the skin friction
reaches 1

2(C̄f ,max + C̄f ,min), where C̄f ,max and C̄f ,min are the maximum and minimum
values of C̄f without control. Transition locations are located at 1.71 × 107 (x ≈ 326)
and 1.79 × 107 (x ≈ 346), respectively, and a transition delay of approximately 4.6 % is
achieved.

The resolvent analysis results for base flow without control and with control
are shown in figures 17(a) and 17(b), respectively. The calculation domain for the
resolvent analysis is x ∈ [0, 300], with 1000 points and 150 points in the x and y
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directions, respectively. The base flow was obtained by averaging 40 000 flow fields
equally spaced in time over duration 52δ0/c, followed by averaging in the spanwise
direction. As depicted in figure 17(a), the disturbance with frequency F = 3.8 × 10−5

exhibits the highest gain. Figures 17(c) and 17(d) illustrate the evolution of disturbance
frequency spectra without and with control, which were obtained through 2-D FFT in
time and spanwise directions. With random disturbances, there is an observed transfer of
dominant mode frequency from high to low frequencies along the streamwise direction,
consistent with findings from experimental studies (Bountin, Shiplyuk & Maslov 2008;
Laurence, Wagner & Hannemann 2016). The well-captured frequency at F = 3.8 × 10−5

during upstream breakdown indicates that the forcing mode employed in resolvent analysis
can appropriately reflect nonlinear interaction effects during this process. The critical
frequency for 2-D disturbance is approximately 3.5 × 10−5, where disturbances with
lower frequencies are mainly promoted, while those with higher frequencies above are
suppressed. With the spanwise number increasing, the critical frequency moves to a higher
frequency until β ≈ 7.5 × 10−5. The critical frequency for 2-D disturbance is lower than
the peak frequency, and the DNS result shows a good agreement with the resolvent
result, as shown in figure 17(d). The disturbances with frequencies higher than the critical
frequency are notably damped, and the dominant frequencies upstream of the breakdown
are frequencies lower than the critical frequency.

7. Conclusion

The present study investigates systematically the control effect of constant blowing/suction
with large amplitudes ranging from 10−2U∗∞ to 10−1U∗∞ on instability and transition in a
flat plate hypersonic boundary layer at Mach number 5.86. The control effects of blowing
and suction flux, as well as amplitude on the hypersonic boundary layer instability, are
investigated through a combination of DNS and resolvent analysis. The critical frequency
is utilised to measure the blowing and suction control effects, and mode suppression occurs
with its frequency higher/lower than the critical frequency with blowing/suction control.
When the blowing flux is relatively small, the critical frequency for 2-D disturbance is
closely aligned with the synchronisation frequency; however, increasing the blowing flux
significantly shifts the critical frequency towards lower frequencies. On the other hand,
suction control leads to a shift of the critical frequency towards higher frequencies.

For the oblique wave, the increase of spanwise wavenumber will lead to a higher critical
frequency in both blowing and suction control. Meanwhile, if the spanwise wavenumber
increases, then the suppression effects would become weaker, and mode suppression
bandwidth diminishes/increases in blowing/suction control.

Moreover, an increase in the maximum disturbance suppression effect is observed with
higher blowing flux levels. At a fixed level of flux, variations in blowing or suction
amplitude have relatively minor impacts on disturbance suppression. Additionally, based
on resolvent analysis, it is found that while most sensitive regions of the modified base flow
remain concentrated around the GIP under control, downstream boundary layer lift also
causes lifting of the GIP due to blowing. Suction control predominantly affects regions
around the GIP, which results in the formation of new sensitive regions near suction.

The growth of the disturbance upstream or downstream of the control is influenced
primarily by the stability of the boundary layer, which is determined by its varying
thickness. To analyse the local evolution mechanism of the disturbance, we employ MPT
and kinetic energy budget analysis. Blowing induces the evolution of acoustic components
along the compression wave outside the boundary layer. In contrast, suction control
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does not have this effect. We find that velocity fluctuations derived from momentum
fluctuations in MPT better reflect the nature of the second mode as an acoustic mode. Near
blowing, there are differences in phase speeds between vortical and thermal components,
causing oscillations in velocity fluctuation. The analysis of the kinetic energy budget
reveals that the non-parallel effect becomes stronger near the blowing and suction.
The non-parallel effect, which relates directly to the wall-normal velocity, stabilises the
disturbance near blowing, and destabilises it near suction. The impact of viscosity becomes
more pronounced in regions characterised by rapid thickening of the boundary layer due
to blowing/suction control.

The effectiveness of transition control using three-dimensional DNS is investigated,
as blowing and suction have been found to effectively suppress disturbances. Random
pressure disturbances in a y–z plane located upstream of the computational domain were
used to trigger a flat plate boundary layer transition with Mach number 5.86. It was
observed that the average transition Reynolds number increased by 4.6 %. Resolvent
analysis reveals that the base flow control stabilised the disturbances within specific
frequency and wavenumber ranges during the early stages of transition. Overall, blowing
and suction show the potential for delaying transitions, and future optimisation of
amplitude and distribution using an optimisation method could further enhance their
transition control effect.
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Appendix A. Momentum potential theory

Choosing ρv as the primary independent variable, the momentum vector field can be
expressed as a linear superposition of unique solenoidal and irrotational components by
the Helmholtz decomposition

ρv = B̄ − ∇ψ̄ + B′ + ∇ψ ′, ∇ · B̄ = ∇ · B′ = 0, (A1a,b)

where B̄ and B′ denote the mean and fluctuating parts of the rotational component, and ψ̄
and ψ ′ are the mean and fluctuating parts of the scalar momentum potential.

For a time-stationary flow, if ψ̄ is solenoidal and thus equal to zero, then the continuity
equation is equivalent to a Poisson equation

∇2ψ ′ = ∂ρ′

∂t
. (A2)

For the perfect gas, considering the constitutive relationship, one can obtain

δρ = ρp δp + ρS δS, (A3)

ρp ≡ (∂ρ/∂p)S ≡ 1/c2, ρS ≡ (∂ρ/∂S)p, (A4a,b)
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where S denotes the entropy. Inserting (A3) and (A4a,b) into (A2) gives

∇2ψ ′ = 1
c2
∂p′
∂t

+ ρS
∂S′

∂t
. (A5)

Then ψ ′ can be defined as the sum of acoustic (ψ ′
A) and entropic (or thermal, ψ ′

T )
components

ψ ′ ≡ ψ ′
A + ψ ′

T ,
∂2ψ ′

A

∂x2
i

≡ 1
c2
∂p′

∂t
,

∂2ψ ′
T

∂x2
i

≡ ρS
∂S′

∂t
. (A6a–c)

For convenience, we also use the notation A′ and T ′ to present the acoustic and thermal
components.

Appendix B. Kinetic energy budget analysis

Following the kinetic energy transfer derivations in the investigation by Chen et al. (2017),
considering a small disturbance q′ with spatial structure as q̃(x, y) eiωt, the streamwise
u-momentum equation can be rewritten as

ρ̄
Dũ
Dt

= Lũ. (B7)

The superscript ˜ in this appendix indicates the mode spatial function, and Lũ indicates
the linear terms. Multiply (B7) by ũ∗ (the complex conjugate of ũ), and the two equations
are added to obtain

ρ0
D |ũ|2

Dt
= ũ∗Lũ + c.c. (B8)

Performing the same operations on the v-momentum equation gives the kinetic energy
equation as

1
2
ρ̄

D(|ũ|2 + |ṽ|2)
Dt

= 1
2
(L + c.c.), (B9)

where
L = ũ∗Lũ + ṽ∗Lṽ + c.c. (B10)

Here, we define the reduced kinetic energy of a unit volume for one mode as

e ≡ 1
2 ρ̄(|ũ|2 + |ṽ|2). (B11)

The linear term L can be further divided to

L = P +Ξ +Π + V, (B12)

where

P = −ρ̄ũ∗ṽ
∂ ū
∂y

+ c.c., (B13)

Ξ = −ũ∗ρ̄ũ
∂ ū
∂x

−
(

ũ∗ ∂ ũ
∂y

+ ṽ∗ ∂ṽ
∂y

)
ρ̄v̄ − ṽ∗ρ̄ũ

∂v̄

∂x
− ṽ∗ρ̄ṽ

∂v̄

∂y

−ũ∗ρ̃
(

ū
∂ ū
∂x

+ v̄
∂ ū
∂y

)
− ṽ∗ρ̃

(
ū
∂v̄

∂x
+ v̄

∂v̄

∂y

)
+ c.c., (B14)

Π = −ũ∗ ∂ p̃
∂x

− ṽ∗ ∂ p̃
∂y

+ c.c.. (B15)

990 A17-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

53
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.539


G.-H. Zhuang, Z.-H. Wan, N.-S. Liu, D.-J. Sun and X.-Y. Lu

Here, P is the production, Ξ is regarded as the energy transfer associated with the
non-parallel term, Π is the pressure diffusion/dilatation, and V is the energy transfer
related to viscous terms. The term Ξ is further split into two parts, as follows:

Ξ1 = −ρ̄v̄
(

ũ∗ ∂ ũ
∂y

+ ṽ∗ ∂ṽ
∂y

)
− ṽ∗ρ̄ũ

∂v̄

∂x
− ṽ∗ρ̃ū

∂v̄

∂x
− ṽ∗ρ̄ṽ

∂v̄

∂y

− ũ∗ρ̃v̄
∂ ū
∂y

+ c.c., (B16)

Ξ2 = −ũ∗ρ̄ũ
∂ ū
∂x

− ṽ∗ρ̄ṽ
∂v̄

∂y
− ũ∗ρ̃ū

∂ ū
∂x

+ c.c. (B17)

Integrating (B9) with respect to the wall-normal coordinate gives

LΓ ≡
∫ ∞

0
L dy. (B18)

Similar operations on (B11), (B12), (B14) and (B15) give (1/2)(ρ̄De/Dt)γ , PΓ , ΞΓ , ΠΓ
and VΓ .

Appendix C. Derivation of the velocity fluctuations of FT components in MPT

In MPT, momentum fluctuations are decomposed into the sum of mean momentum,
vortical component, acoustic component and thermal component:

ρu = ρ̄u + (ρu)′A + (ρu)′B + (ρu)′T . (C1)

Further, with a simple assumption that the density and velocity fluctuations can also be
split into the mean density/velocity part, vortical part, acoustic part and thermal part, we
have

ρ = ρ̄ + ρ′
A + ρ′

B + ρ′
T (C2)

and
u = ū + u′

A + u′
B + u′

T . (C3)

The momentum can then be rewritten as

ρu = (ρ̄ + ρ′
A + ρ′

B + ρ′
T)(ū + u′

A + u′
B + u′

T)

= ρ̄ū + ρ̄u′
A + ρ′

Aū + ρ̄u′
B + ρ′

Bū + ρ′
T ū + ρ̄u′

T

+ (ρ′
A + ρ′

B + ρ′
T)(u

′
A + u′

B + u′
T). (C4)

When the amplitudes of density and velocity fluctuations are small, the higher-order terms
can be neglected. Then we combine terms on the right-hand side of the equation,

(ρu)′A = ρ̄u′
A + ρ′

Aū,

(ρu)′B = ρ̄u′
B + ρ′

Bū,

(ρu)′T = ρ̄u′
T + ρ′

T ū,

⎫⎪⎬⎪⎭ (C5)

so

u′
A = (ρu)′A − ρ′

Aū
ρ̄

, u′
B = (ρu)′B − ρ′

Bū
ρ̄

, u′
T = (ρu)′T − ρ′

T ū
ρ̄

. (C6a–c)
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We need to obtain each component of density fluctuation. Based on the continuity
equation, we have

∂ρ′
A
∂t

= ∂(ρu)′A
∂x

+ ∂(ρv)′A
∂y

,

∂ρ′
B
∂t

= ∂(ρu)′B
∂x

+ ∂(ρv)′B
∂y

,

∂ρ′
T
∂t

= ∂(ρu)′T
∂x

+ ∂(ρv)′T
∂y

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C7)

Considering the disturbance with a specific frequency, the variables can be written in the
form q′ = q̂ eiωt (where q̃ is a complex number, and q can be ρA, uA, (ρu)A, . . . . ). Then
taking the Fourier transform on both sides of (C7), we have

iωρ̂A = ∂(̂ρu)A
∂x

+ ∂(̂ρv)A

∂y
,

iωρ̂B = ∂(̂ρu)B
∂x

+ ∂(̂ρv)B

∂y
,

iωρ̂T = ∂(̂ρu)T
∂x

+ ∂(̂ρv)T

∂y
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C8)

Taking ρ̂ in (C8) into (C6a–c), we have

ûA = 1
ρ̄

[
(̂ρu)A − ū

iω

(
∂(̂ρu)A
∂x

+ ∂(̂ρv)A

∂y

)]
,

ûB = 1
ρ̄

[
(̂ρu)B − ū

iω

(
∂(̂ρu)B
∂x

+ ∂(̂ρv)B

∂y

)]
,

ûT = 1
ρ̄

[
(̂ρu)T − ū

iω

(
∂(̂ρu)T
∂x

+ ∂(̂ρv)T

∂y

)]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C9)

Taking the 2-norm on both sides of (C9), the amplitudes of the velocity fluctuations of
acoustic, vortical and thermal components are obtained:

‖ûA‖ =
∥∥∥∥∥ 1
ρ̄

[
(̂ρu)A − ū

iω

(
∂(̂ρu)A
∂x

+ ∂(̂ρv)A

∂y

)]∥∥∥∥∥ ,
‖ûB‖ =

∥∥∥∥∥ 1
ρ̄

[
(̂ρu)B − ū

iω

(
∂(̂ρu)B
∂x

+ ∂(̂ρv)B

∂y

)]∥∥∥∥∥ ,
‖ûT‖ =

∥∥∥∥∥ 1
ρ̄

[
(̂ρu)T − ū

iω

(
∂(̂ρu)T
∂x

+ ∂(̂ρv)T

∂y

)]∥∥∥∥∥ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C10)
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