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Extremal Sequences for the Bellman
Function of the Dyadic Maximal Operator
and Applications to the Hardy Operator

Eleftherios Nikolaos Nikolidakis

Abstract. We prove that the extremal sequences for the Bellman function of the dyadic maximal
operator behave approximately as eigenfunctions of this operator for a specific eigenvalue. We use
this result to prove the analogous one with respect to the Hardy operator.

1 Introduction

The dyadic maximal operator on R” is a useful tool in analysis and is defined by

Map(x) = sup{ fQ [¢(»)|dy :x€Q, Q< R"inadyadic cube},

R
Ql

1 .(R™), where the dyadic cubes are those formed by the grids

loc

forevery ¢ € L
27 N7Z", forN=0,1,2,....

As is well known, it satisfies the weak type (1,1) inequality

1
(L1) [{x € R":Mag(x) > A} < 1 f{MdM} |6 (u)|du,

for every ¢ € L'(R™) and every A > 0.
It is easily seen that (1.1) implies the following L?-inequality:

12) Pl < 251915

It is also easy to see that the weak type inequality (1.1) is best possible, while (1.2) is
also sharp. (See [1] for general martingales and [15] for dyadic ones).
For further study of the dyadic maximal operator the function

(13) Bp<f,F>:sup{|é|[Q<Md¢>f’:¢zo,|g|[ng:f,@[Q¢P:F},

has been introduced, where Q is a fixed dyadic cube and 0 < f? < F.
The function (1.3), which is called the Bellman function of two variables of the
dyadic maximal operator, is in fact independent of the cube Q, and its value was given
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in [2]. More precisely, it was proved there that

By(f,F) = Fw,(f?[F)?,
where w,:[0,1] = [1, ﬁ] denotes the inverse function H;,l of H,,, which is defined
by

Hp(z) =—(p-1)zf + pzP™!, forze [1, ﬁ]

In fact, this evaluation has been done in a much more general setting, where the

dyadic sets are now given as elements of a tree T on a non-atomic probability space
(X, u). Then the associated dyadic maximal operator is defined by

ngb(x):sup{ﬁfﬁmd‘u: ere‘T}.

Additionally, inequalities (1.1) and (1.2) remain true and sharp in this setting. More-
over, if we define

(1.4) B;,f;(faF)=sup{fX(Mfr¢)”d#=¢20,fx¢d14=f,fx¢de:F}

for 0 < f < F, then B, 5(f,F) = B,(f,F). In particular, the Bellman function of
the dyadic maximal operator is independent of the structure of the tree 7.

Another approach for finding the value of B, (f, F) is given in [3], where the fol-
lowing function of two variables was introduced:

1,1 t P
(15)  S,(f.F) = sup{ f (f f g) dt:g:(0,1] > R" : non-increasing,
0 0

t
1 1
continuous and f g:f,/ gP:F}.
0 0

The first step, as seen in [3], is to prove that S, (f, F) = B, (f, F). This can be viewed as
a symmetrization principle of the dyadic maximal operator with respect to the Hardy
operator. The second step is to prove that S, (f, F) has the expected value mentioned
above.

Now the proof that S, = B, can be given in an alternative way, as can be seen in
[8]. More precisely, the following result is proved there.

Theorem 1.1 ([8]) Given g, h:(0,1] » R* non-increasing integrable functions and a
non-decreasing function G: [0, +00) — [0, +00), the following equality holds:

sup{ f G[(Mg¢) Th(t)dt: ¢ > 0,¢" = g, K measurable subset of [0,1] with
K
k 1 t
K| =k} = fo 6(- fo g)h(r)dt,
for any k € (0,1], where ¢* denotes the equimeasurable decreasing rearrangement of ¢.

It is obvious that Theorem 1.1implies the equation S, = B, and gives an immediate
connection of the dyadic maximal operator with the Hardy operator.
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An interesting question that arises now is the behaviour of the extremal sequences
of functions for the quantities (1.4) and (1.5). The problem concerning (1.4) was solved
in [6], where the following theorem is proved.

Theorem 1.2 ([6]) If ¢n: (X, ) - R* satisfies [ ¢ndu = f, [, ¢hdu = F, for every
n € N, then the following are equivalent:

(@) limy [y(Mgn)Pdp = Fo,(fP/F)?,

(i) lim, [ Mg, — conlPdyu =0, where c = w,(f?[F).

Now it is interesting to consider the opposite problem concerning (1.5). In fact, we
will prove the following theorem.

Theorem 1.3  Let g,:(0,1] > R* be a sequence of non-increasing functions continu-
ous such that [01 gn(u)du = f and [01 g5 (u)du = F for every n € N. Then the following
are equivalent:

Q) hmf fg,, dt = Fa,(f?|F)?,
(ii) lirrlnf0 |;f0 gn—cgn(t)|pdt=0, where ¢ = w,(f?[F).

The proofis based on the proof of Theorem 1.1 and on the statement of Theorem 1.2.
Concerning problem (1.4), it can be easily seen that extremal functions do not
exist (when the tree T differentiates L'(X, u)). That is, for every ¢ € LP(X, u) with
¢ > 0and [ ¢dyu = f, [ $Pdu = F we have the strict inequality [, (Mg¢)Pdu <

Fap(f?/F)P.
This is because of a self-similar property that is mentioned in [7], which states that
for every extremal sequence (¢, ) for (1.4) the following is true:

(I) f¢nd[4 f, while hm () ¢pdy:F,

So if ¢ is an extremal function for (1.4), then we must have that —— [, ¢du = f and
u( JI
% J; ¢?du = F, and since the tree T differentiates LY(X, u) (because of (1.1)), we

must have that ¢(x) = f and ¢ (x) = F hold u-a.e; thatis, f? = F, which is the trivial
case.

It turns out that the above does not hold for the extremal problem (1.5). That is
there exist extremal functions for (1.5). We state it as the following theorem.

Theorem 1.4  There exists unique g: (0,1] - R* non-increasing and continuous with
[y g(w)du = f and [, g?(u)du = F such that

(L6) fol(%fotg)pdtzpwp(fp/p)p.

As expected, due to Theorem 1.3, g satisfies the equality

= [ st =ap(71F)g()
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for every t € (0,1], which immediately gives (1.6).
After proving Theorem 1.4 we will be able to prove the following theorem.

Theorem 1.5 Let g, be as in Theorem 1.3. Then the following are equivalent

() lim, fy (1 /) gn) dt=Fao,(f?/F);
(i) lim, [01 |gn — g|Pdt = 0, where g is the function constructed in Theorem 1.4.

In this way we complete the discussion about the characterization of the extremal
functions of the corresponding problem related to the Hardy operator. We also re-
mark that for the proof of Theorem 1.3 we need to fix a non-atomic probability space
(X, u) equipped with a tree structure T that differentiates L' (X, u). We use this mea-
sure space as a base in order to work there with measurable non-negative rearrange-
ments of certain non-increasing functions on (0,1].

We should also mention that the exact evaluation of (1.3) for p > 1 was also given
in [10] by L. Slavin, A. Stokolos and V. Vasyunin who linked the computation of it to
solving certain PDE’s of the Monge-Ampere type, and in this way they obtained an
alternative proof of the results in [2]. This method is different from that used in [2] or
[9]. However, the techniques that appear in the last two articles and this one, give us
the possibility to provide effective and powerful stability results (see for example [6]).

We also remark that there are several problems in harmonic analysis where Bell-
man functions arise. Such problems (including the dyadic Carleson imbedding the-
orem and weighted inequalities) are described in [10] (one can also see [4] and [5])
and also connections to stochastic optimal control are provided, from which it fol-
lows that the corresponding Bellman functions satisfy certain nonlinear second-order
PDE’s. Finally, we remark that the exact evaluation of a Bellman function is a difficult
task and is connected with the deeper structure of the corresponding harmonic anal-
ysis problem. We mention also that until now several Bellman functions have been
computed (see [2-5,9,11-14]).

The paper is organized as follows. In Section 2 we give some preliminary defini-
tions and results. In Section 4 we give an alternative proof of Theorem 1.2, which
is based on the proof of the evaluation of the Bellman function of two variables for
the dyadic maximal operator and is presented in Section 3. At last we prove Theo-
rems 1.3, 1.4, and 1.5 in Sections 5, 6, and 7, respectively.

2 Preliminaries
Let (X, u) be a non-atomic probability measure space.

Definition 2.1 A set T of measurable subsets of X will be called a tree if it satisfies
the following conditions:

(i) X € T and for every I € T we have that u(I) > 0.
(ii) For every I € T there corresponds a finite or countable subset C(I) € T contain-
ing at least two elements such that

(a) the elements of C(I) are pairwise disjoint subsets of I,
(b) I=uC(I).
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(iii) T = Usz (‘T(m) where T(O) = {X} and T(m+1) = UIE?T(,,,) C(I)
(iv) 'We have that lim,,_, o, SUPrer,,,) u(I) =0.

Examples of trees are given in [2]. The most known is the one given by the family
of all dyadic subcubes of [0,1]". The following was proved in [3].

Lemma 2.2 Forevery I € T and every a such that 0 < a < 1 there exists a subfamily
F(I) € T consisting of pairwise disjoint subsets of I such that

b( U )= X w)=0-a)u).

JeF(I) JeF(I)
We will also need the following fact, obtained in [8].

Lemma 2.3 Let ¢:(X,u) — R* and let (A;); be a measurable partition of X such
that u(A;) > 0, for all j. If [, ¢du = f, then there exists a rearrangement h of ¢,

(h* = ¢*), such that ﬁA,‘) Ja, hdp = £, for every j.
Now given a tree on (X, u) we define the associated dyadic maximal operator as
1
Mg¢(x) = sup —f|(p|dy: xeleT},
{ u(l) J1 }
where ¢ € L' (X, u). We also recall the following from [8].

Lemma 2.4 Let k € (0,1] and K measurable subset of X with u(K) = k. Then the
following inequality holds

k 1 t
fKG[Mﬁb]dy < fo 6(+ fo g(w)du) dt,
where g = ¢*, ¢ € L'(X, u), and G: [0, +00) — [0, +00) is a non-decreasing function.
3 The Bellman Function of the Dyadic Maximal Operator

In this section we provide a proof of the evaluation of the Bellman function of the
dyadic maximal operators with respect to two variables f, F. The result appears in [9]
in a more general form, but we give a proof for completeness. For this purpose we
will need the following lemma.

Lemma 3.1 Let ¢: (X, u) > R* be such that

dy = d f Pdy =F,
[ ¢ f an ¢
where 0 < f? < F. Then

[ (V) du < Feap(7F)".

Proof We consider the integral

I:fX(M«ygb)de.
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By using Fubini’s theorem we can write

(.1) I-= fA: PP (Mg > A}) dA

—ff AP (Mg > A} dA =L+
= [ o (9> 1)) da =1+ b,

where

s
(3.2) I = fA P09 > 1)) d)
1 7
= p-1 = p-1 = P
[ A tuda= [C partan= g7,

since Mg ¢(x) > f, for every x € X. Then I, is defined by
+00
L- o P ({79 > 1)

Using inequality (1.1), we conclude that

I <f+°° AP-ll(f d )d)t
2= A=f p A {M7¢>A}¢ #

:[A:fw‘DAP—Z( [{MT¢>A}¢ ¢ f¢( )[4 M(TW) du(x),

where in the last step we have used Fubini’s theorem and the fact that Mg ¢(x) > f,
for all x € X. Therefore,

(33) Pl RRCL et

Thus, as a consequence of (3.1), (3.2), and (3.3) we have that

Gao 1= (Msr</>)*"du3—ﬁfp+pi_l [ ¢ Otz9)au.

Using Holder’s inequality now, it is easy to see that for every ¢ as above, the following
inequality is true:

1
65 [ o0ty dus( [ grau) ([ Otz9)du
By (3.4) and (3.5), we thus have

) (p—l)/p'

1 p p , f(p-1)/
= P - P .FUr . [(p-D)/p
(3.6) I fX(Jvt(ﬂp) du < p—lf +P—1 F/P.T

therefore,
4 (»-1)/p
£S_;.L+(L)(£) .
F p-1 F p-1/\F
Because of (3.6), if we set J = (%)1/1’, we have that

1 fF 4 -1
pe__~ S L _F gp
(3.7) Jr < po1 F+p—1] .
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We distinguish the following two cases:
(a) J <1: Then J < w,(f?/F), since w, takes values on [1, p/(p —1)]. Thus,
I\Vp ) p P
(?) <wp(fP/F), hence I<Faw,(fP/F)?,

and our result is trivial in this case.
(b) J > 1: Then because of (3.7) we conclude that

fP
F

fP

pIr = (p-1)J > or Hy(J) 2

P
hence, ] < wp(%), since w, = H;l. As a consequence, we have that

Pyp
M pd S F * L >
[ (vtrg)au < Frap(2)
which concludes the proof of our lemma. ]

As we shall see in Section 6, for every f, F fixed such that 0 < f? < Fand p > 1
there exists g: (0,1] — R* non-increasing, continuous that satisfies jol g(u)du = f,
Jo &7 (u)du = F,and ; fot g(u)du = cg(t) for every t € (0,1] where

I
e=wp(L).

Thus, the next theorem is a consequence of Theorem 1.1 and the results of this section.
Theorem 3.2 Let f,F be fixed such that 0 < f? < F where p > 1. Then the following
equality is true
Pyp
P . = P = = L
sup{fX(Mggb) d‘u.gbZO,/);gbd/,t—f,fX¢ dy—F} —pr( F) .
4 Characterization of the Extremal Sequences for the Bellman
Function

In this section we will provide an alternative proof of Theorem 1.2, different from that
in [6], based on the proof of the evaluation of the Bellman function of the dyadic
maximal operator, which is given in Section 3.

Proof of Theorem 1.2 (i) = (ii) Let (¢, ), be a sequence of functions ¢,: (X, u) =
R* such that [y ¢,du = f, [, ¢hdu = F for which

lim f (M,)?dy = Fa,(f7F)P.
n Jx
We will prove that

limf | Mg — ¢y [P du =0,
n Jx

where ¢ = wp(%).
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By setting A, = {Mg¢, > c¢,}and A], = XxA, = {Mg¢, < c¢,},itisimmediate
to see that it is enough to define

I, = An (M‘T(bn _C¢n)pd."l and Jn = fA;(C(p" _MT¢”)pd#’

and then prove that I,,, J, = 0, as n - oo.
For the evaluation of the Bellman function, as described in the previous section
we used the following inequality:

>

Lo @usgyaus( [oran)"” ([ oergra)” "

which, for our sequence (¢, ),, must hold as an equality in the limit (we pass to a
subsequence if necessary). We write this fact as

‘/);(pn‘(M‘T‘/’n)Pildym ( /X(pﬁd”)l/p'(‘[X(M‘I(Pn)l’dy)(pil)/l)_

Now, we are going to state and prove the following lemma.

Lemma 4.1 Under the above notation and hypotheses we have that

_ 1/p (p-1/p
[ ¢"(M7¢n)p ldt’“‘% ( / ¢£')df") ( / (MT(/Sn)pdﬂ) ?
Xn Xn X"
where X, may be replaced either by A, or A},

Proof Certainly the following inequalities hold true in view of Hélder’s inequality.
These are

@ [ u e ([ otan)" ([ 0ot
@ [ 6.0t aus( [ otaw)” ([ Otsn)rdn

for any n € N. Adding them we obtain
43) [on O du<( [ sha)” ([ Otogn)ran)
o [ otan)" ([ 0toguyran)

We now use the following elementary inequality for which the proof is given below.
For every t,t' > 0,s,s’ > Osuchthatt+ ¢ =a > 0ands+s = b > 0and any
g € (0,1), we have that

(4.4) 1870 1 (1) () < al - b,

) (p-D/p

>

) (p-D/p

>

(p-1/p

Applying it for g = 1/p we obtain the following inequality from (4.3):

(p-1/p

[ou-0erpyaus ([ gtaw)” ([ oerpuran) ",
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which in fact is an equality in the limit, because of our hypothesis. Thus, we must
have equality in both (4.1) and (4.2) in the limit, and our lemma is proved as soon as
we prove (4.4).
Fix t € (0, a] and consider the function F; of the variable s € (0, b) defined by
Fi(s)=t1-s" 11 (a-t)1-(b-s)"1.
Then " "
’ _ _ L _ a-
Fe=0-a[(;) (=) ] sc@b)

so that F/(s) > 0 for every s € (0, %), and F/(s) <0fors e (%, b). Thus, F attains its
maximum on the interval [0, b] at the point %. The result is now easily derived. M

We continue now with the proof of Theorem 1.2. We write

[ Otgrdu= [ Org)rdu+ [ (a9, du.
We first assume that
[ ¢hdu>0 and f ¢hdu>0 foranyneN.
An A

Thus, in view of Holder’s inequality, (4.1), (4.2), and (4.5) we must have that

p/(p-1)
» ( fA,, Gn- (M‘Tﬁbn)p_ld[")
(4.5) f (Mo ¢,)Pdu > T
X p P
( jA,, ‘/’ndﬂ)
p/(p-1)
( fA; bn- (M7¢n)p_ldﬂ)
+
1/(p-1)
( fA; ¢Ir;d/4)
We now use Holder’s inequality in the following form:
k k k
(4.6) a ¢ (a+c) forany a,c >0,b,d >0, where k > 1.

b1 T g S (b d)er
The above inequality is true as an equality if and only if

%:2:/1, forsome A eR, A>0.

Thus, in view of (4.6), (4.5) becomes
( fx(MT(pn)p_l(pndV
1/(p-1)
( fx (/Sﬁd‘u)

which is an equality in the limit, in view of the fact that ¢, is extremal for the Bellman
function; that s, lim,, [, (Mg¢,)Pdu = Fw,( %) ? From all the above we conclude,
by passing to a subsequence if necessary, that

fAn ¢n : (M‘T(/)n)pild,u . '[A:; ¢" . (M7¢n)p71d”
m =

im
" Ja, ndu " fA; $ndy

) (p-1/p

(4.7) /X (M) du >

(4.8) li = L eR*.
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Thus, by the equality that holds in the limit in (4.5), which is true because of the
equality in (4.7), we conclude that

AP/ Jim | f ndu + f ¢hay] :“mf (M) dn
n Ay 45 " X

or that
AI@D . F = o f?")"
hence
)

Thus, by (4.8) we conclude

P\ p-1
. Plg, & L . P
fAn¢n (Mg¢,)? " du “)p( F) (/n¢ndﬂ)’
p
n(Mgdn Pldp ~ L
J,, 9090 = 0y (5
Then, because of Lemma 4.1, we obtain that
Pyp
Mqyd,)Pdu =~ 'L / ﬂd ,
fAn( 7¢n) du wp(F) , $ndu
Pyp
Madn)du~ w,( Lo f Pdy.
S, Otrondus wp( )" [ hdu
We will now need the following lemma.

Lemma 4.2  Suppose we are given w,: X, - R*, where X, ¢ X for n € N, and
w: X — R” satisfying w, > w on X,,. Suppose also that

lim/ wﬁdyzlimf wPdy, where p > 1.
n JX, noJX,

limf (wp—w)Pdu=0.
n Jx,

Proof It is a simple matter to prove this lemma because of the following inequality.
For any x > y > 0, p > 1, the following holds: (x — y)? < x? — yP. Thus,

f(wn—w)Pd/,tgf wf,’dy—f wPdu — 0, asn — oo
Xn Xn X”

and the proof is complete. ]

In view of Lemma 4.2 and the definitions of A,,, A!,, we see immediately that
f (Mg, —cdp)Pdy -0 and [ (cpn —Mgd,)Pdu — 0, as n — oo.
Ay AL

As a consequence, [y | Mg, — cd, [P dy — 0,as n — oo, and our result is proved
in the case where

(4.9) / ¢h >0 and f ¢hdu >0, forany n e N.
An A
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The same proof holds even if we have that (4.9) is true for every n > ng for some
ngy € N.

Assume now that [,, ¢hdy = 0 for a fixed n € N. Since A}, = {M7¢, < c¢, } and
Mg, (x) > f for every x € X, we conclude that

fp#(A;)SfA;(M‘I%)deSCPfA; ¢h =0,

therefore p(A’) = 0, hence Ms¢, > c¢, y — a.c. on X. As a consequence, for our
fixed n € N we must have that

JLOtro) du> - [ ghdp=F-ap(f[F),

which cannot hold in view of Lemma 3.1.
Now suppose that for some subsequence of (¢,, )., which we suppose without loss
of generality is the same as (¢, ), we have that

(4.10) | ghau=o

Remember that A, = {Msd, > c¢,}.

Let x € {¢, = 0}. Then if x € A}, we would have that Ms¢,(x) < c¢,(x) or
that Mg ¢, (x) = 0, which is impossible, since M, (y) > f, for every y € X. Thus,
{¢n = 0} € A,, hence A}, € {¢,, > 0}. But from (4.10) we have that [,, ¢hdu = F,
so if u({¢, > 0} \ A])) were positive, we would obtain f{¢,,>o} dhdu >'F, which is
impossible. Thus, we have that

A, S{¢n>0} and u(4,)=u({¢s>0})

for every n € N. Since integrals are not affected by adding or deleting a set of measure
zero, we suppose that

(4.11) Al ={¢,>0}.
Because of Lemma 4.1, we have that
1/p
p-1 p . P
@) [ 60t ([ o) ([ Oty

Since (4.11) holds, we conclude by (4.12) that

) (p—l)/p'

(p-1/p

60t e PP g7

But the next inequality is true in view of the extremality of the sequence of (¢, ) (see
the beginning of this section):

(p-1)/p

[ #n g n P ([ Mg, dp)
Thus,

[A (Mg ¢,)Pdu /X(Mﬂpn)l’dy, hence Ln(M7¢n)dew0,

’
n
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and since Mg ¢, > f on X, we conclude that y(4,) — 0. Then

JAEETES |de:fAn+fA, | M — ey [P dp = I + ],
Then we proceed as follows: "

L= [, g, - o) du< [ g )du-e [ (g)dp

in view of the elementary inequality used in the proof of Lemma 4.2. By all the above
and by our hypothesis, we conclude that I,, ~ 0. As for J,;, we have

:f (c¢n—M7¢n)Pd#SCpf ¢fd#-fA;(Mir¢n)de

NFwP /(Mr;gb Ydu w0,
since (¢, ) is extremal.
Thus, in any case we conclude Theorem 1.2. ]

5 Proof of Theorem 1.3

We will prove Theorem 1.3 by arguing as in the proof of Theorem 1.1 and by using
Theorem 1.2.

Let (g4 )n be a sequence of non-increasing continuous functions g,: (0,1] - R*
such that [, g,(u)du = f and [ g8 (u)du = F, where 0 < f? < F. We set ¢ =
w,(f?/F) and suppose that (g, ), is extremal for (1.5); that is,

11m/ fgn dt = Fw,(fP[F)? =F-cP.

Our aim is to prove that

limfl‘lftgn—cgn(t)‘pdt:()

SetA, = {t € (0,1] fo &n > cg,,(t)} Then for our purpose it is enough to prove
that, as n — oo,

(5.1) fA" [% fotg,, —cg,,(t)]pdt:h,,, -0,
(5.2) ‘/‘;"[an(t)_%ﬁtgn]Pdt:IZ’n_)0.

We consider (5.1), as (5.2) can be handled in a similar way. Since (x — y)? < x? — y?,
for x > y > 0 and p > 1, it is enough to prove that

1 ¢ P
H":fA,,(;/o g,,) dt_CP/A,,gg_’O’ n - oo.

For each A, that is an open set of (0, 1], we consider its connected components I, ;,
i=1,2,....S0A, = U, I, where I, ; are open intervals in (0, 1] with I,, ;n I, ; = &
fori# j.

Let ¢ > 0. For every n € N choose i, € N such that

I, - III, .| <& and |IV, —IVi,|<s,
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III,,:fA (%fotgn)pdt, HIl,n:/Fn(%fotg,,)Pdt,

IV, = fA,,gﬁ’ Vi =c? fF gk,

and F,, = U::”:l L.
It is clear that such choice of i, exists. Then |II,, — IT; ,,| < 2¢, where

1 [t NP
= - —cP p
I /p(t/o g”) dit-c angn-

We need to find a ny € N such that I , < ¢, for all n > ny. Fixa g, =: g. We prove
the following lemma.

where

Lemma 5.1 There exists a family ¢,: (X, u) - R* of rearrangements of g (¢ = g for
each a € (0,1)) such that for each y € (0,1] there exists a family of measurable subsets

of X, S‘(}) satisfying

lim [ D@ dn= (5 [e)

and lim,_,o+ [/t(S,(ZY)) = y. Moreovet, we have that s ¢ sﬁy" whenever y <y’ <1and
a€(0,1).

Proof We follow [8]. Let a € (0,1). Using Lemma 2.2 we choose for every I € T a
family F(I) ¢ T of disjoint subsets of I such that

(5.3) > u()) = (1-a)u().
1 (1)

We define S = S, to be the smallest subset of T such that X € S and for every I € S,
F(I) € S. Wewrite A; = I\ Ujeg(pyJ for I € S. Then if a; = u(Ar), we have that
ar = au(I) because of (5.3). It is also clear that

Sa = U Sa,(m)’ where Sa,(()) = {X} and Sa,(m_',l) = U 97([)

m>0 IeS 4, (m)

We also define rank(I) = r(I) to be the unique integer m for I € S, such that I €

Sa’xnd)(‘iitionally, we define for every I € S, with r(I) = m
1 (1-a)"
y(I) = ym = a(—a)m f(1—a)m+1 g(u)du.
We also set

bm(I) = Z l‘(])

SsjcI
r(J)=r(I)+m

for I € S,. We easily then see inductively that b,,(I) = (1- a)™u(I). It is also clear
that for every I € S, I = Ug 55c1 AJ.
At last we define for every m the measurable subset of X, S, = Ures, o 1
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Now, for each m > 0, we choose T,(lm

[+m]" = (¢/ (-

This is possible, since p(Sy ~ Sm+1) = p(Sm)
(1-a)™-(1-a)™"' =a(1-a)™. Itis obvious now

); S N St

1377

— R such that

m+1 (1 a) ])
- P’(Sm+1) = b (X) — b (X) =

that S,, \ Sps1 = Ures, (my Al and

that

[ dma /( " ()

u)du,

S\ St “= 1 a)m+1g
therefore

__ 1 L odu -

M(sm\strl) Sm\Sm+1 @l =Ym-

(m)

Using Lemma 2.3 we see that there exists a rearrangement of 7,/S,, \ Spy1 = 7

a

called ¢£m> for which ai, fAz ¢§”‘) =ym forevery I € S, ().

Now define ¢,: X - R* by ¢,(x) = </),(1m)(x),for
Let I € S, (). Then

X € Sy \Sm4. Of course, ¢ = g

Avi(¢,) = / a ad
(o) !4 I) $ad H(I) s,g]:cl AI¢ #
1 J,
== (pa Ym+eaj
u(I) 0 S, a}cI (I) £>0 Sa;:CI '
r(J)=r(I)+¢
1 1 (l_a)m+€
_ I d
[4(1) ezz;)sa;gla‘u(])a(l_a)mw ‘/(l_a)m+e+1 g(u) u
1 1 /(l_a)m+8
= g(u)du- u(J)
y(I)g(l—a)'"” (1-a)m+est Su;:gl
r(J)=m+¢
1 1 (l_u)m+€
i (I)(;)(l—a)m” fm glu)dube(D)
(1-a)™*t 1 (1-a)™
du = f du.
(l—a)m g(:][l a)mmg(u) " (1-a)m Jo g(u)du

Now for x € Sy, \ Sy41, there exists I € S, () such that x € I, so

1
l—a)m

My (¢a)(x) 2 Avi(¢a) = (

Since u(Sy) = (1—-a)™

[Mo(¢a)]* () > O, forevery te ((1-

(1-a)™
/; g(u)du =:0,,.

for every m > 0 we easily see from the above that we have

a)m+1’ (1 _ a)m] .

For any a,y € (0,1], we now choose m = m, such that (1-a)™*! <y < (1-a)™. So

we have lim,_o+(1—a)™ = y.
Then using Lemma 2.4 we have that

(5.4) lim sup

a—0+ JUSa,(mg)
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where US,; () denotes the union of the elements of S (). Thisis S, = Upes, (may 1
This is true, since §(Sp,) > y,asa - 0*.

Then
69 [ Owstin= T [ Ot
(1-a)*
2e;m (ﬁfo g(u)du)p/,,(se N Sei1)
_ e; ( = a)e f(l—a) g(u)du)p‘ ( (1-a)®, (1- a)e] ‘

Since (1 - a)™e — y and the right-hand side of (5.5) expresses a Riemann sum of the
-a)me (1t )P
fo ( 1o g) dt, we conclude that

(5.6) lim sup (Mgd,)Pdu > fy(lfotg)pdt.

£—0* mg t

Then by (5.4) we have equality on (5.6).
We have thus constructed the family (¢,)ae(o,1)> for which we easily see that if

0<y<y <lthen 8 ¢ 89 for each a € (0,1). [ |

Remark 5.2 Itis not difficult to see by the proof of Lemma 5.1 that for every £ € N
and a € (0,1) the following holds: & = g/(0, (1 - a)¢], where A is defined by h :=

(¢a/Sa,cep)* on (0,(1-a)‘].

We now return to the proof of Theorem 1.3. Remember that

1 [to\P
IIl,n:/\Fn(E\/O\ gn) dt—cP/;ngf,Z:IHl,n—IVl,n

with F,, = U I,;= Ujin(an,ilbn,i), which is a disjoint union. Thus

i=1

HILH:EH:[fobn,f(ifotgn)pdt_foan,i(1/0tgn)Pdt].

Now, for every n € N we consider the corresponding to g,, family (¢4,n)ae(0,1) and
the respective subsets of X, S(“" ) S(b" ) ae (0,1),i=12,...,n; for which

y(Sg‘f,’;”')) — a,,; and y(ng’,',‘")) —>b,;, asa—0".
We can also suppose that
ap,i < bn,,' < ap,iv1 < bn,i+1) i=12,...,i,—L

Then we also have that Sg)“,’,"i) c S((l,hﬁ”') c S,(I?;,'"*l), and of course

(5.7) hm (un D [MT(¢a n)]pd‘u fﬂn,i ( % fotgn)pdt’
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and similarly for the other endpoint b, ; of I, ;. Therefore, by (5.7) there exists for
every n € Nan ag , € (0,1) such that |1, - V,| < % forall 0 < a < ag,,, where

V" = Z;[ ‘/S(h,,,,')(M‘T(pﬂ,n)pd.u - \/S‘(an)i)(M‘T(/)u,n)Pdﬂ]
i= a,n a,n
in
= [ o Mrgan)dn, AL = U0\ s{ip].
n i=
Additionally, we can suppose because of the relation
1,1 t P
ulirg /};(Mq(pa,n)pdt:fo (;[} g,,) dt, for each n € N,

and since g, is extremal for the problem (1.5), that ao , can be chosen such that for
every a € (0,a9,,)

(5.8) ‘ /X(M«ﬂ/)a,,,)f’dy —pr(fP/F)p| < %, for every n € N.

Choose a;, € (0,a,) and form the sequence ¢, , =: ¢,,. Then, because of (5.8) and
since ¢ = g,, we have that ¢, is extremal for (1.4).

Because of Remark 5.1, we now have for every € € N, each n € Nand a € (0,1), we
have that

($an/Saiey) :(0.u(Se) = (1-a)"] — R
is equal to g,,/ (0, (1 - a)f]. Since lim,_o+ ‘u(AE,“)) = |F,|, for every n € N we can
additionally suppose that g, , satisfies the following

1
|/,¢(A5,")) —|Ey|| < =, forevery ae(0,a0,),
n

soif A, = A(na:‘), since ¢, = ¢, we must have additionally that

(59) LG [ ) de- [ Otgnyrdu] <

and | p(A,) - |Ful| < 1, foreveryneN.
It is also easy to see because of the above relations, Remark 5.1, and the form of A,
(by passing to a subsequence if necessary) that

5.10 li / P =i f P
(5.10) im | gu=lim | g

We now take advantage of Theorem 1.2.
Since ¢, is extremal for (1.4), we must have that [, |[Ms¢, — cd,|[Pdu — 0, as
n — oo, where ¢ = w,(f?/F)P. This implies that

M n-— n Pd 0)
/Ann{avtmzwn}( 700 = cpn) it =

as n — oo, or

f (Mg, —cdp)du — 0, asn — oo,
Ay
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where A! = A, N {M7¢n > ¢y }. Since
1/
[ [ etz7]” <[ [ 0wsa-co] [ [ o]

we must have, because of the definition of A/, and the above inequality that
tim [ (Mzg,)? = clim [ gl
im A;( 7¢n)" = ¢’ lim A;</>
In the same way we prove that
lim (Mg¢,)? = c? lim ok,

n AuNAY n AuNAY
SO

hmf (M7¢H)de:cplimf e
n A, n Ay

Because of (5.9) and (5.10), we have that

11mf fgn dt—hmcpf g,

and from the choice of F,, we see that we must have that II,, < 2¢, for n > ny, for a
suitable ng € N, and this was our aim.

6 Uniqueness of Extremal Functions

In this section we will prove that there exists unique go: (0,1] - R* continuous, with
1 1
f go(u)du=f, f gl(u)du=F, and
0 0
1.1 t P
Z = P P
/0 (3 fo go(u)du)’ dt = Fa,(f*/F)".
This is the statement of Theorem 1.4.

Proof of Theorem 1.4 By Theorem 1.3 it is obvious that if such a function g, exists,
it must satisfy

60 [ go(u)du = cgo(t), ae. on (0,1 where ¢ = @y (f7/F).

Because of the continuity of gy we must have equality on (6.1) in all (0,1].

So in order for gy to satisfy (6.1), we need to set go (t) = kt™*¢, t € (0,1] and search
for a constant k (by solving the respective first order linear differential equation) such
that

[Olgo(u)du =f and folg{,’(u)du _F

The first equation becomes

1 1
/kf”:dt:f o ke=f o k=fle
0
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So we ask if gy for this k satisfies the second equation. This is equivalent to
kP
( -p+1+ %)
or fP/F = [(—p +1)+ %] cP; equivalently, —(p —1)c? + pcP™' = fP /F. But this is true
because of the choice of ¢ = w,(f?/F) and w, = H,', where

Hy(z) =—(p-1)z" + pz™' forte [1, %]

- F,

Because of the form of go: (0,1] — R, we have that

%fotgo(u)du:cgo(t) for t € (0,1],
hence 1 t
/0 (%[0 gO(u)du)Pdu:pr(fP/F)p'

So go is the only extremal function in (0,1]. [ |

7 Uniqueness of Extremal Sequences

We are now able to prove Theorem 1.5. The direction (ii) = (i) is obvious from the
conditions that g satisfies. We now proceed to (ii) = (i).
We suppose that we are given g,:(0,1] = R* non-increasing, continuous, such

thatfo gn(u)du = f, fo P(u)du = F, and

hmf [ 2n u)du) dt = Fa,(f?|F)?.

Using Theorem 1.4 we conclude that

. 11 t p
11’1111’[0 ‘;[0 g,,—cgn(t)‘ dt.

Thus, there exists a subsequence (g, )» such that if

1 t
F,,(t)z;[o gn—cgn(t), te(0,1], neN,

then Fi, — 0 almost everywhere (with respect to Lesbesgue measure). Because of the
finiteness of the measure space [0, 1] and a well-known theorem in measure theory, we
have that Fy,, — 0 uniformly almost everywhere on (0, 1]. This means that there exists
a sequence of Lesbesgue measurable subsets of (0,1], say (H,, ), such that H,,,; € H,,
|H,| < + satisfying

1 t 1
‘;[0 gkn—cgkn(t)|:|Fkn(t)|£Z for t € (0,1] ~ H,,.

Additionally, from the external regularity of the Lesbesgue measure, we can suppose
that H, is a disjoint union of closed intervals on (0,1]. Now let t,¢' € [a,1] \ Hg,,
where a is a fixed element of (0,1].
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Then the following hold, where ¢ = w, (f?/F):

|cg, (1) — cgk, (1)
1 rt 1 ot
+’;f0 gkn—;fo 8k

1 t
< ‘Cgk,.(f) - f 8k,
tJo
Then I < -, since t ¢ Hy,. Similarly for IIL.

1 rt ,
+ ;[0 gkn—Cgkn(t)|

=I+I1+1II.
kn

We look now at the second quantity II.
We may suppose that t' > ¢, so ¢’ = t + 6 for some § > 0. Then

, t t 1 t t t'
t/gkn—t/ 8k, S*\(Hé)/ gkn—tf gkn—tf 8k,
0 0 at 0 0 t
1 t t' B 1 t
o [t [Ca < et [
at 0 S t S a2f+a t 8k

where f = [, 01 gk, - Now by Holder’s inequality, we have that

t ¢ 1/p 1 1
< p ' —t|"r = F§' 0.
/z 8k ( ft gkn) | |

Thus, 11 < & + 1§75 F.
We consequently have that for a given ¢ > 0 and a € (0,1) there exists § = 8, > 0
for which the following implication holds:

1
II=—
tt’

(71)  t,t'e[a, 1]\ Hy,, |t—1t]<8=|gk,(t) — g, (t')| <& forevery neN.

Thus, (gk, ) has a property of type of equicontinuity on a certain set that depends
on a. We consider now an enumeration of the rationals in (0,1]; let Q n (0,1] =
{9192, > Qiy> - - -}

For every q € Qn(0,1] we have that (gx, (¢)) . is abounded sequence of real num-
bers, because g, is a sequence of non-negative, non-increasing functions on (0,1]
satistying [, g, = f-

By a diagonal argument we produce a subsequence that we denote again by gy,
such that gi, (q) = A4, n — oo where 1, e R*, g € Qn (0,1].

Let H = N,2, Hi,, which is a set of Lebesgue measure zero, and suppose that
x € (a,1)\ H. Then x > a, and there exista ny € N such that x ¢ Hy, ,sothatx ¢ Hy,,
forall n > ng. Additionally, choose a sequence (pi ) of rationals on (a,1) ~ H,, such
that py — x. This is possible, because the set (a,1) \ Hy,, is an open set. Thus, we
have that pj > a and py ¢ Hy,, n > ng, k e N.

Now let kg € N : |py — x| < §, for all k > ko, where 8 is the one given in (71).

We then have that |g, (x) — gx,, (Pk, )| < & for every n € N. Thus, for every such x
and every n, m € N, we have that

|8k, (%) = &k, ()| < |8k, (%) = &k, (PR )| + |8k, (Pko) = &k (Po)]
+ |8k (Pro) = 8k (%)| < 2€ + [k, (Pko ) — ki (ko )]-

But (gx, (Px,))n is convergent sequence, thus Cauchy. Then (g, (x)) is a Cauchy
sequence for every x € (a,1) \ H for every a € (0,1].
Thus, (gk, (x))n is a Cauchy sequence in all (0,1] ~ H.
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As a consequence there exists gj: (0,1] — R* such that
(7.2) gk, ~> goae.on (0,1] = g — g; uniformly a.e. on (0,1].

Since Fy, (t) — 0 a.e., this easily implies that

1 t ! !
(7.3) p fo go(u)du = cgy(t), ae. on (0,1].

Since (7.2) holds, we easily see that we have that gg € L?((0,1]) and that fol & =1

and fy (86)” = F.

Also, since the function ¢ — fot £ is continuous on (0, 1] we must have that g; can
be considered continuous with equality on (7.3), everywhere on (0,1].

This gives us that g is the function constructed in Theorem 1.4.

Additionally, we obtain

1
(7.4) f |gr, — golPdt -0, asu — oo,
0
because of (7.2) and the fact that
; p . : — —
(75) 81:1{)1 ( sup{ ngkn(u)du : neN, Ac(0,1] with |A| = 8}) =0.
The validity of (7.5) can be concluded from the following remark.

Remark 71 In [2] it can be seen that the following is true:

sup{fK(Mﬂb)Pdu:(pzo, fxgbdy:f, fx(ppdﬂzp, #(k):k} S0

as k - 0, for 0 < f? < F. This is a result that can be seen in [4] and depends only on
the statement of Theorem 3.2.

Because of the symmetrization principle (Theorem 1.1), this implies that if we de-
fine

Bp(f,F,k):sup{'/Ok(}fotg)pdt:g:(o,l]»RJ'

t
1 1
is non-increasing and continuous, f g=1 / g= F} ,
0 0

then limy_o B,(f,F,k) = 0. Then the supremum in (7.5) is bounded above by
B, (f,F, &) for every § € (0,1]. Thus, if we work on every subsequence of (g, ),
which is again extremal, we produce a subsequence of it for which (74) is satisfied.
Therefore, the proof of Theorem 1.5 is complete. ]
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