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A UNIQUENESS THEOREM ON THE DEGENERATE 
CAUCHY PROBLEM*» 

BY 

CHUNG-LIE WANG 

In [4] Carroll and the author have treated the following problem 

(1) utt+A*S(t)ut+A*R(t)u+Aa(t)u+B(t)u = /(*) 

where A is a closed densely defined self-adjoint operator in a separable Hilbert 
space H with (Aw, u)>c ||w||2, c>09 A"1 eL(H) (L(E9 F) is the space of con­
tinuous linear maps from E to F; in particular, L(ET)=L(H9 FT)), a(t)>0 for f > 0 , 
a(0)=0 and S(t), R(t), B(t) e L(H). Various other hypotheses will be given later. 
It is assumed that all operators commute, and we seek u e ê\FF) {êm{F[) is the 
space of m-times continuously diflferentiable functions of t with values in FT) 
satisfying (1) with 

(2) n(0) = iit(0) = 0. 

Existence and uniqueness theorems have been obtained for the problem (l)-(2) 
in [4]. The purpose of this paper is to prove a somewhat stronger uniqueness 
theorem for the problem. We also give examples that will be provided for differential 
equations to which the uniqueness theorem applies but which are not included in 
any previously known results (e.g. see [1, 4, 6, 8, 10]). A counter-example is 
also given in order to indicate that the function of degeneracy a(t) can only admit 
oscillations under a suitable condition. 

Notations and symbols in [4] are adopted here except for arbitrary constants. 
Indeed equations taken from [4] will be renumbered in order to make our paper 
as self-contained as possible. 

In order to apply spectral methods we set that S(t)=Ss(t)9 R(t)=Rr(t), B(t)= 
Bb(t)9 where B9 R9 S9 A - 1 commute and are bounded normal with b,r,se c°[0, / ] , 
a e ^ [0 , /]. Let si be the uniformly closed * algebra generated by A~\ B9 R, S, B*, 
R*9 S* and /. Then we associate with these operators (other than 7) the complex 
spectral variables z0, zl9... , ze (see [3, 4]), z0= 1/A is real. Now the map m : 0 ^ - > 
C7 given by m(<f))=(Â-1((j))9 Ê{<j>)9... , S*(<f>)) is a homeomorphism of the 
carrier space O ^ with the joint spectrum a of the elements A"1, B9... , S* (see 
[4, 9]). We consider now in connection with (1) the homogeneous equation 

(3) utt+À*z3s(t)ut+Àpz2r(t)u+Aa(t)u+zxfo(0w = 0. 
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Solutions Z{t9r9zi9X) and Y(t9r9zi9X) of (3) with Z(r, r )= l , Zt(r9 r)=0, 
^(T> T)=0> ^t(T> T ) = 1 (cf. [2]) will give rise to operators in the von Neumann 
algebra s/" if Y and Z are continuous in (zi9 X) for \z{\ <cx (i= 1 , . . . , 6), |A| <^R0 

(R0 arbitrary), and bounded for |zj<c l 5 |z0 |<l/c (this has been proved in [3]). 
The constant cx is chosen so that c^maxflli?!!, ||i?||, \\S\\} and then the joint 
spectrum a lies within the region IzJ^Cj. ( /=1 , . . . , 6 ) , |z0 |<l/c (note that 
A-*oo corresponds to z0->0). 

It is known from classical results (see [5, 6]) that for 0<r<f</<oo there 
exist uniqueZ and Fas required, continuous in (t9 r, zi9 X) in the region 0<r<t< 
/< oo, \z{\ <cx (/= 1 , . . . , 6), 0<z0< 1/c. However, Y and Z may not be analytic 
single-valued in zi9X9 because a, /? may be fractional. Thus by introducing the 
Green's operator associated with (3) (see [4, 10] for details) we obtain formally 
for the solution of (l)-(2): 

(4) u(f)=£<8f(f,S)f(S)dS 

where $/ is the operator associating with Y. 
For convenience, we now summarize what have been assumed (in [4]): (i) 

a e c 1 ^ , / ] , (ii) s9r9b ec°[09l]9 (iii) P=a'+c1(r
2+Z?2/A)>0, (iv) y=rnax{<x, i}9 

(v)2£<l, (vi) Re(^(0)>0, (viï)flQ=he£»(D(Ay)) (Q=<fi'*q=(a<h>)m, with 
^( r )=exp(-^ SI r«/««), ^(r)=exp(-(c1M) $l

T b*ladt). 
According to [4], the solution of (1) with values u(r) and ut(j) prescribed, 

0<r<f, can be written as follows: 

(5) ii(0 = &(t9 T)U(T)+^(*, r)ut(r)+ C&(t, |)/(f) dS, 

where Jf, & are operators associating with Z, Y which are solutions of (3). 
We recall that two uniqueness theorems were proved in [4], One of them re­

quired strongly ueê\H)9 u\q e <r°(i)(Av+1/2)) and uJQ e«?%D(Ay)). On the 
other hand if q>0 a second uniqueness theorem had been given as Theorem 3 in 
page 254 of [4]. We now state it without proof as follows: 

Theorem 3 of [4]. Assume u is a solution of (l)-(2) with u e ^°(D(Ay+1/2)) n 
£\D(A?)) O S\H) and let Jr2/ac/|<oo, $ b*/adÇ <oo with (fj a(f) </|)V / 2(0 
continuous for some ô<\. Then u is unique. 

It is noted that the second uniqueness theorem of [4] stated above was based 
upon the following inequality: 

(6) \\ut\\ £ '•(£«(« #)T-
On recalls that the degenerate Cauchy Problems of a similar form (e.g. see 

[7, 8]) were solved with a(t) monotone (monotonicity of a{t) is not necessarily 
required here or in [1, 4, 10]). However, from (6) with a monotone a(t)9 it follows 
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immediately that (t<l<co) 

(7) Ikll <C c3a1/2(0. 

This means that \\utfa
ll2\\ is bounded for every t e [0, /] . Now (t, T)->a1/2(T)<%/(t, r) 

is continuous with values in LS(H, D(A1/2)) (where the subscript S denotes the 
strong operator topology), and the term &(t, r)ut(r) in (5) may be written as 

(8) &(t, r)ut{r) = a1/2(rW(t, r ) - M < ( T ) -

But ut(r)/a1/2(r) is also continuous. Moreover, since q>0 &(t, r)w(r)->0 as 
T->0. Actually, the above arguments would remain true if a(t) were required to 
be locally monotone (i.e., a(t) is monotone in a neighborhood of 0). Oscillations in 
a{i) are then allowed. 

In order to facilitate the subsequent arguments, we rewrite (6) as 

(9) \\utla
1/2\\ < c2A

ll\i) 

where 

(10) A(t) = Ça(S) dSKt). 

It is easily seen that the boundedness of A(t) on [0, /] would assure uniqueness for 
the problem (l)-(2) in view of (8). In fact, if a(t) is assumed to be locally monotone, 
A(t) is obviously bounded on [0, /]. Consequently, we simply replace the condition 
(Jo a(£) dSfja1,2{t) being continuous for some (5< J by a(t) being locally monotone 
in Theorem 3 of [4]. Thus we have 

THEOREM. Assume (i), (ii), (iii), (iv), (v), (vi), (vii). Let ubea solution of (l)-(2) 
with M e ^ ( D ( A W 2 ) ) n ^ ( A 7 ) ) n ^ ( ^ ) , J 7 2 / ^ £ < o o , J 6 2 / ^ | < o o . If 
a(t) is locally monotone, then u is unique. 

It may be worthwhile to point out that in case a'(0)^0 or a(t)~ktn (i.e., 
lim^o a(t)ltn=k>0 for «>0) , A(t) is evidently bounded. Indeed both cases are 
special cases of the theorem. For a(t) being locally monotone, some class of non-
monotone functions a(t) (such as a(f)=exp(—1/0 [a1+a2t

z sin2(l/f)], a(t)= 
axt

n+a2t
p sin(l/0 with a1^\a2\9p>n>09p>2) would be included. 

Finally, it is not hard to see that for a nonmonotone a(t)=0(tn) with w>0, 
A{t) may not be bounded; in particular, limsup ^4(0= °°- To this end, consider* 
the function ax(t) and a2{t) defined on [0, 1] as follows: 

a1(0 = t3sin2(l/0+^5cos2(l/0, 

a2(t) = *3 cos2(l/*)+*5 sin2(l/r). 

* Professor A. Meir constructed these functions for the author when he attended the 1967 
Summer Research Institute in Edmonton. 
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Clearly, 

(12) alt) < t\ i = 1, 2 

and 

(13) a,(t)+a2(t) = f+t\ 
for all t e [0, 1]. (13) implies that 

Jo Jo 

for all t G [0, 1] and consequently 

(14) ffl^) dS > m 

or 

(15) a2(|) df > *4/8 

*4/4 

[August 

or both hold for infinitely many t e (0, 1], On the other hand it follows from (12) 
that 

et 
*4/ f^<|) d|<*4/4, # = 1,2 

for all t e [0, 1]. Now consider two particular sequences {tk}9 {Q of (0, 1) where 

tk = 1/2/C7T, tk = l/(2fe-i)7T, fe = 1, 2, . . . . 

(For simplicity, we use the same notations for their subsequences if applicable.) 
Evidently, 

<*i(fj = tl tfi(4) = ^3; 

alh) = 4 , *2('i) = t'k\ 
Thus we obtain 

1° fli(l) df tf/4 
(16) ^ < ^V = *»/4 

*>Tc 

and 

J \ c ^ AlA 
(17) •" . . < -^ = **/4-

Now if (14) holds for infinitely many ? e (0, 1] and in particular {tk} is considered, 
then 

fai(l)^/8 
(18) ' u _ > - ^ = l/8tfc. 

« i (*») *! J: 
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Otherwise, (15) must hold for {Q so that we have 

| \ ( 0<« Çka2(i)di . 
(19) Jo > J-±— > -iL = (tjtfM = [(2k-DI2kfK ̂  (WW* 

a2\}jt) h h 

Noting (16) (or (17)) and (18) (or (19)), we conclude that A(t) may be unbounded 
even if a(t)=0(tn) for some n>0. 

The above counter-example shows that a(t) can only admit oscillations condition­
ally. In the present case A(t) must be bounded on [0, /]. 

REMARK. The theorem may be regarded as somewhat "best possible" in the 
sense that the case a(t)~tn(for n>0) is a special case of the theorem while the case 
a(t)=0(tn) (for H > 0 ) cannot be generally included in the theorem (see counter-
example above). 
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