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ENDOMORPHISM SEMIGROUPS OF SUMS OF RINGS 

BY 

CARLTON J. MAXSON 

Let R= (R, +, •) be the cartesian sum of the rings Ri9 i= 1, 2 , . . . , n denoted by 
-R=2*=i Ri9 and recall that R is a ring under the componentwise operations. It is 
well-known (e.g. [1], p. 212) that the endomorphisms of the group (R, + ) form a 
ring HomzR (under function addition and composition) and moreover HomzR 
is isomorphic to the matrix ring ^ = { [ ( % i \ au e Homz(Ri, R3)} under the usual 
matrix operations of addition and multiplication. 

Let £f denote the subset of ~# consisting of those matrices A = [ai0] which 
represent ring endomorphisms of R. In this paper we characterize £f (see Theorem 
1) by finding necessary and sufficient conditions on the components a{j of A in 
order that [aid] correspond to a ring endomorphism. In other words, if End JR 
denotes the semigroup of ring endomorphisms of R, we determine a matrix repre­
sentation of this semigroup. 

Recall from matrix theory that any automorphism of the ring of matrices (over 
a field) leaving the scalars fixed is an inner automorphism. This result has been 
generalized to a class of simple artinian rings (see [2] and [3]). In Section 2 of this 
paper we apply the matrix representation of End R to extend the result on simple 
rings to a class of semi-simple rings. 

1. Characterizations. Let {i£X=i be a finite collection of rings. The cartesian 
sum R of these rings Ra will be denoted by i£=2a=i ^a- Clearly, if each Ra has a 
multiplicative identity ea then e=(eu e2,... , en) is an identity for R. We also 
remark here, that if a ring S has an identity, then we do not require that an endo­
morphism <£ of S preserve this identity. 

THEOREM 1. Let {Ra}, a = l , . . . , n be a collection of rings and \x{i] an nxn 
matrix where each Xij'Rr+Rj satisfies the following properties: 

(1) Xij w a ring morphism, 
(2) V*< e R, Vxk G Rk9 i^k=>Xi %it xk %kj=0for allj. 

Then [xH] determines a ring endomorphism of i£=2a=i ^«- Moreover every ring 
endomorphism <j> of R determines such a matrix. 

Proof. Define x:R~*R by <*i> • • • > *n> #=<*i> • • • > xn)[%n\ Since each Xu is a 
morphism for the addition in Ri it is easy to show that ^ is a morphism for the 
pointwise addition in R. Also, using condition (2) and the fact that each %a is a 
morphism for the multiplication in R{ one finds that xy x=x xy X^0* e a c ^ x, y 
iriR. 
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Conversely let </> be a ring endomorphism of R=^Ra. Let /ii:Rr>R be the 
insertion map (^->(0, . . . , 0, xi9 0 , . . . , 0)) and pjiR-^Rj ((xl9. . . , xj9. . . , 
xn)->Xj) the projection map. For all i,j, ft cf> p^Rf-^R^ is a ring morphism. Let 

4>ii = Pi $ Pi a i l d t a k e Xi E Ri> Xk e RJe> &k> T t l e n Xi <f>{j Xk cf>kj= (Xi ft Xk Pk)<f>pj = 0. 
T h u s t he <j>iô satisfy cond i t ions (1) a n d (2) a n d [<f>u] is t he des i red ma t r i x . 

COROLLARY. If each of the rings Ra in the above theorem has an identity ea then 
condition (2) can be replaced by 

(2*) eixijekxkj = 0 fori^k and all j . 

Moreover, for the identity e=(el9. . . , en) of R and any ring endomorphism (j) of R, 

e</>=e<>2ti ei Xa=eôfor dlj. 
Proof. Since xt %i5 xk %kj=

xi Xa ei la ek Xki XJ Xw condition (2) is equivalent to 
condition (2*). The second statement of the corollary is immediate. 

For the remainder of this paper we let £P denote the collection of matrices [%u] 
satisfying conditions (1) and (2) of Theorem 1 and let End R denote the semi­
group of ring endomorphisms of R. If further, each JR, has multiplicative identity 
ei9 then SPX denotes the subset of SP of matrices satisfying J L i ei Xn~ei a n d 

Endi R denotes the subsemigroup of identity preserving ring endomorphisms. 

THEOREM 2. For R=J^=i Ro E n d R~^ and E n d i R=&v 

Proof. Let <f> e Endi?. From Theorem 1, we note that the correspondence 
<fa~+[<l>ij] is a bijection and that SP and SPX are semigroups. If <^->[<^] and 0->[#z;] 
t h e n cf> o 6->[(<f> o 0 X , ] = [ft <f> o 0 Pj] = [ft <f> ( 2 P* fo 0 Pj] s ince 2 Pk fa=lR. From 
th i s we o b t a i n [(</> o 0 ) , , ] = g ft <j> Pk ft d />,]= tfw][0„]. 

Thus, for any ring R which can be represented as a finite direct sum of rings, the 
above theorem characterizes those elements of Homz.R which also preserve the 
multiplication in R. 

We conclude this section with some remarks concerning the extension of the 
above results to an arbitrary family {Ra}(cc G A) of rings. In this case the direct 
sum JR(= 2 R<x) *s defined to be the collection of all vectors (. . . , ra, . . .) such 
that almost all components (all but a finite number) are zero and the ring opera­
tions are componentwise. In the analogous situation for abelian groups, Fuchs 
([1], p. 212) uses row convergent matrices (a matrix [cra/?](aeA, j5eO) where 
aap e Homz(i?a, Rfi) is said to be row convergent if for each row a and each 
xa e Ra, xa cra/?=0 for almost all ft. 

In this setting, Theorems 1 and 2 become: 

THEOREM 3. Let R=^aeA Ra, |A |=^ . The endomorphism semigroup End RofR 
is isomorphic to the semigroup of all p, by fx row convergent matrices S^, = {[aafi]} 
such that 

(V) a^'.R^-^Rfi is a ring morphism, 
(2') for xa e Ra, xy e Ry9 ify^u* then xa aaP xy ayfi=0for all ft 
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2. Main result. In this section we use the above characterizations to extend the 
following known result (called the Noether-Skolem Theorem by Herstein, [3], 
p. 99) to a class of semisimple rings: 

If R is a simple artinian ring, finite dimensional over its center ^(R), 
(*) then every ring automorphism <f) which fixes the elements of ^(R) 

is an inner automorphism. 
We first note that the hypothesis of (*) can be (apparently) weakened to allow $ 

to be an endomorphism. For, any endomorphism </> of R satisfying the stated 
conditions is an injective linear transformation of the finite dimensional vector 
space R (over %?(R)) and hence is a surjective map. 

Let R be any semisimple artinian ring. From Wedderburn Theory, R=^£=i ^a 
where Ra is a simple ring with identity ea (and thus e=(el9.. . , en) is an identity 
for R). 

LEMMA. Let R be a semisimple artinian ring. If R is a finitely generated module 
over its center ^(R) then Ra is a finite dimensional vector space over its center 
V(IQ9foralU. 

Proof. If G={gl9 g2,..., gh} is a generating set for R over ^(R)9 then for 
reR, r = 2 L i < & where cje

(ë{R). Clearly ^(R)=2^(Ra) and from the de­
compositions r=(rl9 . . . , ra9.. . , rw>, &=<gi, . . . , gU . . . , g°n) and c~(c[,. . ., 
cj, . . . , cn), c3

a G &(1Q one obtains 

h 
r* = 2 Ci d Where C « G ^(Ra) &nd g3

a G # a . 
3=1 

THEOREM 4. Le? R be a semisimple artinian ring, finitely generated as a module 
over ^(R). Every endomorphism <f> of R which fixes the elements of ^(R) is an 
inner automorphism of R. 

Proof. Since <f> fixes elements of ^(R), ecf>=e which implies that <f> determines a 
matrix [&,] of 5TX. Since ( 0 , . . . , 0, ei9 0 , . . . , 0) e V(R), 

( 0 , . . . , 0, ei9 0 , . . . , 0>[&,] = (0,. . . , 0, ei9 0 , . . . , 0) 

which implies that et ^ f J = ^ if i=) and et <^=0 for i^j. Then, for any x{ e i?4 and 

iyéj, xt <f>n=Xi <f>a ei <^=°- Consequently [<j>i0] is diagonal, 

-<£n 0 ••• 0 

0 </>22 0 ••• 0 

W«] = ' 

0 ••• 0 <£n 

where < -̂ is a ring endomorphism of the simple ring Ri9 fixing the elements of 
^(Ri). From the above lemma and the Noether-Skolem Theorem, there exists 
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bt e Ri such that xt (fru^bj1 xt b{. Hence for x e R, 

x = (xl9..., xn)9 x<j> = (xl9..., xn)[<i>iQ] = (bï1 x1 bl9. . . , b'1 xn bn) = b'1 xb 

where b=(bl9... , 6n). Since each <j>u is an automorphism, so is (f>. 
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