A RESULT ON SEMI-ARTINIAN RINGS

HAI QUANG DINH¹ AND PATRICK F. SMITH²

¹Department of Mathematics, Ohio University, Athens, OH 45701, USA (haidinh@email.msn.com)

²Department of Mathematics, University of Glasgow,
Glasgow G12 8QW, UK (pfs@maths.gla.ac.uk)

(Received 20 November 2001)

Abstract It was shown by Huynh and Rizvi that a ring R is semisimple artinian if and only if every continuous right R-module is injective. However, a characterization of rings, over which every *finitely generated* continuous right module is injective, has been left open. In this note we give a partial solution for this question. Namely, we show that for a right semi-artinian ring R, every finitely generated continuous right R-module is injective if and only if all simple right R-modules are injective.

Keywords: V ring; semi-artinian ring; CS module; injective module

AMS 2000 Mathematics subject classification: Primary 16D50 Secondary 16P20; 16P60

We consider associative rings with identity, and all modules are unitary modules. A module M is called a CS module (or an extending module) if every submodule of M is essential in a direct summand of M. Furthermore, a module M is called a quasicontinuous module if M is a CS module such that for any two direct summands U, V of M with $U \cap V = 0$, $U \oplus V$ is also a direct summand of M. If M is a CS module such that every submodule isomorphic to a direct summand of M is itself a direct summand of M, then M is called a continuous module. It is known that continuous modules are quasi-continuous.

A ring R is called a *right* V *ring* if every simple right R-module is injective. Further, a ring R is said to be *right semi-artinian* if every non-zero right R-module has a non-zero socle. Semi-artinian rings and modules were investigated, for example, in [3] and [5].

It was shown in [10] that if every continuous right R-module is injective, then R is semisimple artinian. Motivated by this, rings R with the following properties were discussed in [9].

- (p) Every finitely generated continuous right R-module is injective.
- (q) Every finitely generated CS right R-module is (quasi-) continuous.

The structure of rings satisfying either (p) or (q) is unknown. However, such a ring need not be semisimple artinian. It is shown in [9] that any simple right and left SI ring with

zero socle is a ring with property (p) (but not with (q)). Moreover, [7, Example 3.2] shows that rings satisfying (p) and (q) need not be semisimple artinian. Note that a ring R is right SI if every singular right R-module is injective (cf. [7, Chapter 3]). In this note we show that all right semi-artinian right V rings satisfy both (p) and (q). For examples of such rings see [5].

Theorem 1. For a right semi-artinian ring R the following conditions are equivalent:

- (a) R is a right V ring;
- (b) every finitely generated CS right R-module is injective;
- (c) every 2-generated CS right R-module is quasi-continuous; and
- (d) every finitely generated continuous right R-module is injective.

To prove Theorem 1 we give a sufficient condition for a finitely generated CS module to have finite uniform dimension, in a general setting. A module A is defined to be a QFD module if every factor module of A has finite uniform dimension (cf. [1, p. 294] and [2]). Note that any noetherian or artinian module is QFD, and, more generally, so too is any module with Krull dimension by [6, 6.1(1) and 6.2(2)]. It is easy to check that if Y is a submodule of a module X such that Y and X/Y are both QFD, then X is also QFD. Consequently, any finite sum of QFD submodules of a module is itself QFD. Note further that the sum $S_1(M)$ of all QFD submodules of a given module M is a fully invariant submodule of M. Therefore, if $M = M_1 \oplus M_2$, then $S_1(M) = S_1(M_1) \oplus S_1(M_2)$.

Proposition 2. Let M be a finitely generated CS module such that for every proper submodule $K \subset M$, the factor module M/K contains a non-zero QFD submodule. Then M is a direct sum of finitely many uniform submodules.

Proof. As above, let $S_1(M)$ be the sum of all QFD submodules of M. By assumption, $S_1(M)$ is non-zero. Inductively we can define a QFD series $\{S_{\alpha}(M)\}$ of M as follows: $S_{\alpha}(M)$ is a submodule of M containing $S_{\alpha-1}(M)$ such that $S_{\alpha}(M)/S_{\alpha-1}(M) = S_1(M/S_{\alpha-1}(M))$. If α is a limit ordinal, then $S_{\alpha}(M) = \bigcup_{\beta < \alpha} S_{\beta}(M)$. By the assumption on M, there exists an ordinal γ such that $S_{\gamma}(M) = M$. We call the least ordinal γ with this property the QFD length of M.

We prove Proposition 2 by induction on γ . The statement is true for $\gamma = 1$ because a finitely generated module M with $S_1(M) = M$ is QFD, and hence of finite uniform dimension. Suppose that $\gamma > 1$ and the result holds for all ordinals less than γ .

Assume on the contrary that M does not have finite uniform dimension. Since M is finitely generated, γ cannot be a limit ordinal. Hence $\gamma-1$ exists and $M/S_{\gamma-1}(M)$ is the sum of its QFD submodules. Moreover, as $M/S_{\gamma-1}(M)$ is finitely generated, $M/S_{\gamma-1}(M)$ is a sum of finitely many QFD submodules. Therefore, $M/S_{\gamma-1}(M)$ has finite uniform dimension. Let k denote the uniform dimension of $M/S_{\gamma-1}(M)$, and let n be any integer greater than k. Since M is CS (with infinite uniform dimension), we can decompose it as $M = M_1 \oplus \cdots \oplus M_n$, where each M_i does not have finite uniform dimension. Now, our above remark shows that $S_{\gamma-1}(M) = S_{\gamma-1}(M_1) \oplus \cdots \oplus S_{\gamma-1}(M_n)$.

Hence $M/S_{\gamma-1}(M) \cong M_1/S_{\gamma-1}(M_1) \oplus \cdots \oplus M_n/S_{\gamma-1}(M_n)$. As the uniform dimension of $M/S_{\gamma-1}(M)$ is k, there must be an M_i in the decomposition of M that is contained in $S_{\gamma-1}(M_i)$. On the other hand, as a direct summand of M, M_i is finitely generated and CS. Moreover, M_i satisfies the other assumption about M. By the induction hypothesis, M_i has finite uniform dimension. But this is a contradiction. Thus M must have finite uniform dimension. As M is CS, M is a direct sum of finitely many uniform modules.

Corollary 3. Let R be a ring such that for every proper right ideal A there exists a right ideal B containing A such that B/A is a non-zero QFD R-module. Then every finitely generated CS right R-module has finite uniform dimension.

Proof. Let M be a finitely generated CS module. By hypothesis, every non-zero homomorphic image of M contains a non-zero QFD submodule. Apply Proposition 2. \square

Corollary 4 (see Theorem 4.2 in [4]). A finitely generated CS right module over a right semi-artinian ring R has finite uniform dimension.

Proof. By Corollary 3.

Proof of Theorem 1.

- (a) \Rightarrow (b). By Corollary 4, any finitely generated CS right *R*-module *X* has finite uniform dimension. Hence by (a), $X = \operatorname{Soc}(X)$. This proves that *X* is injective.
 - (b) \Rightarrow (c). Clear.
- (c) \Rightarrow (a). Let S be a simple right R-module with injective hull S^* . Suppose that $S^* \neq S$. Then there is a submodule $X \subseteq S^*$ containing S such that X/S is simple because R is a right semi-artinian ring. Hence X is cyclic and the composition length of X is 2. Let $Y = S \oplus X$. By $[\mathbf{6}, 8.14]$, Y is a CS module. But Y is 2-generated, hence quasi-continuous by (c). Therefore, S is X-injective (cf. $[\mathbf{11}, Proposition 2.10]$). Thus S splits in X, a contradiction. Hence we must have $S = S^*$, proving that R is a right V ring.

$$(b) \Rightarrow (d) \Rightarrow (a)$$
. Clear.

Remark 5. Proposition 2 was motivated by [4, Theorem 4.2] and its proof. Moreover, in [4, Theorem 4.5], it was shown that if R is a right semi-artinian ring such that $R_R^{(\mathbb{N})}$ is CS, then $R_R^{(A)}$ is CS for any set A, and hence R is right and left artinian, and the injective hull of R_R is projective.

Remark 6. Let R be a right semi-artinian right V ring. Then R is von Neumann regular (see, for example, [6, 3.13(3)]). In particular, R is semiprime. Therefore, each minimal right (left) ideal of R is generated by an idempotent, and for each idempotent $e \in R$, eR is a minimal right ideal if and only if Re is a minimal left ideal. This implies that $\operatorname{Soc}(R_R) = \operatorname{Soc}(R_R)$. Let S^l_{α} denote the α th left socle of R. As R/S^l_{α} is von Neumann regular and right semi-artinian, we can inductively prove that S^l_{α} equals the α th right socle of R for each ordinal α . Hence R is the union of its left socle series, and so R is left

semi-artinian (cf. [6, 3.12]). However, in general, R is not left V (see [8, Example 6.19]). This shows that the conditions (b) and (c) in our theorem are not left-right symmetric.

References

- 1. F. W. Anderson and F. R. Fuller, *Rings and categories of modules*, 2nd edn, Graduate Texts in Mathematics, vol. 13 (Springer, 1992).
- V. P. CAMILLO, Modules whose quotients have finite Goldie dimension, Pac. J. Math. 69 (1977), 337–338.
- 3. J. CLARK AND P. F. SMITH, On semi-artinian modules and injective modules, *Proc. Edinb. Math. Soc.* **39** (1996), 263–270.
- H. Q. DINH AND D. V. HUYNH, Some results on self-injective rings and Σ-CS rings, Commun. Alg., in press.
- 5. N. V. Dung and P. F. Smith, On semi-artinian V-modules, J. Pure Appl. Algebra 22 (1992), 27–37.
- 6. N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, *Extending modules* (Pitman, London, 1994).
- 7. K. R. GOODEARL, *The singular torsion and splitting properties*, Memoirs of the American Mathematical Society, vol. 124 (1972).
- 8. K. R. Goodearl, Von Neumann regular rings (Pitman, London, 1979).
- 9. D. V. Huynh, Some topics in ring theory, Lectures given at Department of Mathematics, Ohio University (Winter 2001).
- D. V. HUYNH AND S. T. RIZVI, An approach to Boyle's conjecture, Proc. Edinb. Math. Soc. 40 (1997), 267–273.
- 11. S. H. MOHAMED AND B. J. MÜLLER, *Continuous and discrete modules*, London Mathematical Society Lecture Note Series, vol. 147 (Cambridge University Press, 1990).