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Abstract It was shown by Huynh and Rizvi that a ring R is semisimple artinian if and only if every
continuous right R-module is injective. However, a characterization of rings, over which every finitely
generated continuous right module is injective, has been left open. In this note we give a partial solu-
tion for this question. Namely, we show that for a right semi-artinian ring R, every finitely generated
continuous right R-module is injective if and only if all simple right R-modules are injective.

Keywords: V ring; semi-artinian ring; CS module; injective module

AMS 2000 Mathematics subject classification: Primary 16D50
Secondary 16P20; 16P60

We consider associative rings with identity, and all modules are unitary modules. A
module M is called a CS module (or an extending module) if every submodule of M

is essential in a direct summand of M . Furthermore, a module M is called a quasi-
continuous module if M is a CS module such that for any two direct summands U , V

of M with U ∩ V = 0, U ⊕ V is also a direct summand of M . If M is a CS module such
that every submodule isomorphic to a direct summand of M is itself a direct summand
of M , then M is called a continuous module. It is known that continuous modules are
quasi-continuous.

A ring R is called a right V ring if every simple right R-module is injective. Further, a
ring R is said to be right semi-artinian if every non-zero right R-module has a non-zero
socle. Semi-artinian rings and modules were investigated, for example, in [3] and [5].

It was shown in [10] that if every continuous right R-module is injective, then R

is semisimple artinian. Motivated by this, rings R with the following properties were
discussed in [9].

(p) Every finitely generated continuous right R-module is injective.

(q) Every finitely generated CS right R-module is (quasi-) continuous.

The structure of rings satisfying either (p) or (q) is unknown. However, such a ring need
not be semisimple artinian. It is shown in [9] that any simple right and left SI ring with
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zero socle is a ring with property (p) (but not with (q)). Moreover, [7, Example 3.2] shows
that rings satisfying (p) and (q) need not be semisimple artinian. Note that a ring R is
right SI if every singular right R-module is injective (cf. [7, Chapter 3]). In this note we
show that all right semi-artinian right V rings satisfy both (p) and (q). For examples of
such rings see [5].

Theorem 1. For a right semi-artinian ring R the following conditions are equivalent:

(a) R is a right V ring;

(b) every finitely generated CS right R-module is injective;

(c) every 2-generated CS right R-module is quasi-continuous; and

(d) every finitely generated continuous right R-module is injective.

To prove Theorem 1 we give a sufficient condition for a finitely generated CS module
to have finite uniform dimension, in a general setting. A module A is defined to be a QFD
module if every factor module of A has finite uniform dimension (cf. [1, p. 294] and [2]).
Note that any noetherian or artinian module is QFD, and, more generally, so too is any
module with Krull dimension by [6, 6.1(1) and 6.2(2)]. It is easy to check that if Y is a
submodule of a module X such that Y and X/Y are both QFD, then X is also QFD.
Consequently, any finite sum of QFD submodules of a module is itself QFD. Note further
that the sum S1(M) of all QFD submodules of a given module M is a fully invariant
submodule of M . Therefore, if M = M1 ⊕ M2, then S1(M) = S1(M1) ⊕ S1(M2).

Proposition 2. Let M be a finitely generated CS module such that for every proper
submodule K ⊂ M , the factor module M/K contains a non-zero QFD submodule. Then
M is a direct sum of finitely many uniform submodules.

Proof. As above, let S1(M) be the sum of all QFD submodules of M . By assump-
tion, S1(M) is non-zero. Inductively we can define a QFD series {Sα(M)} of M as
follows: Sα(M) is a submodule of M containing Sα−1(M) such that Sα(M)/Sα−1(M) =
S1(M/Sα−1(M)). If α is a limit ordinal, then Sα(M) = ∪β<αSβ(M). By the assumption
on M , there exists an ordinal γ such that Sγ(M) = M . We call the least ordinal γ with
this property the QFD length of M .

We prove Proposition 2 by induction on γ. The statement is true for γ = 1 because
a finitely generated module M with S1(M) = M is QFD, and hence of finite uniform
dimension. Suppose that γ > 1 and the result holds for all ordinals less than γ.

Assume on the contrary that M does not have finite uniform dimension. Since M is
finitely generated, γ cannot be a limit ordinal. Hence γ − 1 exists and M/Sγ−1(M)
is the sum of its QFD submodules. Moreover, as M/Sγ−1(M) is finitely generated,
M/Sγ−1(M) is a sum of finitely many QFD submodules. Therefore, M/Sγ−1(M) has
finite uniform dimension. Let k denote the uniform dimension of M/Sγ−1(M), and let
n be any integer greater than k. Since M is CS (with infinite uniform dimension), we
can decompose it as M = M1 ⊕ · · · ⊕ Mn, where each Mi does not have finite uniform
dimension. Now, our above remark shows that Sγ−1(M) = Sγ−1(M1) ⊕ · · · ⊕ Sγ−1(Mn).
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Hence M/Sγ−1(M) ∼= M1/Sγ−1(M1) ⊕ · · · ⊕ Mn/Sγ−1(Mn). As the uniform dimension
of M/Sγ−1(M) is k, there must be an Mi in the decomposition of M that is contained
in Sγ−1(Mi). On the other hand, as a direct summand of M , Mi is finitely generated
and CS. Moreover, Mi satisfies the other assumption about M . By the induction hypoth-
esis, Mi has finite uniform dimension. But this is a contradiction. Thus M must have
finite uniform dimension. As M is CS, M is a direct sum of finitely many uniform mod-
ules. �

Corollary 3. Let R be a ring such that for every proper right ideal A there exists
a right ideal B containing A such that B/A is a non-zero QFD R-module. Then every
finitely generated CS right R-module has finite uniform dimension.

Proof. Let M be a finitely generated CS module. By hypothesis, every non-zero
homomorphic image of M contains a non-zero QFD submodule. Apply Proposition 2. �

Corollary 4 (see Theorem 4.2 in [4]). A finitely generated CS right module over
a right semi-artinian ring R has finite uniform dimension.

Proof. By Corollary 3. �

Proof of Theorem 1.
(a) ⇒ (b). By Corollary 4, any finitely generated CS right R-module X has finite

uniform dimension. Hence by (a), X = Soc(X). This proves that X is injective.

(b) ⇒ (c). Clear.

(c) ⇒ (a). Let S be a simple right R-module with injective hull S∗. Suppose that
S∗ �= S. Then there is a submodule X ⊆ S∗ containing S such that X/S is simple
because R is a right semi-artinian ring. Hence X is cyclic and the composition length
of X is 2. Let Y = S ⊕ X. By [6, 8.14], Y is a CS module. But Y is 2-generated, hence
quasi-continuous by (c). Therefore, S is X-injective (cf. [11, Proposition 2.10]). Thus
S splits in X, a contradiction. Hence we must have S = S∗, proving that R is a right
V ring.

(b) ⇒ (d) ⇒ (a). Clear. �

Remark 5. Proposition 2 was motivated by [4, Theorem 4.2] and its proof. Moreover,
in [4, Theorem 4.5], it was shown that if R is a right semi-artinian ring such that R

(N)
R

is CS, then R
(A)
R is CS for any set A, and hence R is right and left artinian, and the

injective hull of RR is projective.

Remark 6. Let R be a right semi-artinian right V ring. Then R is von Neumann
regular (see, for example, [6, 3.13(3)]). In particular, R is semiprime. Therefore, each
minimal right (left) ideal of R is generated by an idempotent, and for each idempotent
e ∈ R, eR is a minimal right ideal if and only if Re is a minimal left ideal. This implies
that Soc(RR) = Soc(RR). Let Sl

α denote the αth left socle of R. As R/Sl
α is von Neumann

regular and right semi-artinian, we can inductively prove that Sl
α equals the αth right

socle of R for each ordinal α. Hence R is the union of its left socle series, and so R is left
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semi-artinian (cf. [6, 3.12]). However, in general, R is not left V (see [8, Example 6.19]).
This shows that the conditions (b) and (c) in our theorem are not left–right symmetric.
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