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Abstract

In this paper we construct indefinite theta series for lattices of arbitrary signature (p, q)
as ‘incomplete’ theta integrals, that is, by integrating the theta forms constructed by the
second author with J. Millson over certain singular q-chains in the associated symmetric
space D. These chains typically do not descend to homology classes in arithmetic
quotients of D, and consequently the theta integrals do not give rise to holomorphic
modular forms, but rather to the non-holomorphic completions of certain mock modular
forms. In this way we provide a general geometric framework for the indefinite theta
series constructed by Zwegers and more recently by Alexandrov, Banerjee, Manschot,
and Pioline, Nazaroglu, and Raum. In particular, the coefficients of the mock modular
forms are identified with intersection numbers.

1. Introduction

The theory of theta series attached to an integral lattice L in rational quadratic space with
bilinear form ( , ) of signature (p, q), p, q > 0, has a long history including fundamental work by
Hecke, Siegel, Maass, and others. In particular, Siegel constructed theta series for such indefinite
lattices by using majorants and hence obtained functions depending on both an elliptic modular
variable τ and a point z ∈ D, the space of oriented negative q-planes in V = L⊗ZR. These Siegel
theta series have weight (p− q)/2 in τ , but, unlike the classical theta series for positive definite
lattices, they are non-holomorphic. In joint work of the second author and John Millson [KM86,
KM87, KM90], a family of theta series valued in closed differential forms on D was constructed;
we will refer to these as theta forms. The series obtained by passing to classes in the cohomology
of the locally symmetric space Γ\D, where Γ is a subgroup of finite index in the isometry group
of L, were shown to be holomorphic modular forms of weight (p+ q)/2 valued in Hq(Γ\D). The
resulting theory provides one analogue of the classical holomorphic theta series in the indefinite
case.

However, it is still an attractive challenge to define theta series for indefinite lattices more
directly by restricting the summation to lattice vectors in suitable subsets W of V where the
quadratic form is positive so that the series∑

x∈h+L

Φ(x;W) qQ(x), q = e(τ) = e2πiτ , Q(x) = 1
2(x, x), (1.1)

is termwise absolutely convergent and hence defines a holomorphic function of τ . Here the
coefficient function Φ(·;W) is supported on W, perhaps with values ±1 on the interior and
with rational values on the boundary. Unfortunately, such series are typically not modular.
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In his thesis, Zwegers [Zwe02] introduced a series of this type for V of signature (m− 1, 1),

where

Φ(x;W) = 1
2(sgn(x,C ′)− sgn(x,C)),

for C and C ′ ∈ V negative vectors in the same component of the cone of negative vectors in

V . He showed that the resulting holomorphic series is not modular in general, but that it can

be completed to a (non-holomorphic) modular form of weight m/2 by adding a suitable series

constructed using the error function.
Alexandrov, Banerjee, Manschot and Pioline [ABMP18] proposed a generalization of

Zwegers’s construction to the case of arbitrary signature (m− q, q) where Φ(x;W) = Φ�q (x; C) is
given by

Φ�q (x; C) = 2−q
q∏
j=1

(sgn(x,Cj′)− sgn(x,Cj)), (1.2)

for a collection

C = C� = {{C1, C1′}, {C2, C2′}, . . . , {Cq, Cq′}}

of pairs of negative vectors satisfying certain incidence relations. They introduced generalized

error functions and, in the case q = 2, used them to construct a (non-holomorphic) modular

completion of the series (1.1). Shortly thereafter, Nazaroglu [Naz18] handled the case of general

signature along the lines suggested in [ABMP18]. In both [ABMP18] and [Naz18], the modularity

of the non-holomorphic completion is established by using a result of Vignéras [Vig77] which

asserts the modularity of theta-like series built from a certain class of functions. The essential

step is to show that suitable combinations of generalized error functions define functions in this

class and, at the same time, are suitably linked to the function Φ�q (·, C). Sums of lattice vectors in

more general positive polyhedral cones were considered by Westerholt-Raum [Wes16]; he again

uses the Vignéras criterion to deduce modularity. Both [ABMP18] and [Wes16] discuss some

degenerate cases where edges of the cone are allowed to be rational isotropic vectors.

In this paper we show that the indefinite theta series of [Zwe02, ABMP18, Naz18] can be

obtained by integrating the theta forms for V of signature (p, q) over certain singular q-cubes

determined by a collection C which is in ‘good position’. We also consider the analogous integrals

over singular simplices, where the input data is now a collection C = C4 = {C0, C1, . . . , Cq} of

negative vectors in V in ‘good position’. In particular, any q of them span a negative q-plane in

V and these q-planes give the vertices of a singular simplex in D.

We refer to such integrals as incomplete theta integrals. The idea is that, since the theta forms

are closed q-forms invariant under an arithmetic group Γ associated to the given lattice, it is most

natural to consider their integrals over q-cycles in the quotient Γ\D. As explained above, such

integrals1 produce holomorphic modular forms whose Fourier coefficients have a cohomological

interpretation. The integrals over more general q-chains, for example, those arising from singular

q-cubes or q-simplicies, can be viewed as ‘incomplete’ versions. The situation is analogous to the

relation between the classical elliptic integrals, which are periods of holomorphic 1-forms, and

their incomplete versions, which are integrals of such 1-forms over more general arcs.

In any case, our result shows that the holomorphic theta series of [KM86, KM87, KM90] and

the indefinite theta series of [ABMP18, Naz18] have a common source.

1 Over compact cycles.
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On some incomplete theta integrals

To state our results more precisely, we need some notation. Let L be an even integral lattice
in V with dual lattice L∨. For τ = u + iv ∈ H and µ ∈ L∨/L, the theta form is the closed
ΓL-invariant q-form on D given by

θµ(τ ;ϕKM) =
∑

x∈µ+L

ϕKM(τ, x).

Here the Schwartz form
ϕKM(τ, x) = v−(p+q)/4 (ω(g′τ )ϕKM)(x)

is obtained by the action ω(g′τ ) of the Weil representation on the basic Schwartz form ϕKM(x);
cf. § 2.2. A precise formula for ϕKM(x) is given in § 5.

First consider the ‘cubical’ case. For a collection C = C� of q pairs of negative vectors, we
can define a q-tuple of vectors

B(s) = [(1− s1)C1 + s1C1′ , . . . , (1− sq)Cq + sqCq′ ] ∈ V q,

for each s = [s1, . . . , sq] ∈ [0, 1]q. We say that C is in good position if the collection B(s) spans a
negative q-plane for all s ∈ [0, 1]q. If C is in good position, we obtain an oriented singular q-cube

ρC : [0, 1]q −→ D, s 7→ span{B1(s1), . . . , Bq(sq)}p.o.,

where the subscript ‘p.o.’ indicates that the given ordered q-tuple defines the orientation. Let
S(C�) be the resulting singular q-cube.

Next consider the simplicial case. In this case, we suppose that the set of vectors C = C4 is
linearly independent over R and that any q of them span a negative q-plane. Their span U is
an oriented (q + 1)-plane of signature (1, q) and the dual basis C∨ = {C∨0 , . . . , C∨q } consists of
positive vectors. We say that C is in good position if, for all

s = [s0, . . . , sq] ∈ ∆q =

{
s ∈ [0, 1]q+1

∣∣∣∣ q∑
i=0

si = 1

}
,

the vector
C∨(s) =

∑
i

siC
∨
i

is positive. For example, it suffices to require that all entries of the Gram matrix ((C∨i , C
∨
j )) are

non-negative.2 For C in good position, we obtain a map

ρC : ∆q −→ D, s 7→ C∨(s)⊥,

where the ⊥ is taken in U and the orientation of ρC(s) is determined by the normal vector C∨(s).
We write S(C4) for the resulting singular simplex. We also define

Φ4q (x; C) = 2−q−1

( q∏
j=0

(1− sgn(x,Cj)) + (−1)q
q∏
j=0

(1 + sgn(x,Cj))

)
. (1.3)

For S(C) = S(C�) or S(C4), we consider the theta integral

Iµ(τ ; C) =

∫
S(C)

θµ(τ ;ϕKM). (1.4)

2 This was pointed out to the second author by Sander Zwegers at the Dublin Conference in June 2017.
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Note that, by construction, Iµ(τ ; C) is a (typically non-holomorphic) modular form of weight
(p+ q)/2 with transformation law inherited from that of the theta form.

Our explicit formulas involve the generalized error function introduced in [ABMP18] which
is defined as follows. For 1 6 r 6 q and for a collection of vectors c = {c1, . . . , cr} spanning an
oriented negative r-plane z in V , let

Er(x; c) =

∫
z
eπ(y−prz(x),y−prz(x)) sgn(y; c) dy, (1.5)

where x ∈ V , prz(x) is the projection of x onto z,

sgn(y; c) = sgn(y, c1) sgn(y, c2) · · · sgn(y, cr), (1.6)

and the measure dy is normalized so that∫
z
eπ(y,y) dy = 1.

Note that Er(x; c) is a C∞-function of x ∈ V ; cf. [ABMP18, § 6.1]. In various inductive arguments,
it will be convenient to let E0(x; c) = 1.

Finally, for x ∈ V , x 6= 0, let

Dx = {z ∈ D | x ⊥ z},

and note that, if Q(x) > 0, then Dx is a totally geodesic sub-symmetric space in D of codimension
q. Otherwise, Dx is empty.

Our main result is the following theorem.

Main Theorem. Assume that C is in good position and let Φq(x; C) be Φ�q (x; C) (respectively,

Φ4q (x; C)) in the cubical (respectively, simplicial) case.

(i) The series ∑
x∈µ+L

Φq(x; C) qQ(x) (1.7)

is termwise absolutely convergent and hence defines a holomorphic function of τ .

(ii) If Φq(x; C) 6= 0, then
Dx ∩ S(C) = ρC(s(x))

for a unique point s(x) ∈ [0, 1]q (respectively, ∆q), the map ρC is immersive at s(x), and

Φq(x; C) = I(Dx, S(C))

is the intersection number3 of Dx and S(C) at ρC(s(x)).

(iii) In the cubical case, the theta integral (1.4) is given explicitly by

Iµ(τ ; C�) =
∑

x∈µ+L

(−1)q 2−q
∑
I

(−1)|I|Eq(x
√

2v;CI) qQ(x), (1.8)

where for a subset I ⊂ {1, . . . , q}, CI is the q-tuple with CIj = Cj if j /∈ I and CIj = C ′j if
j ∈ I, ordered by the index j.

3 If s(x) is on the boundary of [0, 1]q, this quantity is defined in (A.1) in the Appendix.
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(iv) In the simplicial case, the theta integral (1.4) is given by

Iµ(τ ; C4) =
∑

x∈µ+L

(−1)q 2−q
[q/2]∑
r=0

∑
I

|I|=2r+1

Eq−2r(x
√

2v; C(I)) qQ(x), (1.9)

where, for a subset I ⊂ {0, 1, . . . , q}, C(I) is the collection of q + 1 − |I| elements obtained
from C4 by omitting the Cj for j ∈ I. Here E0(· · ·) = 1.

We can view Iµ(τ ; C) as a modular completion of the series (1.7) in the sense that taking
the limit v →∞ termwise in the Fourier coefficients of (1.8) (respectively, (1.9)) yields Φq(x; C);
that is,

(−1)q 2−q lim
v→∞

∑
I

(−1)|I|Eq(x
√

2v;CI) = Φ�q (x; C),

and the same for Φ4q (x; C).
We also note that the mock modular forms

∑
x∈µ+L Φq(x; C) qQ(x) we are considering do not

in general involve taking Γ-orbits of lattice vectors in a cone and hence are structurally different
than the classical cases mentioned above which arise as ‘complete’ theta integrals.

Remark 1.1. (1) The series on the right-hand side of (1.8) coincides with that in [ABMP18]
and [Naz18], at least when the collection C satisfies their incidence conditions. The incidence
conditions they impose on C (i.e., conditions expressed as requirements on the entries of the
Gram matrix of C) imply that C is in good position. On the other hand, the ‘good position’
condition, which is a condition on the Gram matrix of the collection B(s) for all s ∈ [0, 1]q, is
sufficient for our results. We leave aside the, perhaps subtle, problem of expressing this condition
on B(s) in terms of necessary and sufficient conditions on the Gram matrix of C.

(2) Part (ii) of the theorem provides a geometric interpretation of the coefficients of the
holomorphic generating series as intersection numbers. It would be interesting to see if this
interpretation has any significance in the physics context which was the original motivation for
[ABMP18].

(3) The proof of (i) is already given in the general case in [Kud18]. That the right-hand
side of (1.8) is a modular completion of the series (1.7) is, of course, a main result of [Zwe02,
ABMP18, Naz18].

(4) It is interesting that generalized error functions for negative r-planes with r < q occur in
the explicit formula in the simplicial case. This phenomenon was pointed out by Westerholt-Raum
for more general cones [Wes16]. The indefinite theta series associated to collections C4 were
also discussed by Zwegers in his talk at the Dublin conference on indefinite theta functions in
June 2017.

Since the theta integral (1.4) can be computed termwise, the formulas of parts (iii) and (iv)
follow immediately from the formulas for the integral of ϕKM(x) over S(C) given in Theorems 4.1
and 8.3, respectively. These results are, in turn, proved by induction on q, where the case q = 1
is an elementary calculation. The key points are the following. First note that both sides of the
identities in Theorems 4.1 and 8.3 are smooth functions of x and C, so that it suffices to consider
the case where x is regular with respect to C, that is, where (x,C) 6= 0 for all C ∈ C. As already
noted in [FK17], the Schwartz form ϕKM(x) comes equipped with an explicit primitive Ψ(x),
defined on the set D − Dx. Taking care of the possible singularity, which under the regularity
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assumption occurs at most at a unique interior point of S(C), we can apply Stokes’s theorem. The
boundary of S(C) consists of singular (q − 1)-cubes (respectively, simplices) in totally geodesic
subsymmetric spaces of the form

D′y = {z ∈ D | y ∈ z}

for y = Cj or C ′j in C. Note that D′y will then be isomorphic to the space of oriented negative

(q−1)-planes in the space Vy = y⊥, of signature (p, q−1). Now the crucial (and remarkable!) fact
is that the pullback of the primitive Ψ(x) to such a subspace D′y can be written as an integral

transform of the Schwartz (q− 1)-form ϕ
Vy
KM(prVyx) for Vy; cf. Proposition 6.3. By induction, we

obtain an expression for the boundary integral as a sum of the corresponding signature (p, q−1)
theta integrals. Finally, we invoke an inductive identity for generalized error functions from
[Naz18], Proposition 7.3, to conclude the proof.

Remark 1.2. (1) One can consider the theta integral I(τ ;S) over any oriented q-chain S in D,
and, if S is compact, this can again be computed termwise. If, moreover, the boundary of S
consists of q− 1 chains lying in D′y, one can proceed by induction. In particular, our result gives

an explicit formula for any q-chain written as a sum of simplices of the form S(C4). Moreover,
since the theta forms are ΓL-invariant, their integrals over ΓL equivalent q-chains coincide.

(2) We can also consider the theta integral I(τ ; C) in the degenerate case, when some of the
elements in C are rational isotropic vectors. Geometrically, this amounts to the q-chain S(C)
going out to some of the rational cusps (of the arithmetic quotient) of D. However, while the
theta integral over the non-compact region S(C) still is convergent by the results of [FM13]
(for signature (m− 1, 1), see [FM02]), it is in general no longer termwise absolutely convergent
(unless one imposes a ‘non-singularity’ condition as in [Kud81]; see also [Wes16]). One interesting
example is signature (1, 2), where one can realize the standard fundamental domain for SL2(Z)
as a surface S(C) for a certain C, and the associated theta integral I(τ ; C) gives Zagier’s non-
holomorphic Eisenstein series of weight 3/2; see [Fun02, BF06].

(3) In the companion paper [FK17], we consider the theta integral
∫
D η ∧ θµ(τ ;ϕKM) against

a compactly supported (p−1)q differential form η on D. In particular, we establish the properties
of the primitive Ψ(x) as a current on D.

Our construction yields a formula for the image of the (typically non-holomorphic) modular
form Iµ(τ ; C) under the lowering operator −2iv2(∂/∂τ̄) and hence for its shadow, its image under

the operator ξk = 2ivk(∂/∂τ̄), with k = 1
2(p + q). This formula implies the following corollary;

cf. § 9.

Corollary 1.3. Suppose that C is rational collection (i.e., that C ∈ L⊗ZQ for all C ∈ C). Then
the shadow of Iµ(τ ; C) is a linear combination of products of unary theta series of weight 3

2 and
complex conjugates of indefinite theta series for the spaces VC = C⊥ for C ∈ C.

Here is an outline of the contents of the various sections. Section 2 contains an overview of
the construction of theta forms, their modular transformation properties, and their relation to
geodesic cycles. There is considerable overlap with the material in [FK17], although our notation
and perspective here differ somewhat. Section 3 explains the singular q-cubes associated to
collections C in good position and their intersection with the cycles Dx in the regular case.
It should be noted that the role of the symmetric space D and the singular q-cubes is not so
evident in [ABMP18, Naz18]. The use of the ‘good position’ condition streamlines the treatment,
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although the important problem of finding equivalent incidence relations is left open. The explicit
formula for the ‘cubical’ integrals of ϕKM(x) is given in Theorem 4.1 of § 4. In § 5 we give a
more detailed discussion of the Schwartz forms ϕKM and their primitives. In § 6 we prove the
key formulas for the pullbacks of these forms to the spaces D′y. Section 7 contains the proof
of Theorem 4.1. Section 8 contains the computation of the shadows. Section 9 contains the
analogous computations in the simplicial case, where the are several crucial and interesting
differences. Some technical details are provided in the Appendix.

1.1 Notation
For vectors x and y in a non-degenerate inner product space V , ( , ) with Q(y) = 1

2(y, y) 6= 0, we
write

x⊥y = x− (x, y)

(y, y)
y. (1.10)

Note that

(x⊥y, x
′
⊥y) = (x, x′)− (x, y)(x′, y)

(y, y)
. (1.11)

For a non-degenerate subspace z in V , we write prz for the orthogonal projection to z.
We write e(x) = e2πix.
For our collection of vectors

C = C� = {{C1, C1′}, {C2, C2′}, . . . , {Cq, Cq′}}

we are following the convention of [ABMP18] and writing Cj′ for the second vector of the jth
pair. This is convenient as it allows us, for example, to write Ci⊥j′ for the projection of Ci to
the orthogonal complement of Cj′ .

2. Theta forms and their integrals

2.1 Preliminaries
We begin by reviewing some standard notation and constructions. A good reference is [Shi75].
Suppose that L, ( , ) is a lattice of rank m = p+ q with an even integral symmetric bilinear form
of signature (p, q) with p, q > 0. Let L∨ ⊃ L be the dual lattice and set Q(x) = 1

2(x, x). Let
V = L⊗Z R and let G = O(V ) be the orthogonal group of V . Let

ΓL = {γ ∈ G | γL = L, γ|L∨/L = id}.

We denote by Groq(V ) the Grassmannian of oriented q-planes in V and let

D = D(V ) = {z ∈ Groq(V ) | ( , )|z < 0}

be the space of oriented negative q-planes in V . For z ∈ D, the associated Gaussian is

ϕ0(x, z) = e−π(x,x)z ,

where, for R(x, z) = −(prz(x), prz(x)),

(x, x)z = (x, x) + 2R(x, z)
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is the majorant determined by z. For fixed z, ϕ0(·, z) = ϕ0(z) ∈ S(V ) is a Schwartz function on
V , while, for fixed x ∈ V , ϕ0(x, ·) = ϕ0(x) ∈ A0(D) is a smooth function on D satisfying the
equivariance

ϕ0(gx, gz) = ϕ0(x, z)

for g ∈ G, or equivalently
g∗ϕ0(x) = ϕ0(g−1x) =: ω(g)ϕ0(x),

where g∗ denotes the pullback of functions on D and ω(g) denotes the action of g on S(V ). Thus

ϕ0 ∈ [S(V )⊗A0(D)]G. (2.1)

The action ω of G on S(V ) commutes with the Weil representation4 action of the two-fold
cover G′ = Mp2(R) of SL2(R) on S(V ), and hence there is a representation of G × G′ on this
space, which we also denote by ω. Recall that for b ∈ R and a ∈ R×, there are elements n′(b),
m′(a), and w′ in G′ projecting to

n(b) =

(
1 u

1

)
, m(a) =

(
a

a−1

)
, and w =

(
1

−1

)
in SL2(R) whose Weil representation action is given by

ω(n′(b))ϕ(x) = e(bQ(x))ϕ(x),

ω(m′(a))ϕ(x) = |a|m/2ϕ(ax),

ω(w′)ϕ(x) = e

(
p− q

8

)
ϕ̂(x) = e

(
p− q

8

) ∫
V
ϕ(y) e(−(x, y)) dy.

Then, for τ = u+ iv ∈ H and g′τ = n′(u)m′(v1/2), we have

ω(g′τ )ϕ0(x, z) = v(p+q)/4e−2πvR(x,z) qQ(x), q = e(τ) = e2πiτ .

The following invariance property gives rise to the modularity of the theta series. Define a
vector-valued tempered distribution

ΘL : S(V ) −→ C[L∨/L], ϕ 7→ Θ(ϕ;L) =
∑

µ∈L∨/L

θµ(ϕ) eµ,

where eµ ∈ C[L∨/L] is the characteristic function of the coset µ+ L and

θµ(ϕ) =
∑

x∈µ+L

ϕ(x).

Let Γ′ be the inverse image of SL2(Z) in G′. Then there is a finite Weil representation ρL of Γ′

acting on C[L∨/L], and the theta distribution ΘL satisfies

ΘL(ω(γ′)ϕ) = ρL(γ′)ΘL(ϕ).

Let K ′ be the inverse image of SO(2) in G′, and suppose that ϕ is an eigenfunction of weight
` ∈ 1

2Z for the Weil representation action of K ′, that is,

ω(k′θ)ϕ = e(`θ)ϕ, kθ =

(
cos θ sin θ
− sin θ cos θ

)
,

for a suitable preimage k′θ of kθ in G′.

4 Of course, if m = dimV is even, this representation factors through SL2(R) and we can dispense with the
metaplectic group.
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Then the invariance of the theta distribution together with a standard calculation [Shi75,

pp. 90–98] implies that the C[L∨/L]-valued theta series∑
µ∈L∨/L

θµ(τ ;ϕ) eµ = v−`/2 ΘL(ω(g′τ )ϕ)

is a (non-holomorphic) vector-valued modular form of weight ` and type (ρL,C[L∨/L]).

The Gaussian ϕ0 is an eigenfunction of K ′ of weight (p− q)/2 so that the Siegel theta series

θµ(τ, z;ϕ0) are components of vector-valued modular forms and, moreover, via equivariance (2.1),

are ΓL-invariant as functions of z, that is,

θµ(τ, ·;ϕ0) ∈ A0(D)ΓL .

For this semi-classical reformulation of Weil’s construction of theta functions we are following

Shintani [Shi75]; cf. also [BF04].

2.2 Theta forms
The basic idea is to replace equivariant families of Schwartz functions by equivariant families of
Schwartz forms, that is, Schwartz functions valued in differential forms on D. Let Ar(D) be the
space of smooth r-forms on D. A main result of [KM86, KM87] is the explicit construction of a
family of Schwartz forms

ϕKM ∈ [S(V )⊗Aq(D)]G. (2.2)

Thus, for x ∈ V and g ∈ G,

g∗ϕKM(x) = ϕKM(g−1x) ∈ Aq(D).

In particular, for fixed x ∈ V , ϕKM(x) is a Gx-invariant q-form on D. For example, ϕKM(0) is a

G-invariant form. Under K ′,

ω(k′θ)ϕKM = e

(
p+ q

2
θ

)
ϕKM.

Note the shift in weight! Moreover, the q-form ϕKM(x) is closed,

dϕKM = 0,

where d : Aq(D) → Aq+1(D) is the exterior derivative.

Define the theta form

θµ(τ ;ϕKM) := v−(p+q)/4θµ(ω(g′τ )ϕKM).

Then, by construction, θµ(τ ;ϕKM) is a closed ΓL-invariant q-form on D and hence defines a

closed q-form on the (orbifold) quotient ML = [ΓL\D]. Moreover, as a function of τ , θµ(τ ;ϕKM)

is a component of a (non-holomorphic) modular form of weight (p+ q)/2 and type (ρL,C[L∨/L]).
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2.3 Relation to geodesic cycles
To avoid orientation issues, we take Γ ⊂ ΓL to be a neat subgroup of finite index. The theta
forms define cohomology classes for the locally symmetric space MΓ = Γ\D which are related to
totally geodesic cycles. This was the original motivation for their construction. We briefly recall
the basic facts. For x ∈ V with x 6= 0, let Vx = x⊥, and let

Dx = {z ∈ D | R(x, z) = 0, i.e., z ⊂ Vx}.

In particular, Dx is empty if Q(x) 6 0, and is a totally geodesic sub-symmetric space of
codimension q if Q(x) > 0.

Let prΓ : D → Γ\D = MΓ and, for x with Q(x) > 0, let

Z(x) = prΓ(Dx),

a totally geodesic codimension q-cycle in MΓ with an immersion

ix : Γx\Dx −→ Z(x) ⊂ Γ\D.

Notice that Z(x) depends only on the Γ-orbit of x.
The following results are special cases of those obtained in [KM86, KM87, KM90].

(i) Suppose that η is a closed and compactly supported (p− 1)q-form on MΓ. Then∫
MΓ

η ∧ θµ(τ ;ϕKM) =

∫
MΓ

η ∧ ϕKM(0) +
∑

x∈µ+L
Q(x)>0

mod Γ

(∫
Z(x)

η

)
qQ(x).

(ii) Suppose that S is a compact closed (i.e., ∂S = 0) oriented q-cycle on MΓ. Then∫
S
θµ(τ ;ϕKM) =

∫
S
ϕKM(0) +

∑
x∈µ+L
Q(x)>0

mod Γ

I(Z(x), S) qQ(x),

where I(Z(x), S) is the intersection number of the cycles Z(x) and S.

In particular, both series are termwise absolutely convergent and define holomorphic modular
forms of weight (p+ q)/2.

Note that these results exactly fit into the framework of (1.1). Additional discussion is given
in [FK17]. Many interesting variations are possible! For example, the case of certain non-compact
cycles S in MΓ is considered in joint work of the first author with John Millson [FM02, FM11,
FM14].

2.4 Non-closed compact cycles
Suppose that S is a piecewise smooth compact oriented q-chain in the symmetric space D. Then,
from the general machinery sketched in the previous sections, we obtain (non-holomorphic)
modular forms, which we will refer to as indefinite theta series, or incomplete theta integrals, as
explained in the introduction,

Iµ(τ ;S) :=

∫
S
θµ(τ ;ϕKM) (2.3)

of weight m/2. Since S is compact, we can compute such integrals termwise. Define an operator

IS : S(V )⊗Aq(D) −→ S(V ), ϕ 7→
∫
S
ϕ (2.4)
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from Schwartz forms to Schwartz functions by integrating out the form part. This operator
commutes with the Weil representation action of G′. Thus, we have

Iµ(τ ;S) =

∫
S
v−(p+q)/4θµ(ω(g′τ )ϕKM)

= v−(p+q)/4θµ(ω(g′τ )IS(ϕKM)),

so that the indefinite theta series (2.3) is just the theta series defined by the Schwartz function
IS(ϕKM). We obtain explicit formulas for the modular forms Iµ(τ ;S) whenever we can compute
the Schwartz function

IS(ϕKM) ∈ S(V ) (2.5)

for a given q-chain S.
The remainder of this paper is devoted to the explicit computation of the Schwartz functions

IS(ϕKM) in two cases: (1) the case of the singular q-cubes defined in the next section; and (2)
the case of singular q-simplices defined in § 8.

3. Singular q-cubes

The data5 C = C� introduced in [ABMP18, § 6] and recalled in (3.1) below determines a singular
q-cube S(C) in D, whose geometry we discuss in this section. We give an explicit formula in
terms of generalized error functions for the integral (2.5) in the case when S = S(C) for C in
‘good position’.

3.1 The singular q-cube S(C) and its faces
Let

C = C� = {{C1, C1′}, {C2, C2′}, . . . , {Cq, Cq′}} (3.1)

be a collection of q pairs of negative vectors in V . For a subset I ⊂ {1, . . . , q}, let CI be the
ordered set {CI1 , . . . , CIq } of q vectors where we take CIj = Cj if j /∈ I and CIj = Cj′ if j ∈ I.

The vectors are ordered according to the index j. Thus, C∅ = {C1, . . . , Cq}, etc. We would like
to have the following ‘incidence relations’.

(Inc-1) Each collection CI spans an oriented negative q-plane

zI = span{CI}p.o..

(Inc-2) The oriented negative q-planes zI all lie on the same component of D.

These relations, which can be achieved by imposing conditions on the determinants of minors
of Gram matrices, should allow us to construct a singular q-cube with the points zI as the
vertices. However, as already seen in [Kud18], it will be more convenient to work with the
following formalism.

For s = [s1, . . . , sq] ∈ [0, 1]q, let

B(s) = [B1(s1), . . . , Bq(sq)],

where
Bj(sj) = (1− sj)Cj + sjCj′ .

5 We abbreviate C� to C unless it is useful to emphasize the case at hand.
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Definition 3.1. A collection C is said to be in good position if, for all s ∈ [0, 1]q,

span{B(s)}p.o. = span{B1(s1), . . . , Bq(sq)}p.o. ∈ D.

If C is in good position, then relations (Inc-1) and (Inc-2) hold, and we obtain an oriented
singular q-cube

ρC : [0, 1]q −→ D, s = [s1, . . . , sq] 7→ span{B1(s1), . . . , Bq(sq)}p.o. ∈ D (3.2)

with the zI as its vertices. Let S(C) = ρC([0, 1]q) be its image in D. Note that the most degenerate
case, in which Cj = Cj′ for all j and S(C) is a point in D, is allowed.

From now on, unless stated otherwise, we assume that C is in good position, so that ρC and
S(C) are defined.

As in [Mas91], we define the front j-face

αjρC : [0, 1]q−1 −→ D, αjρC(s1, . . . , sq−1) = ρC(s1, . . . , sj−1, 0, sj , . . . , sq−1),

and back j-face

βjρC : [0, 1]q−1 −→ D, βjρC(s1, . . . , sq−1) = ρC(s1, . . . , sj−1, 1, sj , . . . , sq−1).

We write ∂+
j S(C) (respectively, ∂−j S(C)) for the image of αjρC (respectively, βjρC), viewed as an

oriented (q − 1)-cube. With this convention, the boundary of the oriented q-cube S(C) is given
by

∂S(C) =

q∑
j=1

(−1)j(∂+
j S(C)− ∂−j S(C)). (3.3)

Note that, if y ∈ V with (y, y) < 0, then Vy := y⊥ has signature (p, q − 1). We write D(Vy)
for the space of oriented negative (q − 1)-planes in Vy, and we have an embedding

κy : D(Vy) −→ D, z′ 7→ span{y, ζ ′}p.o., z′ = span{ζ ′}p.o., (3.4)

whose image D′y is the space of z ∈ D such that y ∈ z.
We define collections

C[j] = {{C1⊥j , C1′⊥j}, . . . , ̂{Cj , Cj′}, . . . , {Cq⊥j , Cq′⊥j}} (3.5)

and

C[j′] = {{C1⊥j′ , C1′⊥j′}, . . . , ̂{Cj , Cj′}, . . . , {Cq⊥j′ , Cq′⊥j′}} (3.6)

of (q− 1) pairs of negative vectors in Vj = C⊥j and Vj′ = C⊥j′ , respectively. Here recall that Ci⊥j
is the orthogonal projection of Ci to Vj ; cf. (1.10).

The following easy fact illustrates the advantage of the ‘good position’ formalism.

Lemma 3.2. If the collection C is in good position for V and D, then the collections C[j] and
C[j′] are in good position for Vj , D(Vj) and for Vj′ , D(Vj′), respectively.

Proof. Note that, if we set s′ = [s1, . . . , sq−1] ∈ [0, 1]q−1 and write αjs
′ = [s1, . . . , sj−1, 0, sj , . . . ,

sq−1], then, since C is in good position,

αjρC(s
′) = ρC(αjs

′)

= span{B1(s′1), . . . , Bj−1(s′j−1), Cj , Bj+1(s′j), . . . , Bq(s
′
q−1)}

p.o.

= span{B1(s′1)⊥j , . . . , Bj−1(s′j−1)⊥j , Cj , Bj+1(s′j)⊥j , . . . , Bq(s
′
q−1)⊥j}p.o.

∈ D,

which implies that C[j] is in good position for Vj and D(Vj). Similarly for C[j′]. 2
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We write S(C[j]) and S(C[j′]) for the corresponding oriented singular (q− 1)-cubes in D(Vj)

and D(Vj′) with parametrizations analogous to (3.2),

ρC[j] : [0, 1]q−1 −→ D(Vj)

and

ρC[j′] : [0, 1]q−1 −→ D(Vj′).

We let κj = κ(−1)j−1Cj and κj′ = κ(−1)j−1Cj′
so that

κj ◦ ρC[j] = αjρC (3.7)

and

κj′ ◦ ρC[j′] = βjρC . (3.8)

Here the key point to note is that

span{B1(s1), . . . , Bq(sq)}p.o.|sj=0

= span{B1⊥j(s1), . . . , B(j−1)⊥j(sj−1), Cj , B(j+1)⊥j(sj+1), . . . , Bq⊥j(sq)}p.o.

= span{(−1)j−1Cj , B1⊥j(s1), . . . , B(j−1)⊥j(sj−1), B(j+1)⊥j(sj+1), . . . , Bq⊥j(sq)}p.o.

= κj ◦ ρC[j](s1, . . . , ŝj , . . . , sq),

where, for example,

B1⊥j(s1) = (1− s1)C1⊥j + s1C1′⊥j .

3.2 The regular case

Recall from [Kud18] that a vector x ∈ V is said to be regular with respect to C if (x,C) 6= 0

for all C ∈ C. Parts (i) and (ii) of the following are an analogue of [Kud18, Lemma 4.2] and

the proofs given there extend immediately to the general case. Part (iii) will be proved in the

Appendix, where the definition of the local intersection number will also be reviewed.

Lemma 3.3. Let C be a collection in good position. For a vector x ∈ V , let Φq(x; C) = Φ�q (x; C)
be as in (1.2).

(i) If x ∈ V is regular with respect to C, then Dx ∩ S(C) is non-empty if and only if Φq(x; C) 6= 0,
and in this case Dx ∩ S(C) = ρC(s(x)) for a unique point s(x) ∈ (0, 1)q given by

s(x)j =
(x,Cj)

(x,Cj)− (x,Cj′)
. (3.9)

(ii) If x ∈ V is any vector with Φq(x; C) 6= 0, then Dx ∩ S(C) consists of a single point ρC(s(x))

with s(x) ∈ [0, 1]q given by (3.9).

(iii) If x ∈ V is any vector with Φq(x; C) 6= 0 and s(x) is as in (ii), then the map ρC is immersive

at s(x), and the quantity Φq(x; C) is the local intersection number of Dx and S(C) at s(x).

A precise definition of this quantity is given in (A.1) in the Appendix.
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4. Cubical integrals and generalized error functions

In this section we state our main result, an explicit expression for the Schwartz function (2.5)
defined by the integral

I(x; C) :=

∫
S(C)

ϕKM(x)

of the q-form ϕKM(x) over the singular q-cube S(C) in D in terms of generalized error functions,
as suggested in [Kud18, § 5].

Theorem 4.1. Suppose that C = C� is in good position. Then

I(x; C) = (−1)q 2−q
∑
I

(−1)|I|Eq(x
√

2;CI) e−π(x,x), (4.1)

where, as in § 3.1, for a subset I ⊂ {1, . . . , q}, CI is the q-tuple with CIj = Cj if j /∈ I and

CIj = Cj′ if j ∈ I, ordered by the index j.

The 2q terms in the sum on the right-hand side of (4.1) are generalized error functions
associated to the vertices zI = span{CI}p.o. of S(C) of the singular q-cube evaluated on the
projections of x to those q-planes.

Remark 4.2. In the case q = 2, the expression given in Theorem 4.1 is the negative of the
expression found in [Kud18]. But there is a simple explanation, namely that the orientation of
S(C) is defined by the ‘loop’ (3.11) in [Kud18], but this is the opposite of the orientation we use
here, defined by the singular square ρC .

The proof of Theorem 4.1 by induction on q is given in § 7.

5. Review of the Schwartz form ϕKM and its relatives

In this section we review the basic facts about the Schwartz forms ϕKM(x) that we need.

5.1 Local formulas
We fix a base point z0 ∈ D and an orthonormal basis {e1, . . . , em}, m = p + q, (er, es) = εrδrs,
εr = +1 for 1 6 r 6 p and εr = −1 for r > p, with

z0 = span{ep+1, . . . , em}p.o..

In particular V ' Rm, and the associated to z0 Gaussian is given by

ϕ0(x) = ϕ0(x, z0) = e−π
∑
j x

2
j ∈ S(V ), x =

∑
i

xiei. (5.1)

Let K be the stabilizer of z0 in G and write go = Lie(G) = ko + po where ko = Lie(K) and po
are the +1 and −1 eigenspace for the Cartan involution at z0. There is a canonical isomorphism
Tz0(D) ' po. Under the identification

V ⊗ V ∼−→ End(V ), (v1 ⊗ v2)(v) = (v2, v)v1,

a basis for po is given by

Xαµ = eα ⊗ eµ + eµ ⊗ eα, 1 6 α 6 p < µ 6 p+ q.

Let ωαµ be the dual basis for p∗o.
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By the equivariance property (2.2), ϕKM(x) is determined by the element of the complex6

[S(V )⊗
∧•(p∗o)]K

obtained by restriction to the point z0.
For 1 6 s, t 6 q, and for x =

∑
j xjej ∈ V , let

ω(s) = ω(x; s) =

p∑
j=1

xj ωj,p+s ∈ p∗o

and

Ω(s, t) =

p∑
j=1

ωj,p+s ∧ ωj,p+t ∈
∧2(p∗o).

For λ with 0 6 λ 6 [q/2], we define q-forms

AOλ(q) = A[ω(1) ∧ · · · ∧ ω(q − 2λ) ∧ Ω(q − 2λ+ 1, q − 2λ+ 2) ∧ · · · ∧ Ω(q − 1, q)], (5.2)

where A is the alternation

A[ω(1) ∧ · · · ∧ Ω(t− 1, t)] =
1

t!

∑
σ∈St

sgn(σ)ω(σ(1)) ∧ · · · ∧ Ω(σ(t− 1), σ(t)). (5.3)

Note that these are homogeneous of degree q− 2λ in x, and it will sometimes be useful to write
AOλ(q)(x) to indicate this dependence. With this notation, we have the following formula for
the restriction of ϕKM(x) at the point z0 (cf. [KM86, p. 371]):

ϕKM(x) = 2q/2
[q/2]∑
λ=0

C(q, λ) AOλ(q)(x)ϕ0(x), (5.4)

where

C(t, λ) =

(
− 1

4π

)λ t!

2λλ!(t− 2λ)!
. (5.5)

There are two auxiliary (q−1)-forms associated to ϕKM(x) that will play a fundamental role
in our calculations. We will recall their relation to ϕKM(x) in a moment. The first of these is
given by

ψKM(x) = 2q/2−1

[(q−1)/2]∑
λ=0

q∑
s=1

(−1)sxp+sC(q − 1, λ) AOλ(q; s)(x)ϕ0(x), (5.6)

where the (q− 1)-form AOλ(q; s) is defined by the alternation analogous to AOλ(q− 1) but for
the index set {1, . . . , ŝ, . . . , q} replacing {1, . . . , q − 1}. For example, AOλ(q; q) = AOλ(q − 1).

Now we include the parameter τ = u+ iv. Writing

ϕKM(x) = ϕ0
KM(x) e−π(x,x),

ψKM(x) = ψ0
KM(x) e−π(x,x),

6 Note that K = O(z⊥0 )× SO(z0), so that the character α appearing in [KM86, Theorem 3.1] is trivial on K and
hence does not appear here.
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we have, for q = e(τ) and Q(x) = 1
2(x, x),

ϕKM(τ, x) = ϕ0
KM(v1/2x) qQ(x) = v−(p+q)/4ω(g′τ )ϕKM(x) (5.7)

and

ψKM(τ, x) = v ψ0
KM(v1/2x) qQ(x). (5.8)

Note that

− 2i
∂

∂τ̄
ϕKM(τ, x) =

∂

∂v
{ϕ0

KM(v1/2x)}qQ(x).

On the set of x such that R(x, z0) > 0, let

Ψ0
KM(x) = −

∫ ∞
1

ψ0(t1/2x) t−1 dt. (5.9)

The point here is that

ψ0(t1/2x) = (form valued polynomial in t1/2x) · e−2πtR(x,z0),

so that the integral only makes sense when R(x, z0) > 0. For x with R(x, z0) > 0, let

ΨKM(τ, x) := Ψ0
KM(v1/2x) qQ(x) = −

∫ ∞
v

ψ0(t1/2x) t−1 dtqQ(x). (5.10)

The following basic relations between the primitives ψKM(τ, x), ΨKM(τ, x) and the form

ϕKM(τ, x) are given in [FK17, § 3, Proposition 3.2]; cf. also [KM90, § 8].

Lemma 5.1. (i) −2iv2 ∂

∂τ̄
ϕKM(τ, x) = dψKM(τ, x) = v dψ0

KM(v1/2x) qQ(x).

(ii) dΨKM(τ, x) = ϕKM(τ, x), R(x, z0) > 0,

and

dΨ0
KM(x) = ϕ0

KM(x), R(x, z0) > 0.

Taking homogeneity in x of various terms into account and writing R = R(x, z0), we have
the explicit formulas

ΨKM(τ, x) = 2q/2−1

[(q−1)/2]∑
λ=0

q∑
s=1

(−1)s−1xp+sC(q − 1, λ) AOλ(q; s)

× (2πR)−(q−2λ)/2 Γ

(
1

2
(q − 2λ), 2πRv

)
qQ(x) (5.11)

and

ϕKM(τ, x) = 2q/2
[q/2]∑
λ=0

C(q, λ) AOλ(q) v(q−2λ)/2 e−2πvR qQ(x). (5.12)

Here Γ(s, a) =
∫∞
a e−t ts−1 dt is the incomplete Γ-function.
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5.2 Global formulas
We now explain how the formulas of the previous section define global differential forms on D.
We will use the notation and conventions explained in [Kud18], especially the Appendix, which
we now briefly recall.

Let
FD = {ζ = [ζ1, . . . , ζq] ∈ V q | (ζ, ζ) := ((ζi, ζj)) < 0}

be the bundle of oriented negative frames, and let

OFD = {ζ = [ζ1, . . . , ζq] ∈ V q | (ζ, ζ) = −1q}

be the bundle of oriented orthonormal negative frames. Let π : FD →D be the natural projection,
taking ζ to its oriented span. Then, for ζ ∈ OFD, we have an identification of tangent spaces

V q ' Tζ(FD) ⊃ Tζ(OFD) = {η = [η1, . . . , ηq] ∈ V q | (η, ζ) + (ζ, η) = 0}.

For z ∈ D, we let U(z) = z⊥. Then the ‘horizontal’ subspace U(z)q ⊂ Tζ(OFD) is identified with
Tz(D) under dπζ . Note that, while the space U(z)q depends only on z, the identification with
Tz(D) depends on ζ. The identifications for different choices of ζ differ by the action of SO(q).

A priori, the expressions given in (5.12) and (5.11) are elements of S(V )⊗∧r(p∗o) with r = q
and q − 1 respectively, where po is identified with the tangent space to D at the base point

z0 = span{ep+1, . . . , ep+q}p.o. ∈ D

determined by our chosen orthonormal basis. They yield global formulas as follows. For any
ζ ∈ OFD, the function R(x, z) is defined by R(x, z) = (x, ζ)(ζ, x). For vectors η = [η1, . . . , ηq]
and µ = [µ1, . . . , µq] in U(z)q, define

ω(s)(η) = (x, ηs), Ω(s, t)(η, µ) = (ηs, µt)− (ηt, µs). (5.13)

Also note that, in the global version of (5.11),

xp+s = −(x, ζs). (5.14)

Lemma 5.2. With these definitions, the q-forms AOλ(q) and (q − 1)-forms AOλ(q; s) on U(z)q

are invariant under SO(q) and hence define forms on Tz(D).

Proof. We observe that for some non-zero constant c,

AOλ(q)(η1, . . . , ηq)

= c
1

q!

∑
σ∈Sq

sgn(σ) det

(x, η1
σ(1)) · · · (x, η1

σ(q−2λ)) η1
σ(q−2λ+1) · · · η1

σ(q)
...

...
...

...
(x, ηqσ(1)) · · · (x, ηqσ(q−2λ)) ηqσ(q−2λ+1) · · · ηqσ(q)

 , (5.15)

where, in expanding the determinant, the product of vectors is taken using ( , ). 2

Thus (5.12) (respectively, (5.11)) defines a global q-form ϕKM(τ, x) on D (respectively, a
global (q − 1)-form ΨKM(τ, x) on D −Dx) and these forms satisfy

dΨKM(τ, x) = ϕKM(τ, x)

on D −Dx.

Remark 5.3. The formula for the pullback for these forms to OFD involves additional terms
determined by the requirement that the forms vanish if one of the input tangent vectors is
vertical (i.e., in the kernel of dπζ). We will not need these expressions.
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6. The pullback to certain sub-symmetric spaces

Recall that for a negative vector y ∈ V we have Vy = y⊥,

D′y = {z ∈ D | y ∈ z}, (6.1)

and

D(Vy) = {z = oriented neg. (q − 1)-plane in Vy}.

For the properly oriented orthogonal frame bundle OFD(Vy) → D(Vy), there is an embedding

κy : OFD(Vy) ↪→ OFD, ζ 7→ [y, ζ], (6.2)

where y = y|(y, y)|−1/2, and the resulting embedding

κy : D(Vy)
∼−→ D′y ⊂ D. (6.3)

A fundamental result is the following pullback formula, which we find rather striking.

Proposition 6.1. For x ∈ V , write x = −(x, y) y + x⊥y, so that x⊥y is the Vy-component of x.
Then we have the following statements.

(i) κ∗yψ
0
KM(x) = 2−1/2 (x, y) e−2π(x,y)2

ϕ
Vy ,0
KM (x⊥y).

(ii) κ∗y(ψKM(τ, x)) = 2−1/2 v3/2 (x, y) e−2πv(x,y)2
q−(x,y)2/2 ϕ

Vy
KM(τ, x⊥y).

Here ϕ
Vy ,0
KM (τ, ·) is the ϕ0

KM Schwartz (q − 1)-form on D(Vy).

(iii) κ∗y(ϕKM(τ, x)) = 0.

Remark 6.2. The vanishing in (iii) is a fundamental property of ϕKM(τ, x) which does not seem
to have been observed before.

Proof. The map on tangent spaces is given by

dκy : Tζ(OFD(Vy)) −→ Tκy(ζ)(OFD), η = [η1, . . . , ηq−1] 7→ [0, η1, . . . , ηq−1], (6.4)

and this map is compatible with the ‘horizontal’ subspaces. It follows that any term in ψ0
KM(x)

involving an index s = 1 in the differential form will vanish under pullback. Thus, by (5.6), we
have

κ∗yψ
0
KM(x) = 2q/2−1 (x, y) e−2π(x,y)2

[(q−1)/2]∑
λ=0

C(q − 1, λ) AOλ(q − 1)(x⊥y) e
−2πR(x⊥y ,ζ)

= 2−1/2 (x, y) e−2π(x,y)2
ϕ
Vy ,0
KM (x⊥y).

Passing to ψKM(τ, x) via (5.8) and noting that

Q(x) = −(x, y)2 +Q(x⊥y),

we obtain the formula claimed.
Finally, (iii) is immediate due to (5.4) and (5.15), since when we evaluate on a q-tuple

of tangent vectors in the image of the map (6.4), there will be a null column in every term
in (5.15)! 2
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Next consider the (q − 1)-form Ψ0
KM(x). Using the expressions just found and Lemma 5.1,

we have the following result.

Corollary 6.3. On the subset of D(Vy) for which κy(z) /∈ Dx,

κ∗yΨ
0
KM(x) = −21/2 (x, y)

∫ ∞
1

e−2πt2(x,y)2
ϕ
Vy ,0
KM (tx⊥y) dt.

In the next section, it will be useful to have the following variant, which involves a shift in
the orientations. For an index j, 1 6 j 6 q, define

κy[j] : OFD(Vy) ↪→ OFD, ζ 7→ [ζ1, . . . , ζj−1, y, ζj , . . . , ζq−1], (6.5)

and write κy[j] : D(Vy) −→ D for the corresponding embedding of symmetric spaces. Here note
that

span{ζ1, . . . , ζj−1, y, ζj , . . . , ζq−1}p.o.
= span{(−1)j−1y, ζ1, . . . , ζj−1, ζj , . . . , ζq−1}p.o.

,

so that κy[j] is well defined on D(Vy). Of course, κy = κy[1] and the embeddings of symmetric
spaces only depend on the parity of j.

Corollary 6.4. (i) On the subset of D′y for which κj(z) /∈ Dx,

κy[j]
∗Ψ0

KM(x) = (−1)j 21/2 (x, y)

∫ ∞
1

e−2πt2(x,y)2
ϕ
Vy ,0
KM (tx⊥y) dt.

(ii) On D′y,

κy[j]
∗ψKM(τ, x) = (−1)j−12−1/2 v3/2 (x, y) e−2πv(x,y)2

q−(x,y)2/2 ϕ
Vy
KM(τ, x⊥y).

7. Proof of Theorem 4.1

As before, for convenience, we remove a factor independent of z and write

ϕKM(x) = ϕ0
KM(x) e−π(x,x).

In this section we compute the cubical integrals

I0(x; C) =

∫
S(C)

ϕ0
KM(x).

Note that both sides of the identity (4.1) to be proved are C∞-functions of x ∈ V . Since the set
of x ∈ V that are regular with respect to C is open and dense, it suffices to prove the identity
for x regular.

7.1 The regular case
Suppose that x is regular with respect to C, so that, by Lemma 3.3, the intersection Dx ∩ S(C)
is either empty or consists of a single interior point ρC(s(x)) depending on whether Φq(x; C)
vanishes or not. If Φq(x; C) 6= 0 and for ε > 0 sufficiently small, define a collection

Cε(x) = {{B1(s(x)1 − ε), B1(s(x)1 + ε)}, . . . , {Bq(s(x)q − ε), Bq(s(x)q + ε)}}.

For simplicity, we will abbreviate this as

Cε = Cε(x) = {{Cε1, Cε1′}, . . . , {Cε1, Cεq′}}.
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Lemma 7.1. The collection Cε(x) is in good position.

Proof. We note that, for t ∈ [0, 1],

(1− t)Cεj + tCej′ = (1− s(x)j + ε− 2tε)Cj + (s(x)j − ε+ 2tε)Cj′

so that, for t ∈ [0, 1]q,

ρCε(x)(t) = ρC(s(x)− ε+ 2εt) ∈ D,

that is, Cε(x) is in good position. 2

By construction, the singular q-cube S(Cε(x)) contains the point Dx ∩ S(C). For x regular
with respect to C and Φq(x; C) = 0, we let S(Cε(x)) be the empty set. In general, we let

Sε(x; C) = S(C)− int S(Cε).

Then Stokes’s theorem and the inductive relation of Corollary 6.3 imply the following inductive
formula.

Proposition 7.2. Suppose that x is regular with respect to C. Then the set Dx does not meet
∂S(C), the integral

I00(x; C) :=

∫
∂S(C)

Ψ0
KM(x)

is well defined, and

I0(x; C) = I00(x; C)− lim
ε↓0

I00(x; Cε(x)).

Moreover,

I00(x; C) = 21/2
q∑
j=1

(x,Cj)

(∫ ∞
1

e−2πt2(x,Cj)
2
I0(tx⊥j ; C[j]) dt

)
− (x,Cj′)

(∫ ∞
1

e−2πt2(x,Cj′ )
2
I0(tx⊥j′ ; C[j′]) dt

)
, (7.1)

where C[j] and C[j′] are given by (3.5) and (3.6).

Proof. Combining (3.3), (3.7), (3.8), and Corollary 6.4, we obtain

I00(x; C) =

q∑
j=1

(−1)j
(∫

∂+
j S(C)

Ψ0
KM(x)−

∫
∂−j S(C)

Ψ0
KM(x)

)

=

q∑
j=1

(−1)j
(∫

S(C[j])
κ∗jΨ

0
KM(x)−

∫
S(C[j′])

κ∗j′Ψ
0
KM(x)

)

= 21/2
q∑
j=1

(x,Cj)

(∫ ∞
1

e−2πt2(x,Cj)
2
I0(tx⊥j ; C[j]) dt

)
− (x,Cj′)

(∫ ∞
1

e−2πt2(x,Cj′ )
2
I0(tx⊥j′ ; C[j′]) dt

)
,

as claimed. 2
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7.2 The case q = 1
As a basis for the inductive proof of Theorem 4.1, we first suppose that q = 1, so that sig(V ) =
(m − 1, 1). This case is discussed in several places, among them [Kud13, FK17, Liv16], but we
give the calculation for convenient reference. We have

D ' {ζ ∈ V | Q(ζ) = −1}, z = span{ζ}p.o.,

and the tangent space at z ∈ D is

Tz(D) ' U(z) := z⊥.

For any x ∈ V , the 1-form ω(1) on D is defined by

ω(1)z(η) = (x, η), η ∈ U(z) ' Tz(D),

and the Schwartz form is given by

ϕ0
KM(x) = 21/2 ω(1) e−2πR(x,z),

with R(x, z) = (x, ζ)2. Take C, C ′ ∈ V such that

Q(C) < 0, Q(C ′) < 0, (C,C ′) < 0,

where the third condition ensures that

{C}p.o. ' C = C |(C,C)|−1/2, {C ′}p.o. ' C
′

lie on the same component of D. For s ∈ [0, 1], we define

B(s) = (1− s)C + sC ′,

and note that

(B(s), B(s)) = (1− s)2(C,C) + 2s(1− s)(C,C ′) + s2(C ′, C ′) < 0,

so that the collection C = {{C,C ′}} is in good position. Writing

ζ = ζ(s) = B(s)|(B(s), B(s))|−1/2,

we obtain a geodesic curve

ρC : [0, 1] −→ D, s 7→ {B(s)}p.o. ' ζ(s)

joining C and C ′. The tangent vector to this curve will be ζ̇ = (d/ds)ζ, and

I0(x; C) = 21/2

∫ 1

0
(x, ζ̇(s)) e−2π(x,ζ(s))2

ds

= 21/2

∫ 1

0

∂

∂s

(
−
∫ ∞

(x,ζ(s))
e−2πt2 dt

)
ds

= 21/2

(∫ ∞
(x,C)

e−2πt2 dt−
∫ ∞

(x,C′)
e−2πt2 dt

)
.

Since ∫ ∞
u

e−2πt2 dt = 2−3/2(1− E(u
√

2)),
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for

E(u) = 2

∫ u

0
e−πt

2
dt = 2 sgn(u)

∫ |u|
0

e−πt
2
dt,

as in [Zag10], we obtain the expression

I0(x; C) = 1
2(E((x,C ′)

√
2)− E((x,C)

√
2))

= 1
2(E1(x

√
2;C ′)− E1(x

√
2;C)),

which is the q = 1 case of Theorem 4.1. Here we use the fact that, for C ∈ V with Q(C) < 0,
a simple calculation shows that E1(x;C) = E((x,C)). Note that in this calculation we have not
used the Stokes’s theorem argument. However, it is instructive to note that

ψ0
KM(x) = 2−1/2 (x, ζ) e−2π(x,ζ)2

,

so that, for z = span{C}p.o. ∈ D −Dx, the primitive is given by

Ψ0
KM(x) = −2−1/2 (x,C)

∫ ∞
1

e−2πt(x,C)2
t−1/2 dt

= −21/2 (x,C)

∫ ∞
1

e−2πt2(x,C)2
dt

= −sgn(x,C)

∫ ∞
√

2|(x,C)|
e−πt

2
dt

=
1

2
sgn(x,C)

(
2

∫ √2|(x,C)|

0
e−πt

2
dt− 1

)
=

1

2
(E1(x

√
2;C)− sgn(x,C)).

Thus the Stokes’ theorem calculation gives

I00(x; C) =

∫
∂S(C)

Ψ0
KM(x) =

1

2
(E1(x

√
2;C1′)− sgn(x,C1′)− E1(x

√
2;C1;x) + sgn(x,C1)),

so that the basis for Zwegers’s ‘completion’ construction emerges.

7.3 Induction
Next we consider the inductive step. Note that we are assuming that x is regular with respect to
C so that (7.1) holds, and we suppose that the identity (4.1) holds for all q′ < q and all C′ in good
position. Let I[j] and I[j′] be subsets of {1, . . . , ĵ, . . . , q} and let C[j]I[j] (respectively, C[j′]I[j

′])
be obtained by the recipe defining CI in Theorem 4.1, starting with the set C[j] defined in (3.5)
(respectively, the set C[j′] defined in (3.6)). Then (7.1) becomes

I00(x/
√

2; C) =

q∑
j=1

(x,Cj)

(∫ ∞
1

e−πt
2(x,Cj)

2
I0(tx⊥j/

√
2; C[j]) dt

)
− (x,Cj′)

(∫ ∞
1

e−πt
2(x,Cj′ )

2
I0(tx⊥j′/

√
2; C[j′]) dt

)
= (−1)q−121−q

q∑
j=1

(∑
I[j]

(−1)|I[j]|
(

(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
Eq−1(tx⊥j ;C[j]I[j]) dt

)

−
∑
I[j′]

(−1)|I[j
′]|
(

(x,Cj′)

∫ ∞
1

e−πt
2(x,Cj′ )

2
Eq−1(tx⊥j′ ;C[j′]I[j

′]) dt

))
. (7.2)
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We want to compare this to the expression

−2−q
∑
I

(−1)|I|Eq(x;CI).

The key is to relate the individual quantities Eq(x;CI) in this sum and the terms on the right-
hand side of (7.2) where I = I[j] or I = {j} ∪ I[j′]. Note that if I = I[j] then the collection
C[j]I[j] spans a negative (q−1)-plane in Vj which maps to zI under κj . Similarly, if I = {j}∪I[j′]
then the collection C[j′]I[j

′] spans a negative (q − 1)-plane in Vj′ which maps to zI under κj′ .
Thus, we are collecting all of the terms which ‘correspond to’ a given vertex of the q-cube S(C).
The required identities are all consequences of that for I = ∅, and thus the main identity needed
is as given in the following proposition.

Proposition 7.3. Suppose that the set of vectors c = {c1, . . . , cr} spans an oriented negative
r-plane in V and that x is regular with respect to c. Then

Er(x; c)− sgn(x; c) = −2

r∑
j=1

(x, cj)

∫ ∞
1

e−πt
2(x,cj)

2

Er−1(C[j]; tx⊥j) dt, (7.3)

where c[j] = {c1⊥j , . . . , ĉj , . . . , cr⊥j}, and sgn(x; c) is defined in (1.6).

Remark 7.4. This result is just an integrated version of equation (25) in [Naz18, Proposition 3.6].
For convenience, we give the proof, taken from [Naz18], in our notation.

Proof. Let z be the negative r-plane spanned by c, and, for y, y′ ∈ z, let ((y, y′)) = −(y, y′). We
also suppose that x = prz(x). If f is a smooth function on z, then

−
∫ ∞

1
((∇f(t x), x)) dt = −

∫ ∞
1

d

dt
{f(tx)} dt

= f(x)− lim
t→∞

f(tx). (7.4)

Here ∇ is the gradient operator and we assume that the radial limit of f exists. On the other
hand, by equation (25) in [Naz18, Proposition 3.6],

−((∇Er(x; c), x)) = 2

r∑
j=1

((x, cj)) e
−π ((x,Cj))

2
Er−1(x⊥j ; c[j]). (7.5)

Moreover, for x regular with respect to c, we have, [ABMP18, (6.2)] and [Naz18], that

lim
t→∞

Er(tx; c) = sgn(x; c). (7.6)

For convenience, we will give the proof of (7.5) in the Appendix. Combining them and noting
that the identity (7.4) is valid for the function f(x) = Eq(x; c) when x is regular with respect to
c, we have

Er(x; c)− sgn(x; c) = −2
∑
j

(x, cj)

∫ ∞
1

e−π t
2(x,cj)

2

Er−1(tx⊥j ; c[j]) dt,

as required. 2
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Corollary 7.5.

I00(x; C) = (−1)q2−q
∑
I

(−1)|I|(Eq(x
√

2;CI)− sgn(x;CI))

and
I0(x; C) = I00(x; C) + (−1)qΦq(x; C) = (−1)q2−q

∑
I

(−1)|I|Eq(x
√

2;CI).

Note that the second identity in Corollary 7.5 follows from Proposition 7.2, since the first
identity implies that

lim
ε↓0

I00(x; Cε(x)) = −(−1)qΦq(x; C).

The identity of Theorem 4.1 follows immediately from this and the continuity of E(x;CI) with
respect to CI .

Summarizing, if we include the parameter τ by using (5.7), we have now established the basic
formula

I(τ, x; C) :=

∫
S(C�)

ϕKM(τ, x)

= (−1)q 2−q
∑
I

(−1)|I|Eq(x
√

2v;CI) qQ(x). (7.7)

8. The case of a simplex

In this section we work out the theta integral over a simplex. The general inductive procedure
is the same as in the cubical case, but some interesting differences arise.

8.1 Some geometry
For V of signature (p, q), we consider a collection of vectors

C = C4 = [C0, . . . , Cq],

Ci ∈ V with (Ci, Ci) < 0. We suppose that, for all j,

Pj = span{C0, . . . , Ĉj , . . . , Cq}

is a negative q-plane. We assume that the collection C is linearly independent and let U = span(C).
Note that sig(U) = (1, q), and let D(U) be the space of oriented negative q-planes in U .

Let
C∨ = [C∨0 , . . . , C

∨
q ] = C (C, C)−1

be the dual basis of U with respect to ( , ). Since C∨j then spans P⊥j , we have (C∨j , C
∨
j ) > 0. Let

∆q =

{
s = [s0, . . . , sq] ∈ R

∣∣∣∣ sj > 0, for all j,
∑
j

sj = 1

}
,

and, for s ∈ ∆q, let

C∨(s) =

q∑
j=0

sjC
∨
j = C∨ ts.
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Note that sj = (C∨(s), Cj). We say that C is in good position if

0 < (C∨(s), C∨(s)) = s(C∨, C∨)ts = s(C, C)−1ts

for all s ∈ ∆q. For example, if all entries of (C∨, C∨) = (C, C)−1 are non-negative, then C is in
good position.

Given C in good position, we define

z(s) = C∨(s)⊥ ∈ D,

with orientation νz(s) ∈ ∧qz(s) defined by

C∨(s) ∧ νz(s) = νU , (8.1)

where we have fixed an orientation

νU = C0 ∧ C1 ∧ · · · ∧ Cq

in ∧q+1U . For example,

zj = z(0, . . . , 1, . . . , 0) = (C∨j )⊥ = span{C0, . . . , Ĉj , . . . , Cq}

with orientation given as follows. Let Rj be the jth column of the matrix (C,C)−1, so that

C∨j = CRj =

q∑
i=0

RijCi. (8.2)

Then
C∨j ∧ C0 ∧ · · · ∧ Ĉj ∧ · · · ∧ Cq = (−1)jRjj C0 ∧ C1 ∧ · · · ∧ Cq.

Since Rjj = (C∨j , C
∨
j ) > 0,

zj = span{C0, . . . , Ĉj , . . . , Cq}[j] (8.3)

where the ‘twist’ [j] indicates that the given basis gives (−1)jνz(s).
For example, for q = 1 we have

z0 = span{C1}p.o., z1 = span{−C0}p.o.. (8.4)

In particular, good position requires (C0, C1) > 0 in this case! For q = 2, we have

z0 = span{C1, C2}p.o., z1 = span{−C0, C2}p.o., z2 = span{C0, C1}p.o.. (8.5)

By construction, all the zj lie in the same component of D and, by linear independence, the
map

ρC : ∆q −→ D, s 7→ z(s)

is an embedding. Let S(C) = ρC(∆q) be its image. The jth face of this tetrahedron is given by
restricting to the subset of s with sj = 0, so that it is given as

{z ∈ S(C) | (C∨(s), Cj) = 0} = {z ∈ S | Cj ∈ z}.

Moreover, in the image Uj of U under the projection to Vj = C⊥j , we have that

[C∨0 , . . . , Ĉ
∨
j , . . . , C

∨
q ]
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is the dual basis to
C⊥j := [C0⊥j , . . . , Cq⊥j ].

Thus, up to orientation, to be discussed in a moment, the restriction of ρC to a face of ∆q is
again a simplex ρC⊥j in D(Vj)! Note that, in particular, C in good position implies that C⊥j is
in good position for all j.

Next consider Dx ∩ S(C). This set depends only on prU (x) and is given by

Dx ∩ S(C) =


D(U)prU (x) ∩ S(C) if Q(prU (x)) > 0,

∅ if prU (x) 6= 0 and Q(prU (x)) 6 0,

S(C) if prU (x) = 0.

Here, when Q(prU (x)) > 0 so that prU (x) is a positive vector in U , D(U)prU (x) is a pair of
oriented negative q-planes in U given by the orthogonal complement to prU (x) with its two
orientations. One of these has orientation determined by prU (x) by the analogue of the recipe
(8.1). Then Dx ∩ S(C) = ρC(s(x)) is the same q-plane with orientation shifted by

sgn(prU (x), C∨(s(x))q = sgn(x,C∨(s(x)))q.

To determine s(x), we solve

prU (x) = λC∨(s), s ∈ ∆q, λ ∈ R×,

that is,
(x,Cj) = λ sj , 0 6 j 6 q.

The existence of a solution implies that sgn(x,Cj), if non-zero, is independent of j and that

q∑
j=0

(x,Cj) = λ. (8.6)

Thus we have the following simple description.

Lemma 8.1. Suppose that Q(prU (x)) > 0. If sgn(x,Cj) is independent of j when it is non-zero,
then

Dx ∩ S(C) = ρC(s(x)),

where
s(x)j = (x,Cj)λ(x; C)−1

with
λ(x, C) =

∑
j

(x,Cj).

Otherwise Dx ∩ S(C) is empty.

When Dx ∩ S(C) is non-empty, we determine the intersection number of the oriented q-
simplex S(C) with the oriented codimension q cycle Dx. The claim is that this is determined by
the sign of the inner product of prU (x) with C∨(s(x)).

Proposition 8.2. Let Φ4q (x; C) be as in (1.3). Then, if x is regular with respect to C,

I(Dx, S(C)) = Φ4q (x; C). (8.7)
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Suppose that prU (x) 6= 0. Then Φ4q (x; C) is non-zero precisely when all of the non-zero

sgn(x,Ci) coincide. Suppose further that s(x) lies on r ‘walls’, that is, that exactly r of the inner

products (x,Cj) vanish. Then

Φ4q (x; C) = 2−r (−1)qsgn(λ(x, C))q.

When prU (x) = 0, we have that Φ4q (x; C) = 2−q for q even and vanishes for q odd. Note that if

x is not regular with respect to C, then the intersection number is not defined.

Proof. Recall that if ζ ∈ OFD is a properly oriented q-frame projecting to z ∈ D, then Tz(D) '
U(z)q, where U(z) = z⊥ in V . Also note that, under this isomorphism, the natural metric on

Tz(D) is given by ((η, η′)) = −tr((ηi, η
′
j)) where η = [η1, . . . , ηq] and η′ = [η′1, . . . , η

′
q]. For our fixed

collection C with U = span{C}, we have an embedding D(U) −→ D, where D(U) is the space

of oriented negative q-planes in U . Recall that sig(U) = (1, q). For z ∈ D(U), write W (z) for its

orthogonal complement in U . Again supposing that ζ ∈ OFD with projection z is given, we have

Tz(D(U)) 'W (z)q.

Note that dimW (z) = 1, and suppose that w = w(z) is a properly oriented basis vector. Then
Tz(D(U)) is spanned by the vectors τ1(w) = [w, 0, . . . , 0], τ2(w) = [0, w, 0, . . . , 0], etc. Similarly,
if z ∈ Dx, then the normal subspace to Tz(Dx) is spanned by the vectors τi(x), 1 6 i 6 q. For
z = ρC(s(x)), we have w = C∨(s(x)), and the intersection number of these two cycles is then
given by

sgn((τ1(x) ∧ · · · ∧ τq(x), τ1(w) ∧ · · · ∧ τq(w))) = (−1)q det((τi(x), τj(w)))

= (−1)qsgn(x,C∨(s(x)))q.

But now

C∨(s(x)) = λ(x; C)−1
∑
j

(x,Cj)C
∨
j ,

and, recalling (8.2),

(x,C∨(s(x))) = λ(x; C)−1
∑
j

(x,Cj)(x,C
∨
j ) = λ(x; C)−1

∑
i,j

(x,Cj)Ri,j(x,Ci).

If we assume that all of the non-zero (x,Ci) have the same sign, and recalling that Ri,j > 0, we

see that

sgn(x,C∨(s(x))) = sgn(λ(x; C)). 2

For q = 1, and x regular with respect to C,

I(Dx, S(C)) = −1
2(sgn(x,C0) + sgn(x,C1)).

Note that, due to the ‘twist’ occurring in (8.3), our negative lines are z0 = span{C1}p.o. and

z1 = span{−C0}p.o. Thus the ‘cubical’ data is C� = {C1,−C0}, and I(Dx, S(C)) coincides with

Φ�1 (x; C�) = 1
2(sgn(x,−C0)− sgn(x,C1)).
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8.2 The integral of the theta form

We now compute

I0(x; C4) =

∫
S(C)

ϕ0
KM(x).

The case q = 1 coincides with the Zwegers case for C� = {C1,−C0}, and we have

I0(x/
√

2; C) = −1
2(E1(x;C0) + E1(x;C1)). (8.8)

As a check on signs, note that, since

lim
t→∞

E1(tx;C) = sgn(x,C),

this is consistent with the value of I(Dx, S(C)) for q = 1 above.
For the general case, we suppose that x is regular with respect to C and proceed by induction.

Due to regularity, Dx ∩ S(C) either is empty or is a single point ρC(s(x)) on the interior of S(C).
Recall that

∂S(C) =

q∑
j=0

(−1)jS(C⊥j). (8.9)

Then, by [FK17, Remark 3.4], we have

I0(x; C) =

∫
S(C)

ϕ0
KM(x) = I(Dx, S(C)) +

∫
∂S(C)

Ψ0
KM(x). (8.10)

Since limt→∞Ψ0
KM(tx) = 0, this identity gives the limiting value

lim
t→∞

I0(tx; C) = lim
t→∞

∫
S(C)

ϕ0
KM(tx) = I(Dx, S(C)).

Now using Corollary 6.3, we have the inductive formula∫
∂S(C)

Ψ0
KM(x) =

q∑
j=0

(−1)j
∫
S(C⊥j)

κ∗jΨ
0
KM(x)

=

q∑
j=0

21/2 (x,Cj)

∫ ∞
1

e−2πt2(x,Cj)
2
I0(tx⊥j ; C⊥j) dt. (8.11)

Using this, we obtain the following explicit formula.

Theorem 8.3. For a subset I ⊂ {0, 1, . . . , q}, let C(I) be the collection of q + 1 − |I| elements

where the Ci with i ∈ I have been omitted. Then

I0(x/
√

2; C) = (−1)q2−q
[q/2]∑
r=0

∑
I

|I|=2r+1

Eq−2r(x; C(I)).

Here E0(· · ·) = 1.
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Remark 8.4. (i) Note that if this formula is proved for x regular, then it holds for all x by
continuity.

(ii) Substituting tx for x and letting t go to infinity, we obtain the ‘holomorphic’ part,

(−1)q2−q
[q/2]∑
r=0

∑
I

|I|=2r+1

sgn(x; CI), (8.12)

where sgn(x; ∅) = 1. In the case of x regular, (8.10) implies that this must coincide with I(Dx,

S(C)). In fact, it is easily checked that (8.12) is equal to Φ4q (x; C) for all x. Thus our theta
integral is the non-holomorphic completion of the series∑

x∈µ+L

Φ4q (x; C) qQ(x).

Proof. The case q = 1 is (8.8). In the induction, we use the notation

C[j] = [C0⊥j , . . . , Cj−1⊥j , Cj+1⊥j , . . . , Cq⊥j ].

Let A = {0, 1, . . . , q} and for a subset I ⊂ A, let CI be the collection of q+1−|I| vectors obtained
by omitting the Ci with i ∈ I. Also denote by I[j] a subset of A[j] := {0, 1, . . . , ĵ, . . . , q}.

We have

I0(x/
√

2; C)− I(Dx, S(C))

=

∫
∂S(C)

Ψ0
KM(x/

√
2)

=

q∑
j=0

(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
I0(tx⊥j/

√
2; C[j]) dt

= (−1)q2−q
q∑
j=0

−2(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
[(q−1)/2]∑
r=0

∑
I[j]⊂A[j]
|I[j]|=2r+1

Eq−1−2r(tx⊥j ; C[j]I[j]) dt

= (−1)q2−q
[(q−1)/2]∑
r=0

∑
j∈A

∑
I⊂A

|I|=2r+1
j /∈I

−2(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
Eq−1−2r(tx⊥j ; C[j]I) dt

= (−1)q2−q
[(q−1)/2]∑
r=0

∑
I⊂A

|I|=2r+1

∑
j∈A
j /∈I

−2(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
Eq−1−2r(tx⊥j ; (CI)[j]) dt

= (−1)q2−q
[(q−1)/2]∑
r=0

∑
I⊂A

|I|=2r+1

(Eq−2r(x; CI)− sgn(x; CI))

= (−1)q2−q
[q/2]∑
r=0

∑
I⊂A

|I|=2r+1

Eq−2r(x; CI)

− (−1)q2−q
[(q−1)/2]∑
r=0

∑
I⊂A

|I|=2r+1

sgn(x; CI)− (−1)q2−q δq,even.

1739

https://doi.org/10.1112/S0010437X19007504 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007504


J. Funke and S. Kudla

Thus, to finish the proof, we note that

I(Dx, S(C)) = (−1)q2−q
[q/2]∑
r=0

∑
I⊂A

|I|=2r+1

sgn(x; CI), (8.13)

where we use the convention that sgn(x; ∅) = 1. Here recall that we are assuming that x is regular
with respect to C. To check this, observe that

(−1)q2−q
[q/2]∑
r=0

∑
I⊂A

|I|=2r+1

sgn(x; CI) = (−1)q2−q
∑
J⊂A
|J |≡q(2)

∏
j∈J

σj

= (−1)q2−q−1

(∏
j∈A

(1 + σj) + (−1)q
∏
j∈A

(1− σj)
)
. 2

9. Shadows of indefinite theta series

In this section we discuss the shadow of Iµ(τ ;S), that is, the complex conjugate of its image

under the lowering operator L = −2iv2(∂/∂τ̄). Of course, the lowering operator can be applied

directly to the explicit expressions given in the main theorem. Alternatively, a more conceptual

formula can be obtained by applying the operator L inside the integral. The key point is relation

(i) of Lemma 5.1,

LϕKM(τ, x) = dψKM(τ, x).

Then, for any compact oriented q-cell S in D with nice boundary, we have

L Iµ(τ ;S) =
∑

x∈µ+L

∫
∂S
ψKM(τ, x) =

∫
∂S
θµ(τ ;ψKM). (9.1)

Here note that the (q − 1)-form ψKM(τ, x) defined by (5.6) and (5.8) is again a Schwartz form
so that the integral is again a type of indefinite theta series of weight (p+ q)/2 − 2. In the
cubical (respectively, simplicial) case, one can say more since the faces are themselves singular
cubes (respectively, simplices) lying in D′y. Then the pullback identity (ii) of Lemma 6.4 and the
argument from the proof of Proposition 7.2 yield, in the cubical case,∫

∂S(C�)
ψ(τ, x) = 2−1/2 v3/2

q∑
j=1

((x,Cj′) e
−2πv(x,Cj′ )

2
q−(x,Cj′ )

2/2 I(τ, x⊥j′ ; C[j′])

− (x,Cj) e
−2πv(x,Cj)

2
q−(x,Cj)

2/2 I(τ, x⊥j ; C[j])), (9.2)

where we use the notation introduced in (7.7). The combination of (9.1), (9.2) and (7.7) yields

an explicit formula for the shadow of Iµ(τ ; C), a (typically non-holomorphic) modular form of

weight 2− (p+ q)/2.
Now suppose that the collection C is rational. For each j, write Mj = L ∩ QCj and

Nj = L ∩ Vj so that

Mj +Nj ⊂ L ⊂ L∨ ⊂M∨j +N∨j . (9.3)
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Thus

µ+ L =
⊔

(νj ,µj)∈M∨j /Mj×N∨j /Nj
νj+µj≡µ modL

((νj +Mj)⊕ (µj +Nj)), (9.4)

and similarly for Cj′ . Using this decomposition and writing Iµ(τ ; C, L) in place of Iµ(τ ; C) to

make explicit the dependence on the lattice L, we obtain the following proposition.

Proposition 9.1. If C� is rational, and with the notation of (9.3) and (9.4),

L Iµ(τ ; C, L) = 2−1/2
q∑
j=1

( ∑
νj′ ,µj′

v3/2 θνj′ (τ ;Mj′) Iµj′ (τ ; C[j′], Nj′)

−
∑
νj ,µj

v3/2 θνj (τ ;Mj) Iµj (τ ; C[j], Nj)

)
,

where

θνj (τ ;Mj) =
∑

x0∈νj+Mj

(x0, Cj) q(x0,Cj)
2/2

is a unary theta series of weight 3
2 .

Thus, the image of Iµ(τ ; C) under the ξ-operator is a linear combination of products of unary

theta series of weight 3
2 and the conjugates of cubical indefinite theta series for spaces of signature

(p, q − 1), as asserted in Corollary 1.3.
Analogously, in the simplicial case, we have, using (8.9),

∫
∂S(C4)

ψKM(τ, x) =

q∑
j=0

(−1)j
∫
S(C⊥j)

κ∗jψKM(τ, x)

= 2−1/2 v3/2
q∑
j=0

(x,Cj) e
−2πv(x,Cj)

2
q−(x,Cj)

2/2 I(τ, x⊥j ; C⊥j). (9.5)

Note that there is a sign shift due to the fact that j now runs from 0 to q.

In the rational case we obtain the following result.

Proposition 9.2. If C = C4 is rational, and with the notation of (9.3) and (9.4),

L Iµ(τ ; C4, L) = 2−1/2
q∑
j=0

∑
νj ,µj

v3/2 θνj (τ,Mj) Iµj (τ ; C⊥j , Nj).

Thus, the shadow of Iµ(τ ; C4, L) is again a linear combination of products of unary theta

series of weight 3
2 with conjugates of indefinite theta series associated to (q− 1)-simplices in the

spaces D′j .
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10. An example

In this section we write out a very simple example, which illustrates the relation between the
(degenerate) cubical formula and the simplicial formula in the case q = 2.

Let A = {A0, A1, A2} be the data for a 2-simplex. The vertices are

z0 = span{A1, A2}p.o., z1 = span{−A0, A2}p.o., z2 = span{A0, A1}p.o.,

and the theta integral is

1
4(E2(x;A1, A2) + E2(x;A0, A2) + E2(x;A0, A1) + 1).

We can consider the related cubical data C = {{C1, C1′}, {C2, C2′}}, where

C1 = A0, C2 = A1, C2′ = −A2, C1′ = C2′ − C2 = −A1 −A2,

so that the associated (degenerate) 2-cube has vertices

z2 = {C1, C2}, z1 = {C1, C2′}, z0 = {C1′ , C2′} = {C1′ , C2},

and theta integral

1
4(E2(x;C1, C2)− E2(x;C1, C2′)− E2(x;C1′ , C2) + E2(x;C1′ , C2′))

= 1
4(E2(x;A0, A1) + E2(x;A0, A2) + E2(x;A1 +A2, A1) + E2(x;A1 +A2, A2)).

Coincidence of the two theta integrals is equivalent to the identity

E2(x;A1 +A2, A1) + E2(x;A1 +A2, A2) = E2(x;A1, A2) + 1,

where all terms are given by integrals over the negative 2-plane z0. Writing y ∈ z0 as y =
aA∨1 + bA∨2 , with respect to the dual basis, and noting that

sgn(a+ b)(sgn(a) + sgn(b)) = sgn(a)sgn(b) + 1,

for a and b not both 0, the identity follows. Note that there are a vast number of such identities
for combinations of generalized error functions.
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Functions and Applications in Physics and Geometry conference at Trinity College, Dublin in
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Appendix. Some proofs and details

A.1 Proof of part (iii) of Lemma 3.3
Suppose that C is in good position and that x ∈ V with Φq(x; C) 6= 0. Let s0 = s(x) be the
unique point of [0, 1]q such that ρC(s0) = Dx ∩ S(C). Note that the map ρC extends to an open
neighborhood of [0, 1]q so that, even if s0 lies on the boundary, we can define ρC on an open set
U around s0. We lift ρC to a map ρ̃C : U → OFD, defined by

ρ̃C : s 7→ ζ(s) = B(s)P−1, P ∈ Symq(R)>0, P 2 = −(B(s), B(s)).
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For convenience, we write B = [B1, . . . , Bq] = B(s). Then

(ρ̃C)∗

(
∂

∂sj

)
= ḂjP

−1 − ζṖjP−1, Ḃj :=
∂

∂sj
B = [0, . . . ,−Cj + Cj′ , . . . , 0], Ṗj :=

∂

∂sj
P.

The components in the connection subspace U(z)q of Tζ(OFD) are then

(ρC)∗

(
∂

∂sj

)
= τj P

−1, τj = [0, . . . ,prU(z)(−Cj + Cj′), . . . , 0],

and these are linearly independent provided prU(z)(−Cj + Cj′) 6= 0 for all j. But at the point

z0 = ρC(s0), we have x ∈ U(z0), and the q vectors

η(x, j) = [0, . . . , 0, x, 0, . . . , 0],

with x in the jth component, span the normal to Tz0(Dx). Note that the metric g on

Tz(D) ' U(z)q is given by

g(η, η′) = tr((ηi, η
′
j)).

Then we have

g(η(x, i), τj) = [(x,Cj′)− (x,Cj)] δij .

This shows that τj 6= 0 for all j and hence ρC is immersive at s(x). We can choose the open

neighborhood U of s(x) in Rq so that the restriction of ρC to U is an embedding. The orientation

of the cycle Dx of codimension q is defined by an element of νz,x ∈ ∧(p−1)qTz(Dx) such that

νx ∧ νz,x ∈
∧pq(Tz(D))

is properly oriented, where

νx = η(x, 1) ∧ · · · ∧ η(x, q).

Here we have fixed an orientation of D. Thus the intersection number at z0 of Dx with ρC(U) is

I(Dx, ρC(U)) = sgn det(g(η(x, i), τj)) =
∏
j

sgn((x,Cj′)− (x,Cj)).

If x is regular with respect to C, then this quantity is

2−q
q∏
j=1

(sgn(x,Cj′)− sgn(x,Cj)) = (−1)qΦq(x; C).

In general, we have

(−1)qΦq(x; C) = 2−r I(Dx, ρC(U)), (A.1)

where r, 0 6 r 6 q, is the number of walls passing through s(x). Thus, Φq(x; C) is a ‘weighted’

intersection number.
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A.2 Proof of (7.5)
For y, y′ ∈ Z = span{C}, we write ((y, y′)) = −(y, y′), and we assume that x ∈ Z. We let

C∨ = [C∨1 , . . . , C
∨
q ] = C((C,C))−1

be the dual basis. We write
x =

∑
i

xiC
∨
i , xi = ((x,Ci)).

For a fixed index j, we write

x = x⊥j + x′Cj , x⊥j =
∑
i 6=j

xiC
∨
i , xj = ((x,Cj)) = x′((Cj , Cj)),

and similarly for our variable of integration y ∈ Z. Note that, in particular,

sgn((y, Cj)) = sgn(y′).

We can write
dy = dy⊥j dy

′

where

1 =

∫
Z
e−π((y,y)) dy =

∫
Z⊥j

∫
R
e−π((y⊥j ,y⊥j)) e−π(y′)2((Cj ,Cj)) dy⊥j dy

′,

where dy′ is ((Cj , Cj))
1/2 times Lebesque measure, so that∫

R
e−π(y′)2((Cj ,Cj)) dy′ = 1.

We write7

(−1)qEq(x;C) =

∫
Z
e−π((y−x,y−x))

∏
i

sgn((y, Ci)) dy

=

∫
Z⊥j

∫
R
e−π((y⊥j−x⊥j ,y⊥j−x⊥j)) e−π(y′−x′)2((Cj ,Cj))

∏
i 6=j

sgn((y, Ci)) sgn(y′) dy⊥j dy
′

= (−1)q−1Eq−1(x⊥j ;C[j])

∫
R
e−π(y′−x′)2((Cj ,Cj)) sgn(y′) dy′

= (−1)q−1Eq−1(x⊥j ;C[j])

∫
R
e−π(y′)2((Cj ,Cj)) sgn(yj + xj) dy

′.

But then, taking into account that dy′ = ((Cj , Cj))
−1/2 dLebyj , we have

xj
∂

∂xj
{(−1)qEq(x;C)} = ((x,Cj)) (−1)q−1Eq−1(x⊥j ;C[j])

×
∫
R
e−πy

2
j ((Cj ,Cj))

−1

2δ(yj + xj) ((Cj , Cj))
−1/2 dLebyj

= 2((x,Cj))(−1)q−1Eq−1(x⊥j ;C[j]; ) e−π((x,Cj))
2
.

Here recall that Cj = Cj((Cj , Cj))
−1/2. Summing over j, we obtain (7.5).

7 Note that the extra factor of (−1)q etc. is due to our temporary change in the sign of the inner product on Z,
so that our Eq differs from that in [Naz18] by this sign.

1744

https://doi.org/10.1112/S0010437X19007504 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007504


On some incomplete theta integrals

References

ABMP18 S. Alexandrov, S. Banerjee, J. Manschot and B. Pioline, Indefinite theta series and generalized
error functions, Selecta Math. (N.S.) 24 (2018), 3927–3972.

BF04 J. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), 45–90.

BF06 J. Bruinier and J. Funke, Traces of CM values of modular functions, J. Reine Angew. Math.
594 (2006), 1–33.

Fun02 J. Funke, Heegner divisors and non-holomorphic modular forms, Compos. Math. 133 (2002),
289–321.

FK17 J. Funke and S. Kudla, Mock modular forms and geometric theta functions for indefinite
quadratic forms, J. Phys. A: Math. Theoret. 50 (2017), 404001.

FM02 J. Funke and J. Millson, Cycles in hyperbolic manifolds of non-compact type and Fourier
coefficients of Siegel modular forms, Manuscripta Math. 107 (2002), 409–449.

FM11 J. Funke and J. Millson, Spectacle cycles with coefficients and modular forms of half-integral
weight, in Arithmetic geometry and automorphic forms, Volume in honor of the 60th birthday
of Stephen S. Kudla, Advanced Lectures in Mathematics Series (International Press and the
Higher Education Press of China, 2011), 91–154.

FM13 J. Funke and J. Millson, Boundary behavior of special cohomology classes arising from the
Weil representation, Jussieu Math. J. 12 (2013), 571–634.

FM14 J. Funke and J. Millson, The geometric theta correspondence for Hilbert modular surfaces,
Duke Math. J. 163 (2014), 65–116.

Kud81 S. Kudla, Holomorphic Siegel modular forms associated to SO(n, 1), Math. Ann. 256 (1981),
517–534.

Kud13 S. Kudla, A note on Zwegers’ theta functions, Preprint (2013).

Kud18 S. Kudla, Theta integrals and generalized error functions, Manuscripta Math. 155 (2018),
303–333.

KM86 S. Kudla and J. Millson, The theta correspondence and harmonic forms I, Math. Ann. 274
(1986), 353–378.

KM87 S. Kudla and J. Millson, The theta correspondence and harmonic forms II, Math. Ann. 277
(1987), 267–314.

KM90 S. Kudla and J. Millson, Intersection numbers of cycles on locally symmetric spaces and
Fourier coefficients of holomorphic modular forms in several complex variables, Publ. Math.
Inst. Hautes Études Sci. 71 (1990), 121–172.

Liv16 I. Livinskyi, On the integrals of the Kudla–Millson theta series, PhD thesis, University of
Toronto (2016).

Mas91 W. S. Massey, A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127
(Springer, New York, 1991).

Naz18 C. Nazaroglu, r-tuple error functions and indefinite theta series of higher depth, Commun.
Number Theory Phys. 12 (2018), 581–608.

Shi75 T. Shintani, On construction of holomorphic cusp forms of half-integral weight, Nagoya
Math. J. 58 (1975), 83–126.
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