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Two-dimensional turbulence on the ellipsoid
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Two-dimensional turbulence transfers its energy towards the lowest mode in the domain,
but domain geometry exerts a powerful control. On the sphere, with its three axes of
rotational symmetry, angular momentum conservation prevents energy from entering
the three lowest modes – those corresponding to the spherical harmonics Y0

1 and
Y±1

1 – because the amplitudes of these three modes are proportional to the three
conserved components of the angular momentum vector. Non-spherical ellipsoids partly
or completely break the rotational symmetry corresponding to angular momentum
conservation. The flow on spheroids, which have only one axis of rotational symmetry,
conserves only a single component of angular momentum. If the axis of symmetry is
taken to be the z-axis, then only the z-component of angular momentum is conserved.
Energy can flow into the other two lowest modes. The general triaxial ellipsoid breaks all
rotational symmetries, thus angular momentum is not conserved, and energy can flow into
any mode. We describe numerical experiments that confirm these predictions.
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1. Introduction

We consider two-dimensional, incompressible flow on the ellipsoid

x2

a2 + y2

b2 + z2

c2 = 1. (1.1)

If a = b = c, the ellipsoid is a sphere. If a = b /= c, the ellipsoid is a spheroid. If a = b >
c, the spheroid is oblate. If a = b < c, the spheroid is prolate. If no two of a, b, c are equal,
the spheroid is termed triaxial. Earth is (approximately) an oblate spheroid.
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Geometrical symmetries of the ellipsoid exert a strong control on two-dimensional
turbulence. In all cases, energy flows towards the lowest mode in the system. According
to theory (Kraichnan 1967), all of the energy eventually ends up in the lowest mode, in
analogy with Bose–Einstein condensation in a quantum gas.

In the case of the sphere, there are three lowest modes corresponding to the
spherical harmonics Y0

1 and Y±1
1 . (The notation Ym

n suggests a representation in spherical
coordinates, but Y0

1 can be more usefully visualized as the embedding coordinate z
restricted to the sphere. Similarly, the two modes Y±1

1 are the restrictions of the two
functions x and y.) The amplitudes of these three modes are proportional to the three
directional components of the angular momentum, which are conserved even in the
presence of appropriate viscosity. Angular momentum conservation prevents energy from
entering or leaving these three modes. Hence, on the sphere, the lowest modes into which
energy can flow are the five modes corresponding to Y0

2 , Y±1
2 and Y±2

2 . Salmon & Pizzo
(2023, hereafter SP23) describe a computed example of Bose–Einstein condensation into
these five modes. See their figure 6.

In the case of the spheroids as defined above, only a single component of angular
momentum is conserved, corresponding to the fact that the sole rotational symmetry of
the spheroid is about the z-axis. Unlike on the sphere, the single conserved component
of angular momentum is not proportional to a single spheroidal harmonic, but to leading
order in a parameter that measures the departure from sphericity, it resembles the spherical
harmonic Y0

1 . Angular momentum conservation prevents energy from entering this mode,
but energy can flow into the two modes resembling Y±1

1 .
The general triaxial spheroid breaks all rotational symmetries, and hence angular

momentum is not conserved. Turbulence on the triaxial ellipsoid can populate any mode.
The rotational symmetry of the unit sphere is also responsible for the fact that the

spherical harmonics are highly degenerate eigenfunctions: the 2n + 1 harmonics of degree
n all have the same eigenvalue n(n + 1). This too has dynamical consequences. Because
the simultaneous conservation of energy and enstrophy (or, equivalently, the selection
rules governing triad interactions between harmonics) prevents modes with the same n
from interacting, a solution consisting only of modes with the same n corresponds to a
steady velocity field in the inertial reference frame.

More generally, flow comprising modes of degrees 1 and n has a velocity field that is
steady in a reference frame rotating at the angular speed

Ω − 2Ω
n(n + 1)

, (1.2)

with respect to the inertial frame. Here Ω is the solid-body rotation rate associated with
the modes of degree 1. (With no loss of generality, we may take the symmetry axis for
this solid-body flow to be the z-axis.) This solution, evidently known to Ertel (see Rochas
1984), was partly re-discovered by Thompson (1982). If the modes of degree n consist
only of the two modes Y±m

n , then this solution is the familiar Rossby–Haurwitz wave, but
the general solution, containing 2n + 1 degree-n modes, is much more remarkable. SP23
offer a proof of this solution and show a computed example comprising the 13 modes of
degree n = 6; see their figure 5.

The symmetry properties of the sphere predict the existence of such a solution (but
not its propagation speed (1.2)) as follows. Eigenvalue degeneracy prevents the modes of
degree n from interacting with one another. The degree-n modes can interact with the
modes of degree 1, but angular momentum conservation prevents the amplitudes of the
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Two-dimensional turbulence on the ellipsoid

degree-1 modes from changing. The only remaining possibility is a rotation of the whole
pattern about the symmetry axis of the degree-1 modes.

The reduced symmetry of the spheroid greatly reduces the degeneracy of its eigenmodes
(Eswarathasan & Kolokolnikov 2022). Eigenmodes are degenerate only in pairs, and hence
only the analogues of single Rossby–Haurwitz waves are present. On the triaxial ellipsoid,
no such exact solutions apparently exist.

With the foregoing general properties in mind, we examine numerical simulations of
two-dimensional turbulence on ellipsoids of various shapes. Intuition suggests that the
geometry of the ellipsoid exerts only a weak control on the small spatial scales of the
flow, but the preceding discussion suggests that geometric effects on the largest scales
can be very strong, especially considering the tendency of two-dimensional turbulence to
transfer its energy into the lowest mode, i.e. the ellipsoidal harmonic with the smallest
Laplace–Beltrami eigenvalue.

In § 2, we introduce the equations governing two-dimensional flow on an arbitrary
curved surface and discuss their conservation properties, emphasizing the importance of
angular momentum conservation as the new ingredient of the theory. We then describe a
numerical algorithm that solves this dynamics on the ellipsoid (1.1). The algorithm uses
two overlapping systems of stereographic coordinates in such a way that the entire ellipsoid
maps into the interiors of two unit circles. No ‘pole problem’ like that encountered
using spherical coordinates occurs. Section 3 compares freely decaying two-dimensional
turbulence on four ellipsoids: the unit sphere, a prolate spheroid, an oblate spheroid and a
triaxial ellipsoid. The numerics confirm that energy flows into the lowest available mode
as determined by angular momentum conservation.

This paper is self-contained, but it could be read as a sequel to SP23, which offers a fuller
discussion of stereographic coordinates and further details about the special solutions
mentioned above. In the present paper, we are more concerned with turbulence than with
special solutions. Previous papers on two-dimensional turbulence on the sphere include
Fjortoft (1953), Platzman (1960), Willams (1978), Tang & Orszag (1978), Boer (1983),
Yoden & Yamada (1993), Huang & Robertson (1998), Lindborg & Nordmark (2022) and
Cifani et al. (2022). Frederiksen & Sawford (1980) and Dritschel, Qi & Marston (2015)
have previously noted that angular momentum conservation fixes the amplitudes of the
three n = 1 modes.

2. Dynamics

On a general two-dimensional surface, the Navier–Stokes equations are

∂q
∂t

+ 1√
g
∂(ψ, q)
∂(ξ1, ξ2)

= D (2.1)

and

∇2
LBψ ≡ 1√

g
∂

∂ξ i

(√
ggij ∂ψ

∂ξ j

)
= q, (2.2)

where q is the vorticity, ψ is the stream function, t is time and (ξ1, ξ2) are
coordinates covering the surface. Here, gij is the metric tensor, gij is its inverse, g is
its determinant, and repeated indices are summed from 1 to 2. Additionally, D is the
angular-momentum-conserving viscosity recommended by Gilbert, Riedinger & Thuburn
(2014, hereafter GRT14). Furthermore, ∇2

LB is the Laplace–Beltrami operator; it reduces
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to the ordinary Laplacian on the plane. We also have

ξ̇ i = − 1√
g
εij ∂ψ

∂ξ j , (2.3)

where the overdot denotes the time derivative following a fluid particle and εij is the
permutation tensor. When D ≡ 0, the dynamics of (2.1) and (2.2) conserves the energy

E = 1
2

∫∫
dξ1 dξ2√g

∂ψ

∂ξ i gij ∂ψ

∂ξ j , (2.4)

and the enstrophy

Z = 1
2

∫∫
dξ1 dξ2√gq2. (2.5)

On the unit sphere with spherical coordinates (ξ1, ξ2) = (λ, θ), where λ is longitude
and θ latitude, we have gij = diag[cos2 θ, 1], gij = diag[cos−2 θ, 1] and g = cos2 θ . The
dynamics of (2.1) and (2.2) take the familiar form

∂q
∂t

+ 1
cos θ

∂(ψ, q)
∂(λ, θ)

= D (2.6)

and

1
cos2 θ

∂2ψ

∂λ2 + 1
cos θ

∂

∂θ

(
cos θ

∂ψ

∂θ

)
= q. (2.7)

On the unit sphere with the stereographic coordinates (ξ1, ξ2) = (ξ, η) used by SP23,
gij = diag[h2, h2], gij = diag[h−2, h−2] and g = h2, where

h(ξ, η) = 2
1 + ξ2 + η2 . (2.8)

The dynamics take the simpler form

∂q
∂t

+ 1
h2
∂(ψ, q)
∂(ξ, η)

= D (2.9)

and

1
h2

(
∂2ψ

∂ξ2 + ∂2ψ

∂η2

)
= q. (2.10)

Now let the surface be the ellipsoid (1.1) where (x, y, z) are Cartesian embedding
coordinates and a, b, c are constants. We assign coordinates to the ellipsoid as follows.
First, we project the point (x, y, z) on the ellipsoid to a point (X, Y, Z) on the unit sphere
by requiring that the three points (x, y, z), (X, Y, Z) and (0, 0, 0) be colinear. Refer to
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Two-dimensional turbulence on the ellipsoid

figure 1. This means that

(x, y, z) = R(X, Y, Z)(X, Y, Z) (2.11)

for some scalar R(X, Y, Z). Since (x, y, z) lies on the ellipsoid,

(RX)2

a2 + (RY)2

b2 + (RZ)2

c2 = 1 (2.12)

and hence

R(X, Y, Z) =
(

X2

a2 + Y2

b2 + Z2

c2

)−1/2

. (2.13)

Next, as in SP23, we cover the unit sphere with two overlapping systems of stereographic
coordinates. The first is defined as follows. Let (ξ, η, 0) be the point at which the line
between (X, Y, Z) and (0, 0, 1) intersects the plane z = 0. Refer again to figure 1. Then

X = 2ξ
1 + ξ2 + η2 , Y = 2η

1 + ξ2 + η2 , Z = ξ2 + η2 − 1
1 + ξ2 + η2 , (2.14a–c)

and

ξ = X
1 − Z

, η = Y
1 − Z

. (2.15a,b)

For the second system of stereographic coordinates, let (ξ̂, η̂, 0) be the point at which the
line between (X, Y, Z) and (0, 0,−1) intersects z = 0. We have

X = 2ξ̂

1 + ξ̂2 + η̂2
, Y = 2η̂

1 + ξ̂2 + η̂2
, Z = 1 − ξ̂2 − η̂2

1 + ξ̂2 + η̂2
, (2.16a–c)

and

ξ̂ = X
1 + Z

, η̂ = Y
1 + Z

. (2.17a,b)

Substituting (2.14a–c) and (2.16a–c) into (2.13) and (2.11), we obtain

(x, y, z) = S(ξ, η)(2ξ, 2η, ξ2 + η2 − 1) = S(ξ̂, η̂)(2ξ̂ , 2η̂, 1 − ξ̂2 − η̂2), (2.18)

where

S(ξ, η) =
(

4ξ2

a2 + 4η2

b2 + (ξ2 + η2 − 1)2

c2

)−1/2

. (2.19)

In the case of the unit sphere, (x, y, z) = (X, Y, Z), and (2.18) reduces to the coordinate
assignment used by SP23.

The mapping (2.18) between (x, y, z) on the ellipsoid and the covering coordinates (ξ, η)
or (ξ̂, η̂) is one-to-one for all non-vanishing a, b, c. It could easily be generalized to an
arbitrary, non-ellipsoidal surface provided only that the surface did not contain folds. Both
systems of coordinates, (ξ, η) and (ξ̂, η̂), cover the ellipsoid except for their respective
points at infinity. For the (ξ, η) coordinates, the point at infinity corresponds to the point
z = c, and the area within the unit circle ξ2 + η2 < 1 corresponds to the hemi-ellipsoid
z < 0. For the ξ̂ , η̂ coordinates, the point at infinity corresponds to the point z = −c,
and the area within the unit circle ξ̂2 + η̂2 < 1 corresponds to the hemi-ellipsoid z > 0.
Every point on the ellipsoid corresponds to a value of (ξ, η) and a value of (ξ̂, η̂), which
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(x, y, z)
(X, Y, Z)

(ξ, η, 0)

(ξ̂, η̂, 0)

(x, y, z)

(X, Y, Z)

z = 0

(0, 0, 1)

(0, 0, –1)

Figure 1. At the left, the point (x, y, z) on the ellipsoid (1.1) is first projected, along the line containing (x, y, z)
and (0, 0, 0), to the point (X,Y,Z) on the unit sphere, and then, along the line containing (X,Y,Z) and (0, 0, 1),
to the point (ξ, η, 0) on the z = 0 plane. This defines the stereographic coordinates (ξ, η), which cover the
ellipsoid except for the point (0, 0, c). At the right, (x, y, z) projects to (X,Y,Z) on the unit sphere, and then,
along the line containing (X,Y,Z) and (0, 0,−1), to the point (ξ̂, η̂, 0) on the z = 0 plane. This defines the
stereographic coordinates (ξ̂, η̂), which cover the ellipsoid except for the point (0, 0,−c).

generally differ. Only at z = 0 do we have (ξ, η) = (ξ̂, η̂) on the ellipsoid. The general
relation between the two coordinate systems is

(ξ, η) = (ξ̂, η̂)

ξ̂2 + η̂2
, (ξ̂, η̂) = (ξ, η)

ξ2 + η2 . (2.20a,b)

Thus, points within the unit circle on the ξ, η-plane correspond to points outside the unit
circle on the ξ̂ , η̂-plane, and vice versa. For analytical developments, it is best to restrict
one’s attention to a single coordinate system, but numerical computation is a different
matter: there is great advantage to using the ξ, η coordinates in the domain ξ2 + η2 <

1 to cover the ‘southern’ hemi-ellipsoid, and using the ξ̂ , η̂ coordinates in the domain
ξ̂2 + η̂2 < 1 to cover the ‘northern’ hemi-ellipsoid.

For infinitesimal displacements on the ellipsoid,

ds2 = dx2 + dy2 + dz2 = gξξ dξ2 + gηη dη2 + 2gξη dξ dη. (2.21)

From (2.18), we obtain expressions for the metric components gξξ , gηη, gξη and the
determinant g = gξξgηη − gξη2 as functions of ξ, η or ξ̂ , η̂. For example,

gξξ =
(
∂x
∂ξ

)2

+
(
∂y
∂ξ

)2

+
(
∂z
∂ξ

)2

(2.22)

and

gξη = ∂x
∂ξ

∂x
∂η

+ ∂y
∂ξ

∂y
∂η

+ ∂z
∂ξ

∂z
∂η
. (2.23)

Note that the metric coefficients have the same dependence on ξ, η as on ξ̂ , η̂. For
the sphere and for the spheroids, gξη = 0, and hence the coordinates (ξ, η) and (ξ̂, η̂)
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Two-dimensional turbulence on the ellipsoid

are orthogonal. On the triaxial ellipsoid, gξη /= 0, and therefore the coordinates are
non-orthogonal. The inverse components are gξξ = gηη/g, gηη = gξξ /g and gξη =
−gξη/g. If gξη = 0, then gξξ = 1/gξξ and gηη = 1/gηη.

As in SP23, our strategy will be to solve

√
g
∂q
∂t

− ∂(ψ, q)
∂(ξ, η)

= √
gD,∇2

LBψ = q, (2.24)

on ξ2 + η2 < 1; to solve

√
g
∂q
∂t

+ ∂(ψ, q)

∂(ξ̂, η̂)
= √

gD,∇2
LBψ = q, (2.25)

on ξ̂2 + η̂2 < 1; and to match the two solutions together at the ‘equator’, ξ2 + η2 =
ξ̂2 + η̂2 = 1. The matching conditions are that ψ and q be continuous at the equator. The
sign flip between (2.24) and (2.25) reflects the fact that, as viewed from the exterior of
the ellipsoid, ξ, η are left-handed coordinates, and ξ̂ , η̂ are right-handed coordinates. Our
method is designed to be such that the solved values of ψ and q are the same as would
be obtained by solving the entire problem in spherical coordinates. However, our method
completely avoids the pole problem. For further details, see SP23. For more background
on stereographic coordinates, see Needham (1997, 2021).

The energy and enstrophy take the forms

E = 1
2

∫∫
dξ dη

√
g

(
∂ψ

∂ξ
gξξ

∂ψ

∂ξ
+ ∂ψ

∂η
gηη

∂ψ

∂η
+ 2

∂ψ

∂ξ
gξη

∂ψ

∂η

)

+ 1
2

∫∫
dξ̂ dη̂

√
g

(
∂ψ

∂ξ̂
gξ̂ ξ̂

∂ψ

∂ξ̂
+ ∂ψ

∂η̂
gη̂η̂

∂ψ

∂η̂
+ 2

∂ψ

∂ξ̂
gξ̂ η̂

∂ψ

∂η̂

)
(2.26)

and

Z = 1
2

∫∫
dξ dη

√
gq2 + 1

2

∫∫
dξ̂ dη̂

√
gq2, (2.27)

where the integrals are over the interiors of the two unit circles. We define the angular
momentum,

M =
∫∫

dξ dη
√

g(x(ξ, η)× ẋ(ξ, η))+
∫∫

dξ̂ dη̂
√

g(x(ξ̂, η̂)× ẋ(ξ̂, η̂)), (2.28)

whether or not it is conserved. To express the time derivatives ẋ(ξ, η) and ẋ(ξ̂, η̂) in terms
of the stream function, we take the time derivative of (2.18), and set

ξ̇ = 1√
g
∂ψ

∂η
, η̇ = − 1√

g
∂ψ

∂ξ
(2.29a,b)

and
˙̂
ξ = − 1√

g
∂ψ

∂η̂
, ˙̂η = 1√

g
∂ψ

∂ξ̂
. (2.30a,b)

The sign flip between (2.29a,b) and (2.30a,b) reflects the difference in handedness between
ξ, η and ξ̂ , η̂. Then using (2.28), (2.29a,b) and (2.30a,b), we find that M = (M1,M2,M3)
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where

M1 = 2
∫∫

dξ dηψ
∂( y, z)
∂(ξ, η)

+ 2
∫∫

dξ̂ dη̂ψ
∂( y, z)

∂(ξ̂, η̂)
, (2.31)

M2 = 2
∫∫

dξ dηψ
∂(z, x)
∂(ξ, η)

+ 2
∫∫

dξ̂ dη̂ψ
∂(z, x)

∂(ξ̂, η̂)
, (2.32)

M3 = 2
∫∫

dξ dηψ
∂(x, y)
∂(ξ, η)

− 2
∫∫

dξ̂ dη̂ψ
∂(x, y)

∂(ξ̂, η̂)
. (2.33)

Once again, when a = b = c all three components M1,M2,M3 are conserved; when a =
b /= c only the z-component, M3, is conserved; and when no two of a, b, c are equal, no
component of M is conserved. These conservation laws depend upon the physics ((2.1)
and (2.2)) as well as the geometry of the spheroid, as reflected in its metric components.

The viscosity
D = νgij∇i∇jq + 2ν∇i(gijK∇jψ), (2.34)

recommended by GRT14 (equivalent to their (3.61)) conserves angular momentum
when the ellipsoid possesses the required rotational symmetry. Here, ν is the viscosity
coefficient, ∇i is the covariant derivative and K(ξ, η) is the Gaussian curvature. Using
tensor identities, we obtain gij∇i∇j = ∇2

LB, and hence (2.34) is equivalent to

D = ν∇2
LBq + 2νKq + 2ν

∂K
∂ξ i gij ∂ψ

∂ξ j . (2.35)

On the unit sphere, K ≡ 1 and (2.35) reduces to the viscosity

D = ν(∇2
LBq + 2q), (2.36)

proposed by Willams (1972) and Becker (2001). (SP23 erroneously omitted the last term
in (2.36).) As noted by GRT14, in the case of the sphere, it is easy to see that (2.36)
conserves angular momentum while dissipating energy and enstrophy: if q is expanded in
the spherical harmonics Ym

n , then the coefficients qm
n (t) obey

∂qm
n

∂t
+ · · · = ν(−n(n + 1)+ 2)qm

n , (2.37)

where the ellipses denote the advective terms. The three conserved components of angular
momentum correspond to the three amplitudes q0

1, q±1
1 of degree n = 1. The viscosity

(2.37) vanishes on these three modes, but all higher modes experience dissipation. On the
ellipsoid, the Gaussian curvature K generally varies with location. As a function of the
embedding coordinates, it is

K = 1

a2b2c2
(

x2

a4 + y2

b4 + z2

c4

)2 . (2.38)

Using (2.18), we obtain the useful formula

K(ξ, η) =

(
4ξ2

a2 + 4η2

b2 + (ξ2 + η2 − 1)2

c2

)2

a2b2c2
(

4ξ2

a4 + 4η2

b4 + (ξ2 + η2 − 1)2

c4

)2 , (2.39)

from which the derivatives of K(ξ, η) can be computed analytically for use in (2.35).
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Two-dimensional turbulence on the ellipsoid

We emphasize that, in our idealized dynamics, the ellipsoid serves only to shape the
flow; there is no force between the ellipsoid and the fluid except for the pressure torque that
arises from non-sphericity. The fluid ‘rotates’ if it has a conserved component of angular
momentum, and the ‘rotation rate’ is constant because angular momentum is conserved.
This is in contrast with the Earth-atmosphere system in which the angular momentum
of the atmosphere is not by itself conserved, but is leading-order constant because of
the torque exerted by the Earth’s surface, and because the solid planet has an enormous
moment of inertia. In our case, the ‘rotation rate’ is perfectly constant; in the Earth’s case,
it is nearly constant, as demonstrated by the very small changes in the measured length of
day.

Our decision to view all of our results in the inertial reference frame is sensible because
of this same lack of frictional torque between the ellipsoid and the fluid. Suppose, on the
sphere, that the fluid had non-vanishing angular momentum about the z-axis corresponding
to solid-body rotation at angular velocity Ω . If this situation were viewed from a frame
rotating with the solid-body flow, then the other two angular momentum components
would obey

dM1

dt
−ΩM2 = 0,

dM2

dt
+ΩM1 = 0 (2.40a,b)

(Egger, Weichmann & Hoinka 2007, p. 3). In the inertial frame, M1 and M2 are
independent constants. (Note that (1.2) vanishes when n = 1.) Our affection for the inertial
frame would certainly disappear if we were to consider an ellipsoid that rotated about an
axis that was not an axis of symmetry. This is actually the situation on Earth, if one takes
Earth’s full surface topography into account.

The presence of angular momentum, whether conserved or not, affects the speed at
which energy is transferred between modes. Wave dispersion caused by non-zero Ω

interferes with the transfer of energy between modes, slowing the inverse cascade in
the way first described by Rhines (1975). Partly for this reason, all of the experiments
described in the next section were begun from states of vanishing angular momentum.

It is worth emphasizing that three conservation laws – energy, enstrophy and angular
momentum – are fundamentally different constraints. Energy conservation is associated
with time independence of the metric components. Enstrophy conservation arises from
the fluid-particle relabelling symmetry. Angular momentum conservation arises from the
invariance of the metric components with respect to rotation. Specifically, if coordinates
(r, φ) can be found such that a rotation corresponds to a translation in φ with no change
in r, and if in these coordinates, the metric components depend only on r and not on φ,
then the angular momentum with respect to the axis of rotation is conserved. Angular
momentum is an unfamiliar ingredient of two-dimensional turbulence theory, because
most planar geometries, including the infinitely periodic box, lack rotational symmetry.

The ellipsoidal harmonics Yp(ξ
1, ξ2) are defined by

∇2
LBYp ≡ 1√

g
∂

∂ξ i

(√
ggij ∂Yp

∂ξ j

)
= −λpYp, (2.41)

where p is a discrete index that denotes the harmonic, and λp is the corresponding
eigenvalue. Both Yp and λp depend parametrically on a, b, c. When a = b = c = 1, the
Yp are the familiar spherical harmonics Ym

n with eigenvalue λn,m = n(n + 1). On the
ellipsoid, as on the sphere, the Yp comprise a complete set of orthogonal functions.
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R. Salmon and N. Pizzo

Upon normalization, we have

∫∫
dξ1 dξ2√gYpYk = δpk. (2.42)

For a thorough treatment of ellipsoidal harmonics, see Dassios (2012). The usual
development is in terms of Lamé functions, but for ellipsoids close to the sphere,
an expansion in terms of the spherical harmonics can be useful. Eswarathasan &
Kolokolnikov (2022) give expressions for the eigenvalues of ellipsoids that are close to
the unit sphere. For the spheroid with a = b = 1 + εα and c = 1 + εβ, they obtain

λ = n(n + 1)+ ε

[
(α − β)

2n(n + 1)(2n2 − 2 m2 + 2n − 1)
(2n + 3)(2n − 1)

− 2αn(n + 1)
]

+ O(ε2),

(2.43)
where n and m are integers, and −n < m < n. If ε = 0, there are 2n + 1 distinct harmonics
with the same eigenvalue n(n + 1). For ε /= 0, the eigenvalues are degenerate only in pairs
(±m).

Let the vorticity and stream function be expanded in ellipsoidal harmonics,

q(ξ1, ξ2, t) =
∑

p

qp(t)Yp(ξ
1, ξ2), ψ(ξ1, ξ2, t) =

∑
p

ψp(t)Yp(ξ
1, ξ2), (2.44a,b)

where qp = −λpψp. The dynamics becomes

dqi

dt
= 1

2

∑
j

∑
k

(λk − λj)

λjλk
qjqk

∫∫
dξ1 dξ2 ∂(Yj, Yk)

∂(ξ1, ξ2)
Yi. (2.45)

The energy and enstrophy take the forms

E = 1
2

∑
p

λpψ
2
p , Z = 1

2

∑
p

λ2
pψ

2
p , (2.46a,b)

just as in the spherical case. However, only on the sphere are the angular momenta
proportional to single harmonics. To see this, rewrite (2.31)–(2.33) in arbitrary coordinates
as

M =
∫∫

dξ1 dξ2√g(Q1,Q2,Q3)ψ, (2.47)

where

(Q1,Q2,Q3) = 2√
g

(
∂( y, z)
∂(ξ1, ξ2)

,
∂(z, x)
∂(ξ1, ξ2)

,
∂(x, y)
∂(ξ1, ξ2)

)
, (2.48)

and the integration is over the entire ellipsoid. To compute the function Q3, we can use
any set of covering coordinates ξ1, ξ2, but the most convenient choice is (ξ1, ξ2) = (x, y).
Then Q3 = 2/

√
g, where g is the metric determinant corresponding to the coordinates x, y.
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Two-dimensional turbulence on the ellipsoid

a b c λ1 λ2 λ3 λ4

S sphere 1 1 1 2 2 2 6
P prolate spheroid 0.9 0.9 1.208 2.480 2.480 2.640 7.371
O oblate spheroid 1.1 1.1 0.804 1.680 1.680 1.840 4.971
T triaxial ellipsoid 0.9 1.1 1.002 1.838 1.995 2.158 5.596

Table 1. The geometry of the ellipsoids used for the numerical experiments.

Setting a = b for the sphere or the spheroid, and using

ds2 = dx2 + dy2 +
(

d
√

1 − x2 − y2
)2

= gxx dx2 + 2gxy dx dy + gyy dy2 (2.49)

and g = gxxgyy − gxygxy, we obtain

Q3 = 2

√
1 − (x2 + y2)

1 + ε(x2 + y2)
, (2.50)

where ε = c2/a2 − 1. In the case of the unit sphere, ε = 0 and Q3 = 2z = 2 sin θ , which is
proportional (apart from normalization constant) to the spherical harmonic Y0

1 . Similarly,
Q1 = 2x and Q2 = 2y on the sphere.

For the spheriod, ε /= 0. Expanding (2.50) in ε and setting x2 + y2 = a2(1 − z2/c2),
we obtain an expansion for Q3 in odd powers of z. Then, using the definitions of the
spherical harmonics in terms of x, y, z, we can express Q3 as the weighted sum of
spherical harmonics of the form Y0

2n+1 with leading term proportional to Y0
1 . Thus, Q3

for the spheroid is not proportional to a single spherical harmonic. However, neither is
it proportional to a single ellipsoidal harmonic, as can be demonstrated by computing
(∇2

LBQ3)/Q3 and observing that this quotient is not independent of location on the
spheroid.

3. Numerics

We consider freely decaying turbulence on four distinct ellipsoids: the unit sphere (S),
a prolate spheroid (P), an oblate spheroid (O) and a triaxial ellipsoid (T). The values
of a, b, c were chosen such that the ellipsoids, in all four cases, have the same surface
area, 4π, as the unit sphere. Table 1 summarizes the geometry. Table 1 also gives the
eigenvalues of the four lowest modes according to the formulae of Eswarathasan &
Kolokolnikov (2022) for the spheroid (given above as (2.43)) and for the triaxial ellipsoid
(their (22)–(25)). The three eigenvalues given as λ1, λ2, λ3 correspond to harmonic degree
n = 1. Here, λ4 is the smallest of the five eigenvalues corresponding to n = 2.

In the case of the sphere, all three of the eigenvalues associated with n = 1 have the same
value, 1(1 + 1) = 2. The corresponding eigenmodes are the three spherical harmonics,
Y0

1 , Y±1
1 .

The two spheroids, P and O, have a pair of degenerate eigenvalues, λ1 and λ2.
The corresponding two eigenfunctions differ by a 90-degree rotation about the axis of
symmetry (the z-axis) of the spheroids. These two modes, which have the same latitudinal
structure but vary as cos λ and sin λ with longitude, are the lowest modes – with the
smallest eigenvalues – on the spheroids, and are hence the modes into which, according
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to theory, all energy will eventually flow. The mode corresponding to λ3 is inhibited
from accepting energy by the conservation of angular momentum, but it is not entirely
forbidden, because, as explained in § 2, this mode is only the leading order contributor to
the conserved component M3. It is interesting that the eigenvalues of P are all higher than
the corresponding eigenvalues of S, while those of O are lower than those of S.

In the case of the general triaxial ellipsoid, no two eigenvalues are equal. No component
of angular momentum is conserved, and energy can flow into any mode.

Our numerical method is a generalization of the method described in detail in SP23.
The generalization only requires the insertion of metric components in appropriate places.
We use a Strang splitting method that alternates between the Jacobian dynamics, i.e. (2.1)
with D = 0, and viscous dynamics, i.e. (2.1) with the Jacobian term omitted and D taken
as (2.35). The Jacobian dynamics conserves energy (2.4) and enstrophy (2.5) except for
truncation error in the time step; it conserves angular momentum (as geometry permits)
except for truncation error in the time step and in the spatial differencing. The viscous
dynamics correctly dissipates energy and enstrophy, and it conserves angular momentum
except for both temporal and spatial truncation error. Our spatial resolution is equivalent
to a harmonic cutoff at degree n = 240. It corresponds to a grid spacing of approximately
94 km on Earth’s surface.

The four experiments begin from nearly identical initial conditions that are assigned as
follows. Let qS(X, Y, Z) be a sum of spherical harmonics in the range n = 5, 6, 7 with
randomly assigned amplitudes. On all four ellipsoids, we set q(x, y, z, 0) = qS(X, Y, Z)
where (x, y, z) is related to (X, Y, Z) by (2.11) and (2.13). This initial condition is then
re-scaled in such a way to make the root mean square (r.m.s.) velocity urms = 1. This
means that a time interval of unity is required for a fluid particle to move a distance equal
to the ‘radius’ of the ellipsoid. Figure 2 shows the initial stream function as viewed from
x = ∞ in the four experiments. In all four experiments, we take ν = qrmsΔ

2 where qrms is
the r.m.s. vorticity andΔ is the grid-spacing on the stereographic plane. As time increases,
urms, qrms and ν all slowly decrease, but viscosity is insignificant at late times because by
then, nearly all of the energy is in the lowest modes. By t = 10, urms has decreased to
approximately 0.90 in all four experiments, but the energy decay thereafter is quite small;
at t = 200, urms still ranges between 0.71 and 0.82 in the four experiments. Figure 3 shows
the vorticity at t = 2.5, by which time the flow is fully turbulent. The turbulence gradually
subsides as the energy reaches the lower modes and Bose–Einstein condensation begins to
occur.

Tables 2 and 3 summarize the results. Table 2 displays the angular momentum
componentsμi = Mi/4π per unit area, where Mi is computed from (2.31)–(2.33). Division
by area makes the ‘scale size’ of μi order one. Thus, μi � 1 is insignificant. All of
our experiments begin with μi ≈ 0. The asterisks in table 2 denote angular momentum
components that are conserved and should therefore remain zero. Differences from that
are caused by accumulated numerical truncation error, which is seen to be quite small.
The non-conserved angular momentum components generally increase in P, O and T, but
the increase is not monotonic, and sign changes even occur. The sign of the non-conserved
components of angular momentum is an accident of the initial conditions.

Table 3 shows the fraction, En, of total energy in the modes ‘associated’ with degree
n. By this, we mean the following: the vorticity and stream function at (x, y, z) on the
ellipsoid are first projected onto the unit sphere at (X, Y, Z) and then analysed by projection
onto spherical harmonics, in a reverse of the method used to assign initial conditions. The
better method would be a spectral analysis in terms of ellipsoidal harmonics themselves.
These however are very difficult to calculate. Therefore, the data in table 3 must be
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Two-dimensional turbulence on the ellipsoid

(a) (b)

(c) (d)

Figure 2. The stream function at t = 0 on the (a) sphere, (b) prolate spheroid, (c) oblate spheroid and
(d) triaxial ellipsoid. The initial conditions consist of modes of degrees n = 5, 6, 7 with randomly assigned
amplitudes. Darker contours correspond to larger values.

S P O T

∗μ1 ∗μ2 ∗μ3 μ1 μ2 ∗μ3 μ1 μ2 ∗μ3 μ1 μ2 μ3

t = 0 0.00 0.00 0.00 −0.02 0.00 −0.03 −0.01 0.00 −0.03 0.00 0.00 0.00
t = 5 0.00 0.00 0.00 −0.07 0.01 −0.03 0.04 −0.01 −0.03 0.02 0.01 −0.02
t = 10 0.00 0.01 0.00 −0.20 0.10 −0.03 0.01 −0.10 −0.03 0.02 0.03 −0.04
t = 20 0.01 0.00 0.01 −0.26 0.00 −0.03 0.07 −0.15 −0.04 0.10 0.00 −0.02
t = 40 0.00 0.01 0.01 −0.37 −0.05 −0.03 0.01 0.07 −0.04 0.10 0.00 −0.02
t = 80 0.01 0.00 0.03 −0.49 −0.15 −0.01 −0.12 0.25 −0.04 0.03 −0.17 −0.12
t = 120 −0.01 −0.01 0.04 −0.55 −0.01 −0.02 −0.26 0.32 −0.02 0.07 −0.07 −0.26
t = 160 0.00 −0.01 0.05 −0.52 0.21 −0.03 −0.40 0.19 −0.02 0.20 −0.20 −0.29
t = 200 −0.01 −0.02 0.06 −0.39 0.42 −0.03 −0.46 0.17 0.01 0.24 −0.28 0.25

Table 2. Evolution of μi = Mi/4π, the angular momenta per unit area, in the numerical experiments. The
asterisks denote components that are conserved by the dynamics.

regarded as an approximation to the true energy spectrum which is good only to the
extent that the spherical harmonics resemble the corresponding ellipsoidal harmonics. The
eigenvalues recorded in table 1 suggest that this resemblance is adequate: at our values of
a, b, c, there is no overlap between the eigenvalues λ1, λ2, λ3 corresponding to n = 1 and
the lowest eigenvalue, λ4, corresponding to n = 2.
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Two-dimensional turbulence on the ellipsoid

(a) (b)

(c) (d)

Figure 3. The vorticity at t = 2.5 on the (a) sphere, (b) prolate spheroid, (c) oblate spheroid and (d) triaxial
ellipsoid. By this time, the flow is fully turbulent. Darker contours correspond to larger values.

Table 3 shows that angular momentum conservation on the sphere prevents energy from
entering the three lowest modes. By t = 120 – the time required for a fluid particle to
circumnavigate the sphere approximately 20 times – fully 92 % of the remaining energy
has condensed into n = 2, but none has crossed the angular-momentum barrier into
n = 1. For the prolate spheroid, 64 % of the energy has crossed into n = 1 and most
of the remainder resides in n = 2, waiting to cross. The corresponding figures for the
oblate spheroid are 40 % and 48 %. The condensation of energy into n = 1 on the triaxial
ellipsoid proceeds more slowly than on either of the two spheroids. At t = 120, only 19 %
of its energy has reached the lowest mode.

Figures 4(a,b) and 4(c,d) show two views of the stream function on the sphere and on
the prolate spheroid, respectively, at t = 120. The two views are by an infinitely distant
observer at (a,c) y = z = 0 and x = ∞, and at (b,d) y = z = 0 and x = −∞. Thus, the
two views offer a complete picture. At this late time, the vorticity strongly resembles the
stream function. The sphere exhibits four vortices, which could be anticipated from its
dominantly n = 2 composition (table 3). There is of course no reason why any of these
vortices should favour a particular direction on the sphere. At t = 120, the prolate spheroid
exhibits two vortices in keeping with its dominantly n = 1 composition. As expected, the
centres of these two vortices lie in the xy-plane. They are analogous to the Y±1

1 modes,
which, unlike the Y0

1 mode, are not prevented by angular momentum conservation from
accumulating turbulent energy. These modes are the lowest modes in the system (table 1)
and are therefore the site of Bose–Einstein condensation. The corresponding views of the
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(a) (b)

(c) (d)

Figure 4. Two views of the stream function on the (a,b) sphere and on the (c,d) prolate spheroid at t = 120.
Darker contours correspond to larger values.

oblate spheroid and the triaxial ellipsoid (not shown) are less easy to characterize, because
the energy of the oblate spheroid at t = 120 is still about equally divided between n = 1
and n = 2 (table 3), and the energy of the triaxial ellipsoid is still dominantly in n = 2.

Figure 5 shows the same two views of the stream function on the (a,b) oblate spheroid
and on (c,d) the triaxial ellipsoid at the final time, t = 200. At t = 200, 56 % of the energy
has reached n = 1 on the oblate spheroid, and the stream function (figure 5a,b) shows
vortices centred on z = 0, as predicted by theory. The triaxial ellipsoid, with its complete
lack of symmetry, shows no such tendency (figure 5c,d).

It is interesting that the prolate spheroid, for which the adjustment to equilibrium is
relatively rapid has lowest eigenvalue 2.480 (table 1) that is displaced upward from the
eigenvalues of the sphere, whereas the lowest eigenvalues of the oblate spheroid and
triaxial ellipsoid (respectively 1.680 and 1.838) are downwardly displaced. One is tempted
to say that the adjustment takes longer if it has farther to go. In all cases, except perhaps
that of the sphere, this adjustment is extremely slow, but this agrees with previous results;
see especially Dritschel et al. (2015).

4. Discussion

Angular momentum conservation is irrelevant to two-dimensional turbulence on the plane
because typical planar geometries lack the corresponding symmetry property. Only planar
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Two-dimensional turbulence on the ellipsoid

(a) (b)

(c) (d)

Figure 5. Two views of the stream function on the (a,b) oblate spheroid and on the (c,d) triaxial ellipsoid at
the final time t = 200. Darker contours correspond to larger values.

domains with a perfectly circular boundary (including the infinite plane) conserve a
component of angular momentum.

Kraichnan (1967) statistical mechanics extends easily to the sphere. The planar theory
predicts an energy spectrum of the form

Ei = 1
α + βk2

i
, (4.1)

where ki is the wavenumber – k2
i the eigenvalue – of the Fourier component denoted

by i, and α and β are constants determined by the values of the energy and enstrophy.
Bose–Einstein condensation corresponds to the limit α → −βk2

min as k2
max → ∞, where

kmin is the lowest wavenumber and kmax the highest wavenumber in the system.
(Equilibrium statistical mechanics applies only to a finite set.) For the sphere,

Em
n = 1

α + βn(n + 1)
, (4.2)

but this applies only to n /= 1. On the sphere, the constants α and β are again defined by the
values of energy and enstrophy, but for this purpose, the sums in (2.46a,b) must exclude
the n = 1 modes, whose contributions are not allowed to change. From the standpoint
of statistical mechanics, ψm

1 and qm
1 are constants and are statistically sharp. This point

was emphasized in the pioneering calculation of Frederiksen & Sawford (1980). For the
non-spherical ellipsoids, the situation is slightly more complicated in that the angular
momentum does not correspond to a single ellipsoidal harmonic, but for ellipsoids that
are leading order spherical, the angular momentum modes are leading order spherical
harmonics.
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Strictly speaking, equilibrium statistical mechanics applies only to the inviscid case.
In the inviscid case, enstrophy piles up near the highest allowed wavenumber (i.e.
largest eigenvalue) in the system, and disappears to infinity as that wavenumber is
increased. Numerical computation is impractical for kmax → ∞, but moderate viscosity
removes enstrophy from the wavenumbers near kmax much as if that enstrophy had
migrated to unresolved scales. Moreover, by smoothing the flow at the smallest resolved
scales, viscosity prevents spatial truncation error from destroying angular momentum
conservation. (In our numerical model, the Jacobian dynamics conserves energy and
enstrophy despite the truncation error arising from finite grid size, but angular momentum
is conserved only to within spatial truncation error.) The general agreement of our results
with the predictions of equilibrium statistical mechanics is both a vindication of the theory
and a proof of the accuracy of our code.

Earth is an oblate spheroid whose departure from sphericity is much smaller than the
spheroids considered in § 3. It corresponds to a = b = 1 and c = 1 − 1/298. To this
spheroid we have applied the same initial conditions as in § 3 and found no very significant
departures from the spherical experiment for times out to t = 320. The difficulty is
in distinguishing the effects of very small oblateness from the noise of accumulated
numerical truncation error, which also grows slowly as time increases.

Meteorologists have long been aware of torques arising from Earth’s lack of rotational
symmetry, but they adopt a somewhat different viewpoint to that adopted here. In their
budget of exact angular momentum (defined similarly to (2.28)), oblateness enters as one
of several torques and is sometimes called ‘flatness torque’ or ‘bulge torque’. See Egger
et al. (2007) for an extensive review. Other torques include those arising from mountain
topography and from gravitational force. Neither of the latter are present in our dynamics.
Much of the meteorological work is based upon observations, and it is applied to much
more realistic dynamics than the two-dimensional incompressible flow considered by us.
Thus, the relevance of the present study to Earth’s atmosphere is unclear.

The choice of dynamics is critical. In their calculation of the statistical mechanics of
barotropic flow on a rotating sphere with mountain topography, Sawford & Frederiksen
(1983) adopt quasi-geostrophic dynamics, in which the topography term contains a factor
of Coriolis parameter (their μ = sin θ ). If one were to regard the equatorial bulge as a
form of mountain topography, then their calculation would predict a response only if there
were non-vanishing M3 (i.e. non-vanishing Coriolis parameter). In our dynamics on the
spheroid, M1 and M2 increase regardless of the value of M3, which, as in our experiments,
may vanish.

The sphere seems to be the ideal geometry in which to study pure two-dimensional
turbulence. It has no boundary, and, if M = 0, it has no preferred direction.
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