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Abstract

This paper presents the method applied to history-match the Groningen field dynamic model to conventional data (pressure data and water influx

data) and to subsidence data, which is a novelty. Modelled subsidence is matched to subsidence data based on a simplified geomechanical model,

which was built into the dynamic simulator.

A two-tier method was used to first achieve a match on a field-wide scale using field-average history-match quantifiers, which was then further

improved at a regional/well level using regional history-match quantifiers. The history match was assisted by a space-filling experimental design.

The resulting model has a field-average match to pressure data of ±2.17 bar with a measurement uncertainty of ±0.4 bar, to water influx data of

±2 m with a measurement uncertainty of ±0.5 m, and to subsidence data of ±4 cm with a measurement uncertainty of ±1 cm.

The output from this model is used as input for compaction, subsidence and production forecasts feeding into the hazard and risk assessment

completed by NAM for the Groningen Winningsplan 2016.
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Introduction

An update of the history matching of the Groningen field dy-
namic reservoir model was done as part of the 2015 Gronin-
gen Field Review (GFR2015) which was input to the Groningen
Winningsplan update in 2016. Although the previous GFR2012
model vintage was still well suited for field development pur-
poses, this update was instigated in light of the production-
induced seismicity.

Results from the dynamic reservoir model are among the main
inputs used to predict future subsidence. Subsidence is the sur-
face imprint of reservoir compaction, which in turn is caused by
pressure depletion due to gas production. Compaction is also be-
lieved to be the driving energy source for the seismicity observed
in Groningen and therefore of special interest for this model up-
date. Since direct measurements of compaction are sparse, being
only available from five wells in the reservoir, the compaction
dataset is insufficient to constrain the full reservoir model. Sub-
sidence data are, however, readily available from levelling and
satellite surveys and can thus be used to constrain pressure de-
pletion. The previous model, GFR2012, had not been constrained

to subsidence data. Calculated subsidence based on the results
of that model resulted in notable local mismatches to observed
subsidence. Aquifers adjacent to the field (e.g. underneath the
city of Groningen) had not been incorporated in the GFR2012
model area. Pressure depletion is expected in these aquifers and
therefore the model area has been extended to capture subsi-
dence effects at the edges of the Groningen closure (Fig. 1).
This required the inclusion of nine peripheral fields and their
respective histories of pressure depletion.

The objective of the paper is to show how subsidence data
can be used to constrain dynamic reservoir models additional
to pressure and water ingress data. We explain the history-
matching workflow applied to match multiple model realisa-
tions, composed of the Groningen field and peripheral fields,
to the available subsurface data and the subsidence data. The
final product of the workflow is a single best-matched model re-
alisation. For forecasting, a workflow was used to generate a set
of 1000 model realisations based on the uncertainty ranges as
established in the history-matching methodology. From this set
three models are selected representing the P10/P50/P90 reali-
sations with respect to Ultimate Recovery. The applied forecast
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Fig. 1. GFR2012 (left) and GFR2015 (right) dynamic simulation grid. Gas saturation in blue, and water in red.

uncertainty workflow is beyond the scope of this paper. These
models are used as the basis for forecasts of gas recovery, pres-
sure distribution and subsidence.

Dynamic data

In total, 347 wells have been drilled in the Groningen field
throughout its field life, and these have been subject to surveil-
lance activities (measurements) over time. These data are used
to calibrate the Groningen field dynamic model by minimising
the mismatch of model output to field measurements; in previ-
ous model vintages reservoir pressure and water rise measure-
ments at well locations have been used. The resulting dataset
allows for good control on the dynamic behaviour of the reser-
voir near these wells. In areas where wells are sparse, temporal
information to constrain the model is thus also scarce – this in-
cludes the north of the field and the aquifers surrounding the
Groningen field.

Reservoir pressure data (SPG and RFT)

Reservoir pressure is routinely measured at the various produc-
tion clusters (generally located towards the centre and the south
of the field) and in the observation wells (typically located to-
wards the periphery of the field). In total, some 1800 downhole
static pressure gradient (SPG) measurements have been recorded
to date in the Groningen field (see Fig. 2). Due to the typical
accuracy of the gauges, multiple gauge types have been used;
the uncertainty in the pressure measurements is ±0.4 bar.

For the Groningen and adjacent fields, 41 repeat formation
tests (RFT) are available. RFT logging is done shortly after
drilling the well and provides pressure measurements as a func-

tion of depth. Model output is generated to compare to both RFT
and SPG measurements.

Aquifer ingress data

Aquifer ingress resulting from reservoir pressure depletion has
been monitored in 30 wells by time-lapse Pulsed Neutron Log
(PNL) surveys, with a total of 217 measurements to date. The
maximally interpreted heights of change due to water satura-
tion increase are collected in a dataset, representing water rise
at well locations as a function of time. (PNL measures the cap-
ture cross section, also called sigma, which represents the ability
of a given formation to capture thermal neutrons. Sigma will
be affected by water movement, because chlorine in the salty
water is the most effective neutron absorber in the reservoir.
A gamma-ray tool connected to the PNL tool allows for depth
correlation by log comparison. The water ingress height is de-
termined by comparing the sigma log measurement of different
surveys over time.) The interpreted depth of the gas–water con-
tact is compared to model output. Due to the resolution of the
gauge and resolution in the depth correlation the uncertainty
in the interpreted height is ± 0.5 m.

Subsidence data

Subsidence data are readily available from satellite and level-
ling surveys and provide the imprint of pressure depletion over
time for the entire onshore part of the Groningen field and its
surroundings, also in places where there is no well control. Sub-
sidence has been measured throughout the production life of
Groningen. It therefore provides additional information that has
been used to constrain this update of the dynamic model.
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Fig. 2. Down-hole pressure measurements in the Groningen field over time converted to datum depth (2875 m TVD NAP) in the gas phase, from SPG surveys.

The total dataset of subsidence measurements is filtered by
the NAM (Nederlandse Aardolie Maatschappij B.V.) Geomatics de-
partment for stable benchmarks. Stable means the benchmark is
both physically stable and the observations are free of human
measurement and recording error. A benchmark is classified as
stable when the estimated deviation from the trend obtained
from proximal benchmarks is no greater than 20 mm. Bench-
marks may be excluded from the set, because abnormally fast
settlement or uplift occurred (greater than 20 mm with respect
to a previous survey) caused by physical displacement of the
benchmark (such as by heavy vehicles), or because the bench-
mark was accidentally reinstated at a wrong location after con-
struction work. Furthermore, abnormally large deviations from
the proximal observed trend (greater than 2 mm a−1) typically
related to shallow effects (e.g. soil compaction, solution salt
mining, building settlement, groundwater level changes) may
render benchmarks unstable. Of all benchmarks, 85% are classi-
fied as stable.

The first subsidence (levelling) survey that covered the full
field was taken in 1972. Earlier surveys only partially covered
the Groningen field, as it took some years after the initial dis-
covery to establish the full extent of the field. The most recent
full field (levelling) survey was acquired in 2013 (and the next
repeat survey is currently planned for 2018). The measurement
error over the 1973–2013 epoch is in the order of 1 cm (NAM,
2014).

History-matching the dynamic model

Upscaling

Shell’s in-house 3D numerical, fully implicit, finite volume reser-
voir modelling simulator is used to simulate the dynamic be-
haviour of the Groningen field and peripheral fields. The static

geological subsurface pillar grid model (Visser & Solano Viota,
2017) was upscaled from 50,714,125 voxels (479 × 605 × 175)
to 543,600 grid blocks (120 × 151 × 30) of which 317,896 are
active. Each grid block measures approximately 400 m by 400 m,
with an average thickness of 6 m.

The static properties for the entire numerical grid (not just
within the Groningen closure) after upscaling are as follows.
Net-to-gross ranges from 0.006 m3 m−3 to 1 m3 m−3, with an
average of 0.92 m3 m−3. Porosity is modelled compressible and
compacts under pressure depletion; it initially ranges from
0.04 m3 m−3 to 0.27 m3 m−3, with an average of 0.14 m3 m−3.
Horizontal permeability is modelled isotropic and ranges from
0.25 mD to 1845 mD, with an average of 122 mD; vertical per-
meability is lower and ranges from 0.0014 mD to 1043 mD with
an average of 33 mD.

Initialisation

The model is divided over 45 initialisation regions of which 17
are within the Groningen field. Regions are based on different
observed initial free water levels or observed pressure lags in re-
gions separated by partly sealing faults. Within the Groningen
closure, the temperature at datum depth varies and ranges from
87°C in the southeast to 116°C in the northwest with an average
of 101°C. The model simulates a gas and a water phase, and the
pressure–volume–temperature behaviour of the gas is based on
the analysis of multiple fluid samples (Burkitov et al., 2016).
Capillary pressure is modelled using Brooks-Corey and is based
on saturation logs which compare to core flood experiment re-
sults. Relative permeability is modelled based on 19 special core
experiments from core plugs collected across the Groningen and
adjacent fields; no upscaling of these properties has been ap-
plied because the distribution of properties in Groningen is rel-
atively homogeneous (Burkitov et al., 2016). Nine finite linear
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analytical aquifers are attached at the lateral boundaries of the
numerical model.

Over the entire history, 347 wells have been active, including
producers in the Groningen field and in peripheral fields, obser-
vation wells and injection wells. Alvestad inflow equations are
used to model the wells.

Subsidence modelling

Reservoir compaction in each grid cell is calculated based on
reservoir pressure and matrix compressibility. Matrix compress-
ibility is modelled as a function of porosity based on a trend
observed in core experiments, and ranges from 1.7 × 10−6 bar−1

to 1.9 × 10−5 bar−1, with an average of 4.3 × 10−6 bar−1. Using
the Geertsma and van Opstal equation (Geertsma & van Opstal,
1972), the calculated reservoir compaction is converted to an
areal grid of surface subsidence. (This method is set up as a
proxy to constrain dynamic modeling, and significantly simpli-
fies the overburden (Burkitov, 2016). For NAM’s official subsi-
dence predictions a more detailed analysis is done by the Geome-
chanics Department (van der Wal & van Eijs, 2016).) Reservoir
compaction at any given location yields a dedicated bowl of sur-
face subsidence, with its radius related to the reservoir depth.
Hence, the ability to laterally resolve reservoir compaction based
on surface subsidence is limited to the reservoir depth. In the
discrete models used, the total subsidence at surface is calcu-
lated as the sum of the subsidence bowls associated with the
compaction of each individual grid cell. The approach assumes
a homogeneous half-space with a Poisson’s ratio of 0.25. Both
the modelled subsidence and the measured subsidence at stable
benchmarks are projected on a large grid of approximately 4 km
by 4 km which is used for visual comparison, and over which a
root-mean-squared error (RMSE) is calculated. The assumption
in the workflow is that all subsidence is caused by compaction
in the Groningen field or adjacent fields only. Even though other
sources impact subsidence in a small fraction of the surface area
(e.g. solution salt mining), it is beyond the scope of this work
to model these impacts. Despite the uncertainty in the modelled
subsidence, the method does reveal spatial differences in subsi-
dence related to differential pressure depletion in areas outside
of well control.

History-matching methodology

The upscaled dynamic model was initialised in the dynamic sim-
ulator and run in history-match mode: the 60 years of historic
production is withdrawn in monthly time steps from the indi-
vidual wells. To improve the initial match to the four available
historical data types, a method of history matching assisted by
a space-filling experimental design was applied (Burkitov et al.,
2016). This is a design of experiments (DOE) technique, which
has the advantage of being very flexible and quick to implement
(Wilson, 2015), and it uses full field models, instead of the typ-

ically used proxy models. The following six steps explain the
process.

1. Set-up of the variable model parameters. The multidis-
ciplinary subsurface team determines the relevant variable
model parameters that are uncertain and likely to impact the
mismatch to data. This modelling exercise is by no means
the first attempt to history-match Groningen, and in conse-
quence the process was significantly steered by the history-
matching parameters used in GFR2012. The applied method
relies on continuous variables and is not suitable for cate-
gorical parameters, such as different static models, without
repeating the entire workflow for every realisation of such a
categorical parameter.

Certain variable parameters were introduced to improve
the match to data that had not been incorporated before,
including parameters to match subsidence data. In total, 96
parameters are used in the history-matching workflow. While
this is a large number, it allows for achieving a match in all
regions of the field. Geologists, geomechanicists and petro-
physicists have been continuously involved in constraining
the parameter ranges within realistic bounds, to filter out un-
explainable, unrealistic or inconsistent combinations of pa-
rameters. The set of variable parameters is selected to impact
the history match for both the full field and the output of re-
gions or wells and comprises the following types: gross bulk
volume, permeability multiplier, fault seal factors, aquifer
length, free water level, saturation functions and compress-
ibility uncertainty. The most sensitive parameter varies per
observable and has been determined using a tornado design.
For subsidence, a fault separating the Groningen field from
an adjacent aquifer is most impactful, for SPG the permeabil-
ity multiplier in the Rotliegendes is most impactful, and for
PNL the residual gas uncertainty is most impactful.

2. Experimental design. The next step is to establish how
(combinations of) settings for the variable model parameters
can improve the match. Given the large set of variable pa-
rameters, certain experimental designs would require an un-
realistically large number of simulations. A space-filling ex-
perimental design can be used, as the number of simulations
required is a choice of the user. A modified Van Der Corput
space-filling approach (Van Der Corput, 1935) was used to
generate a set of 1000 different models. The Van Der Corput
space-filling approach was modified to be used in multiple
dimensions, instead of one, by randomly ordering the sam-
pled parameter value of the first dimension for each higher
dimension. Essentially, for each model realisation, every vari-
able model parameter is sampled within its allocated uni-
form range, which is set symmetrically around its base case.
The workflow results in models with parameters symmetri-
cally around each base case parameter, but does not penalise
deviations from the prior model base case parameter setting.
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Fig. 3. Assisted History Matching workflow from the space-filling exercise

towards the manual tuning.

3. Quantify mismatch. To quantify the mismatch between
model output and the dynamic data (SPG, RFT, PNL and subsi-
dence data), a RMSE is calculated for each data type. PNL and
subsidence mismatches are not weighted differently. Pres-
sure mismatches are weighted based on reliability, which is
quantified 1 (poor) to 10 (good) depending on the tools used
and the measurement protocol applied. Over the field life of
Groningen, pressure gauges have improved in accuracy and
the measurement protocols were improved, allowing longer
stabilisation periods prior to taking pressure measurements.
A field-average RMSE and local RMSEs per well, cluster and
region are calculated.

4. Model selection and improvement. Out of the set of mod-
els resulting from the space filling, a selection is made based
on a low field average mismatch to subsidence, pressure and
water influx. Because of practical reasons, the unfamiliarity
with the subsidence model response and a time constraint to
deliver a match, a graphical method was used to find an opti-
mal solution, instead of an iterative method which converges
to a minimum using a numerical solver. The three separate
mismatches are plotted in 3D with RMSE values increasing
away from the origin (see Fig. 3, left). The models closest to
the origin are in theory the ones with the best match to the
three constraining datasets.

Although the set of optimal models towards the origin
have a good overall history match, they will not necessarily
match all individual wells. The models selected in Figure 3
(left) are further examined for their quality of match at a
well level.

To improve the match locally, local RMSE functions are
compared to all variable model parameters to find possible
correlations within the full set of model realisations. When
there is an apparent correlation between a parameter and a
local mismatch, it can be used to manually set the value of
that parameter at its optimum value within its defined range,
to obtain a model with a lower mismatch. An example is given
in Figure 4, which shows a pressure match to the Harkstede-
2A observation well. This well was drilled in a compartment
separated from a nearby production cluster by a fault group,

and the pressure mismatch was found to have a clear corre-
lation with its associated fault seal factor. Consequently, the
fault seal factor was fixed at 10−1.2.

As mentioned, subsidence was partly included in the work-
flow to improve pressure match in the periphery. An example
that shows that an improved match to subsidence results in
an improved match to pressure is given in Figure 5 for the
Warffum-2b well. Two models are shown, where the only dif-
ference is the sealing behaviour of a fault separating the
Warffum-2b well from the aquifer. Improving the pressure
match improves the subsidence match at this location. This
example does give some confidence that subsidence data can
be used to constrain the model outside of well control, for
instance in the aquifers to the west of the field where no
well information is available.

5. Improve definition of variable parameters. The set of vari-
able model parameters defined at step 1 did not always de-
liver a match to the dynamic data locally. The occurrence
of certain combinations of matches could be mutually exclu-
sive in the ensemble of generated models and a match may
not be possible without altering the variable parameter set-
up. Inconsistent variable parameter settings are the result of
effective variable parameter choices, based on engineering/
geoscience judgement, mostly related to uncertainty in
fault transmissibility. Given a large number of over 1600
interpreted faults within the Groningen closure and a pref-
erence to limit the number of variable parameters, only a
limited selection of faults is modelled to be sealing. When
the selected set causes inconsistent results, revision of the
effective parameters is done by the subsurface team, with
the relevant disciplines involved. An example is illustrated
in Figure 6 for the Ten Boer-4 observation well, which is sep-
arated by multiple faults from the nearby Eemskanaal cluster
of production wells. Ten Boer-4 was drilled in a compartment
which is lagging in pressure and where no water rise was
observed historically. Certain faults were selected to vary in
transmissibility near this well. For an ensemble of 1000 mod-
els, the pressure and PNL matches of the Ten Boer-4 observa-
tion well were found to be mutually exclusive (Fig. 6, left). A
relatively high transmissible fault group improves the pres-
sure match for this well because it improves pressure commu-
nication to Eemskanaal, although, conversely, higher trans-
missibility in this specific group of faults results in increased
water influx which had not been measured by PNL surveys.
With the subsurface team an alternative set of faults was set
to vary in transmissibility, and in a repeat of the workflow,
no inconsistent results occurred for this example (Figure 6,
right).

6. Repeat steps 2–5 until the match is consistent. When the
set of variable model parameters is adjusted as per step 5, the
workflow steps 2–5 are repeated until a consistent match has
been achieved. A match has minimal local and global RMSE
for different data types in the ensemble of models.
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Fig. 4. Local history-match improvements using the ensemble of 1000 models. (A) A prior model selected in Figure 3. (B) The correlation between a certain

variable fault-group transmissibility and the pressure match of a local well. Highlighted are all models selected in Figure 3, (C) applying the best-match

sealing factor.

Fig. 5. Pressure match and subsidence match in the northwestern part of the model.

Fig. 6. The local pressure and PNL match of the Ten Boer 4 observation well.

(A) Initial variable fault group: no simultaneous match for both pressure and

PNL. (B) Alternative variable fault group: PNL and pressure match converge

to the origin when transmissibility is decreased.

Results

By applying the workflow as described in this paper, a best-
matched model was established. Using the RMSE as a mismatch
function, the following results were obtained.

• The average mismatch to SPG pressures is ±2.17 bar, with
a data uncertainty of ±0.4 bar and no significant trend of
pressure mismatch over time (SGS Horizon, 2016), as shown
in Figure 7 Early in the field life, the mismatch to pressure is
higher. This is partly due to operational procedures, since the

well shut-in duration prior to measurement, which directly
impacts the measured pressure, was not recorded. Later in
field life, the mismatch stabilises.

• The average mismatch of the selected model to subsidence
is ±4 cm, with a data uncertainty of ±1 cm. The results are
shown in Figure 8. In the northeast of the field, the model
predicts too much subsidence, while in the south it predicts
too little. The best match is found in the west and in the
central part.

Residuals from the subsidence match have a clear areal
trend (Fig. 8, right). This cannot be attributed to a mismatch
in reservoir pressure, which has been matched accurately.
Physical elements not included in the model could help ex-
plain the residuals in the subsidence. For instance, the south-
ern mismatch could be related to pressure depletion of the
Carboniferous formation underlying the Groningen reservoir.
The resulting compaction could improve the match. The mis-
match in the north of the field could be related to gas satura-
tion trapped in the aquifer below the gas–water contact. The
trapped gas would reduce the pressure drop in the aquifer
and this would, in turn, reduce compaction, thus improving
the over-prediction of subsidence in the north.

• The mismatch to water rise is ±2 m, with a data uncertainty
of ±0.5 m, which is considered to be a good match given
the coarse vertical resolution of the dynamic model (SGS
Horizon, 2016).
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Fig. 7. Pressure mismatch as a function of time for all SPG data points; the colour indicates the shut-in time in days prior to the survey.

Fig. 8. Subsidence proxy output (A), measurement output (B) and the difference between model and measurement (C), all in cm. No subsidence measure-

ments are available for the northern and eastern part of the grid, which lies offshore.

Simulation of a single model takes approximately 6 hours
including the subsidence calculation.

Conclusions and recommendations

In light of the production-induced seismicity, the modelling of
the Groningen reservoir is extended far beyond what is required
in a conventional setting for making business decisions about
the development of the field. A novel approach to history match-
ing was introduced which assimilates subsidence data into a
dynamic model by using a simplified geomechanical model. At
well locations, a good match to subsidence data corresponds to a
good match to pressure data; subsidence data can help constrain
the model outside of well control. Residuals in the subsidence
match could be caused by a depleting Carboniferous and residual
gas in the aquifer.

The history-matching method applied has proved to be a rel-
atively quick method to achieve a good match to multiple types

of data. This allowed for assimilation of large amounts of avail-
able data within a relatively tight schedule of 3 months. It also
proved useful in indicating inconsistencies in the definition of
variable model parameters.

Future studies to further increase the dynamic understand-
ing of the Groningen field and to improve the predictive mod-
elling capability are outlined in the Study and Data Acquisition
Plan (NAM, 2016). The dataset constraining the dynamic model
will be enhanced by including static reservoir pressure measure-
ments based on shut-in tubing head pressure data. Reservoir
depletion and aquifer ingress can be constrained by including
the historic gravity surveys, including the recent 2015 survey.
Potentially, depletion of the underlying gas-bearing Carbonif-
erous formation may explain the observations from the gravity
data. A petrophysical study is being undertaken to investigate
the occurrence of (residual) gas below the gas–water contact.
Rock compressibility was populated in the dynamic model based
on a trend observed in core experiments, by means of a single
porosity transform throughout the entire grid. Areal trends that

s53

https://doi.org/10.1017/njg.2017.26 Published online by Cambridge University Press

https://doi.org/10.1017/njg.2017.26


Netherlands Journal of Geosciences — Geologie en Mijnbouw

are not honoured by this transform will be captured by updat-
ing the compressibility grid using a model-based inversion of
subsidence data and calculated reservoir pressure. This inver-
sion will be done with the dedicated geomechanical model and
will honour the full subsidence dataset instead of only using the
1972 and 2013 sets.
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