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The aim of the present note is to describe the possible products when taking all the
nonzero elements of a finite ring in some sequence. Compared with the analogous
situation for finite groups, where the set of products of all elements has been shown in [2]
to be a whole coset of the derived group, for rings the set of the above mentioned
products will be proved either to be as large as possible or to consist of one or two
elements only.

NOTATION. Let H = {r1; r2, . . . , rk} be a subset of cardinality k in a finite ring; we
denote by p(H) the set {rn^rx(:Z)' ' ' rit(k):jl e2*}> where 2fc stands for the symmetric
group on k letters. If V = V(n, q) is an n-dimensional vector space over the g-element
field and 1 =s t ̂  n, we write Hom(V; t) for the set of linear mappings of V (into itself) of
rank t and Hom(V) for the set of all V to V linear mappings. We write At for the set of all
f-dimensional subspaces of V.

Our main result can be formulated as follows.

THEOREM. Let R be a finite ring.
(1) If R is a finite field or the 2-element zero ring then p(R\{0}) consists of a single

(certainly nonzero) element only.
(2) (a) If R is isomorphic to the ring of 2 by 2 upper triangular matrices over the

2-element field with zero trace then p(R\{0}) = \\ \\.

(b) If R is Z/4Z, the ring of the residue classes of the rational integers modulo 4, then
p(R\{0}) = {2}.

(c) If R is isomorphic to the whole ring of 2 by 2 upper triangular matrices over the

2-element field then p(R\{0}) = \\° °l \°
(d) IfRis UU UJ LU

{[I °o\ to J] ' [J o]' [I I}) or {[o ol' [°i °o\' to o]' [! o]}
over the two-element field, then

rro oi ro i n rro on ro on

respectively.

(3) IfV = V(n, q), R = Hom(V) andn»2 thenp(R\{0}) = Uom(V; 1) U {0}.
(4) p{R\{0}) = {0} in all other cases.
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The first (and main) step in the proof is to handle case (3). To do so we need some
lemmas.

LEMMA 1. Let V = V(n, q), rc3=2 and 1 =£/•=£« — 1 with ri=\n; there exists a
bijection m on ArUAn_r such that

(i) UeArL)An_rd>U®Um = V,
(ii) (Um)m = U(VUeArl)An_r).

Proof. Consider the simple bipartite graph <g with V(CS) = ArUAn_r and E{<S) =
{(U, W): UeAr, W eAn_r, [/© W = V). As % is regular, it possesses a 1-factor giving
m.

LEMMA 2. Let V = V(n, q), f e Hom(K; r), l^r^n-1, r^\n, and let m denote
any bijection which fulfils (i) and (ii) of Lemma 1. There exists a unique f~ e Hom(V; r)
such that

ker(/") = (Im(/)r, Im(/") = (ker(/))m,

ff~f=f-
Proof. Let U = (ker(/))m. As U D ker(/) = {0}, the restriction goiftoUis one to

one from U to Im(/), and Im(g) = Im(/) since U + ker(/) = V. The restriction of /~ to
Im(/) can be nothing but the (unique) inverse of g, and, since Im(/) © (Im(/))m = V,
such an/~ does exist.

COROLLARY 1. In the notation of the above lemma, ( / " )" =/.

It is useful to fix a bijection m (in Lemma 1) for the case r = 1. Therefore we prove
the following result.

LEMMA 3. Let V = V(n, q), n>2. Denote by <§ the simple bipartite graph with
V(<S) = AiL)An.i andE(<S) = {(U, W): U eAuW eAn_uU Pi W= {0}}; then <S possesses
a Hamilton cycle.

Proof. Al and An^ are of size (qn - l)/(q - 1); so v = \V(G)\ = 2(qn - 1)1 {q - 1).
Each vertex of « has degree d = (qn -q"~l)l{q -1) = qn~1. Thus d>\v and, by
Chvatal's result (see [1, Ex. 4.2.6, p. 61]), there exists a Hamilton cycle in C3.

DEFINITION 1. For all V of dimension at least three, we fix a Hamilton cycle
(f/i, U2, • • • , Uv) (guaranteed by the previous lemma), and by means of that define the
bijection n on AxUAn_x in the following way:

i+l i f / i s o d d '
,-i if i is even.

COROLLARY 2. The bijection n satisfies the requirements (i) and (ii) of Lemma 1 (for
= l).

PROPOSITION 1. p(Hom(V; 1)) * {0}.

Proof. Firstly assume n>2. By Corollary 2 and Lemma 2 (using n for m),
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we can express Hom(V; 1) as the union of pairwise disjoint sets B, B~ and 5 with

Let C = {ff~: feB}; then C c 5, and hence p(Hom(V; 1)) ^p(S). For the elements of
5. we obviously have

y ker(g) = (Im(g))
Hence

ker(g) = ker(/i)olm(g) =
Thus if g, h e 5 and ker(g) = ker(fc) then gh e S and

ker(gfc) = ker(g) = ker(fc), lm(gh) = Im(g) =

Therefore /?(Hom(K; 1)) ^p(T), where 7 is some subset of 5 satisfying

{ker(fy.feT}=An_l,

{lm(f):feT}=Au

ker(/) = ker(g)O/ = g (/, g e T).
Now consider the graph $ in Lemma 3. We can assume UieAn-i, and hence
T={f2,f4,...,fv} with ker(/2l-)=£/a_i, Im(/2l) = t/2,. Since (f/2(, t/a+1) e
fv+ifv^O. That yields

Turning to the case n = 2<q, one defines the simple graph X by V($f) = Hom(V; 1),
£ W = { ( / > g ) : / * g > / g * 0 * g / } . Let / e V(X); there are (? 2 -? ) / (g - 1) = q choices
for ker(g) to get gf ̂  0 and similarly g choices for Im(g) to fulfil fg ^ 0. Thus the degree
of / in ffl is at least

So, by Dirac's theorem, there exists a Hamilton cycle in Vt (see [3]). Taking the product
according to the sequence of any Hamilton path we get a nonzero element. As for the
remaining case of n = 2 = q,

i 0] ro i] ro oi ro i] ro 0] ri i] ro 0] ri on ri i] ri 1
o oJ Lo IJ Li IJ Lo oJ Li oJ Li lJ Lo IJ Li oJ Lo oJ~Lo o

directly shows that p(Hom(V; 1)) =£ {0}.

LEMMA 4. Let Hom(V; 1) = {fuf2, • • • ,fv) (f^fj for i¥=j), and let
P = {gl,g2,---,gv}<=Hom(V;l) with ker(g,) = ker(/), Im(g,) = Im(/0, (Vi^v). //
fl...fv*0thengl...gv±0.

Proof. Trivial.

PROPOSITION 2. Let V = V(n, q); thenp( U Hom(V;k)) g L with
{ker/:/e L}=An_l.
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Proof. By Proposition 1, it can be assumed that n >2. Let 2=£k =£n - 1 and
as a consequence of Lemma 2, Hom(K; k) = B U B~ U C with

B- = {f-:feB},
C={feHom(V;k):f-=f}.

Suppose g eCl) {ff~:f e B}; then there exists a nonzero vector veV such that
g(v)=±i/ ; taking heHom(V;l) to satisfy uelm(/i), we have ker(gh) = ker(A),
Im(g/i) = Im(/i). Therefore, by Lemma 4, A can be replaced by gh in Proposition 1.
Having done that procedure for all members of Hom(K;A:) (for all k), we get rid of
Hom(V;k) (for \n # k > 1) and have to deal only with k = |n.

Now suppose n = 2r>2, and take Hom(K;r) = (J Hh where
O«isr

//, = {/ e Hom(K; r): dim(ker(/) n Im(/)) = r - i}.

Assume r > / > 0. Let Vx, V2 be subspaces of V of dimension r and suppose that
dim(Vi fl V2) = r - i. Choose a basis {au . . . , ait c,, . . . ,ch bu . . . , fer_,} of V, + V2

so that {au...,ah bu . . ., 6r_,} c V,, {c1; . . . , c,, 6a, . . . , 6r_J c V2. Let V =
(Yi + ̂ 2) © W> a"d denote by i/j and f/2 the subspaces with bases {ax + ca, . . . , a,- + c,}
and {£>! + aj + c2, a2 + c3, . . . , a, + c j respectively. Now, if Wf = Uj © W (j = 1, 2) then
W, n W2 = W is of dimension r - i and ^f lW,= {0} for any;, t e {1, 2}.

Let D, = {(Af, N) eArx Ar: dim(M flJV) = r - i } . Then the elements of D, can be
divided into two subsets D^ and Df^ so that

(M, N)eD<l)&(N, M)eD?\

We define the simple graph % with V{%) = Dh

The previous construction of Wu W2 shows that E{%) is nonempty. As % is obviously
regular bipartite, it has a 1-factor given by some bijection b. Let / e //,; then, by means of
b, we can define/" to be the unique mapping in //, which satisfies

ker(/") = (Im(/))6, Im(T) = (ker(/))6,

For g eHr, g~ can be defined uniquely by

kerfe") = ker(g),

From now on, one can proceed in the same way as at the earlier elimination of
Hom(V; A:) (for k ̂  2n); this leads to some z with

U Hom(V ;k)\H0).

https://doi.org/10.1017/S0017089500007412 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007412


PRODUCTS IN A FINITE RING 329

For Ho, we consider the simple graph $? with

V(ff) = Ho, E(X) = {(/, g): ker(/) n ker(g) = {0}}.

It should be mentioned that, for the members of Ho, kernels and images coincide so

if, g) e E(X) O rank(/g) = rank(g/) = r.

As Sif is regular, V(W) is the disjoint union of the vertex sets of some cycles Ku

K2, . . . , Ks: those of length two are also allowed. Let AT, look like (/,, f2, . . . ,fk)
(k 3=2). It cannot happen that Im(z) c ker(/j) n ker(/2), since by (/,, f2) € £($f), {0} =
Im(/2) n ker(/i) = ker(/2) D ker(/j). Thus we can assume Im(z) D ker(/i) = {0} (since
dim(Im(z)) = 1). Hence z2=fkfk-i • • -fifi? ^0- The same argument works for z2 and k2,
etc., yielding 0 # / i e p ( U Hom(V;A:)). Let L = {g^hg-.g eHom(V;n)\. Then

l=sfc=sn-l

Lsp( U

PROPOSITION 3. p(Hom(V)\{0}) = Hom(K; l)(J{0} provided dim(V) = n 3= 2.

Proof. As Oep(Hom(K)\{0})cHom(V;l)U{0}, all we have to prove is
Hom(K; 1) cp(Hom(V)\{0}). Let G = Hom(V;n), and denote the derived group of G
by G1. It is known that p(G) is a coset of G1 (see [2]), and it is easy to see that this coset
is actually G1, except when the Sylow 2-subgroups of G are (nontrivial) cyclic. For our G,
that happens only if n=2 = q; then, using the matrix form of the elements of G,

= {[1 J , [Q J , [j 0 ] j . Otherwise p{G) = Gl holds, and G1 consists of the

elements of G whose determinant is 1. In both cases, p(G) permutes the nonzero vectors
of V transitively.

We can use Proposition 2 to deduce: for any subspace U of V of dimension n - 1,
there exists a mapping fv ep(Hom(V)\(G U {0})) such that ker(/u) = U. Let ueV\U
and w e K\{0}. Then g(fu{u)) = w for a suitable g ep(G). Hence g/j, ep(Hom(y)\{0});
i.e. /?(Hom(V)\{0}) contains any prescribed element of Hom(V; 1).

Proof of the theorem. Assume that 0 is the only nilpotent ideal of R. Then, by the
Wedderburn-Artin theorems, R is the direct sum of ideals lx, . . . , Ik, where each /, is
isomorphic to Hom(V;) for suitable finite vector spaces Vh If k = \, we get (3) from
Proposition 3. Suppose that k 5= 2; let a,e/i\{0}, a2e/2\{0}. Then all elements of
p(R\{0}) are of the form c=xa,yajZ (some of x, y, z may be empty). That form
immediately implies c e / 1 n / 2 = 0. Exclude the trivial case of the 2-element zeroring and
suppose that R possesses nonzero nilpotent ideals. There must exist a nonzero ideal / with
/2 = 0 as well. If / has at least three elements then, with au a2e/\{0} and axi=a2, we
have every element of p(R\{0}) of the form xajyajZ, obviously belonging to // = 0. Thus
I = {0,p} can be assumed. Let L = {x eR.xI = 0}, K = {y eR: ly = 0}; K and L are
ideals in R, and the factor rings R/K, R/L are subrings in the endomorphism ring of the
additive group of /; that implies \R/K\, \R/L\*z2. Suppose that a e (K n L)\I. Then

p(R\{0}) c {xaypz, xpyaz: x,y,zeRU {!}} c ( / C n L)1 U I(K D L) = 0.
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So we can assume that KC\L = I. Hence \R/I\ divides 4. If R has four elements then
suppose firstly that the additive group of R is of exponent 2 (i.e. R has characteristic 2);
then R = {0, p, a, b] with a + b = p.

If K U L = R, we get (a1). Thus we can assume ap = p = pa; hence bp = (a + p)p =
ap + p2 = p; similarly pb = p, just yielding a2, b2 e{a,b). If {x, y} ;= {a, 6} and JC2 = y
then y2 = (p + x)2 = p2 + p + p +x2 = x2 = y; thus a2 = a can be assumed; whence ft2 = a,
ab = ba = (a + p)a = a + p = b, and R is isomorphic to the following ring of matrices

rro 0] ri oi ro n n ni

over the 2-element field: jl I, I I, ^ I, ^ Ij. # is commutative

and /?(/?\{0}) = | |. Suppose now the additive group of R to be cyclic, i.e. R =
{0, a, —a, 2a = p}. Again we have ap = p = pa, so a2 = a can be assumed; thus i? turns
out to be isomorphic to Z/4Z. This shows, in particular, p(R\{0}) = {2}.

Let us now suppose that \R\ - 8, and the additive group of R/I is of exponent 2:
R = I U (/ + a) U (/ + b) U (/ + a + b).

Since KC\L = I, one can assume ap = p = pa and bp — p\ then pfe = 0. As pa = p,
a2 e (/ + a) U (/ + a + b). Suppose a2 e I + a + b; then p = a2p = (a + b)p = 0, a con-
tradiction; hence a2el + a. Similarly b1 e(I + a)\J(I + b) as bp = p, and b2eIU(/ + b)
as pb = 0; thus b2el + b. One can get (a + b)2e/ + a + b in the same way as well as ba,
abel + b. Suppose that b2 = b+p; then p = b2-b and b commute, contradicting
bp = p ^ 0 = pb; thus b2 = b, and for the same reason 2b = 0. Suppose that ab = p + b;
then p = ab — b; hence 0 = pb = (ab — b)b = aft2 — b2 = ab — b = p, a contradiction; so
ab = b. Should ba¥=ab; then ba-b + p, and we can replace a by a + p = a' to get
a'b = b = ba'. Let a'2 = a'+;r (xe / ) ; then & = fta' = ft(a')2 = &(a' +*) = 6 + &*; hence
x = 0 and a'2 = a'. Suppose that 2a'= p; then p and b commute, a contradiction; thus
2a' = 0, i.e. R is of characteristic 2, and the mapping

i on , ri oi ro i]

m 1 0 Or'0'"* 0 0 e x t e n d s t o a n isomorphism.

After identification we obviously have p(R\{0}) = \ \ , \\. If at last the

additive group of R/I is cyclic then R is commutative, whence p(R\{0}) = {0} since
K*I.
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