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Abstract. The advantages and disadvantages of two approaches to as-
trophysical hydrodynamics, Smoothed Particle Hydrodynamics (SPH)
and Adaptive Mesh Refinement (AMR), are briefly discussed together
with some current problems of computational hydrodynamics.

1. From Henyey to SPH and AMR

A history of numerical hydrodynamics in application to the problem of proto-
stellar collapse begins more than three decades ago. It is remarkable to note
that already at that time numerical simulations followed two distinct paths.
Bodenheimer & Sweigart (1968) and Bodenheimer (1968) used a Lagrangian
implicit method closely following Henyey’s approach (Henyey, Forbes & Gould
1964) commonly used for stellar evolution computations. On the other hand,
Larson (1969) developed a variant of an Eulerian scheme for radiation hydrody-
namics in the optically thick regime. Despite the use of very different numerical
schemes, both studies yielded very similar results.

However, problems like the massive removal of angular momentum from the
clump of molecular gas collapsing into stellar densities, could not be addressed
within the one-dimensional framework. Among the simplest ways of removing
excess angular momentum is the deposition of angular momentum in the orbital
motion of planets formed around a central star, or by the formation of a multiple
stellar system. Neither of the two ways of removal of angular momentum can
be studied in detail in one dimension. To overcome this problem Lucy (1977)
proposed a method in which the distribution of hydrodynamical quantities is
approximated with a discrete set of diffuse clouds of matter, Smoothed Particle
Hydrodynamics (Monaghan 1992). The SPH method is purely Lagrangian, can
be easily implemented on a computer, and allows for performing 3-dimensional
simulations even on relatively small systems.

On the other hand, the solution of the hydrodynamical equations in mul-
tidimensions poses severe problems for grid based codes. In the Lagrangian
approach the grid cells follow individual fluid elements and whenever a signifi-
cant amount of shear is present in the flow the numerical grid becomes heavily
distorted. This problem is nicely illustrated by the work of Woodward (1976)
in his study of a shock-cloud interaction problem. Since a strong distortion of
the computational grid leads to a loss of accuracy of the discretization, most of
the later research on Lagrangian schemes was devoted to the development of so-
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phisticated rezoning modules which would allow to adequately follow individual
fluid elements with an accuracy independent of their shapes.

An overall quality of the solution in the Eulerian model is determined by
both the order of the advection scheme and the resolution provided by the
numerical grid. Woodward and Colella (1984) demonstrated that substantial
savings in terms of both memory and CPU time can be achieved when advection
schemes of high-order are used instead of their low-order counterparts. These
modern advection algorithms, shock-capturing schemes, gained much popularity
during the last decade and follow the seminal works of Godunov (1959), van
Leer (1976) and Harten (1983). The shock-capturing methods are characterized
by at least a second order accuracy in the smooth part of the flow, with flow
discontinuities being resolved in one or two zones, and no artificial viscosity is
required to obtain a physically correct solution.

It took almost 20 years for Woodward’s pioneering study of a shock-cloud
interaction to be successfully addressed with an Eulerian code (Klein, McKee
& Colella 1994). However, even the use of a shock-capturing scheme was still
not enough to adequately resolve the flow structure and to obtain a convergent
solution: a novel technique of local adaptive mesh refinement (AMR; Berger &
Colella 1989) was employed. In essence, AMR is a way of efficient discretiza-
tion which allows to concentrate the computational effort in regions in which
the errors of the solution are large. From a conceptual point of view AMR is
similar to multigrid techniques with local refinements (Brandt 1984), in which
the computational volume is covered with a hierarchy of completely nested grid
patches and the resolution increases between parent and child grid levels by
some predefined integer factor. However, due to the conservative character of
the time-dependent hydrodynamical equations, the AMR method has to fulfill
additional requirements making its actual computer implementation, to say the
least, difficult.

2. New Computers Required

The planning of numerical simulations is much similar to the concept of project
design known from industry rather than science. However, in both cases, given
that objectives of the project have been clearly defined, a proper choice of the
method of solution is necessary. Once an adequate tool is available one needs to
find a way for using it. In practice this demand translates into having access to
a computer installation which has to provide enough resources for obtaining the
solution to the problem at hand. At first this last issue may appear to be a far
side of numerical modelling, but to those involved in computationally intensive
calculations it is this side which ultimately makes it possible to accomplish
numerical simulation.

Large simulations represent a separate class of computational problems
which are characterized by a high value of the product of computer memory
and processor time. This practical definition follows the observation that sim-
ulations done on grids with just a few thousand zones (or particles) might be
demanding once the modelled system has to be evolved for a long time. A typical
example here are simulations of accretion disks which suffer from short evolu-
tionary timescales present near the inner edge of the disk. On the other hand,
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large memory is required for virtually all three-dimensional problems, even with
memory savings indirectly offered by modern advection methods, or whenever
very high, even if only locally, resolution is needed. The case of planet formation
in protoplanetary disks serves here as an example.

Furthermore, the large size of the simulation demands a certain minimum
speed of the processor and the main memory: program data has to be accessed
and subsequently processed within acceptable time. Most of the large simula-
tions put much more strain on the memory subsystem, including the system
bus, than on the processor and, therefore, are “bandwidth” rather than CPU
limited. Certainly, not only some of those available but even the largest existing
computer installation may not satisfy the requirement imposed by a “memory
times processing speed” limit: numerical experiments are limited by the avail-
ability of computer resources. Finally, also storage and analysis of large (~ 102
times problem memory) data sets requires specialized hardware and software.

The variety of existing computer architectures does not necessarily make
numerical simulations easier to plan and conduct. The performance of a com-
puter code may differ vastly between scalar and vector architectures. Distributed
and shared memory machines follow different programming paradigms, may ask
for deep modifications to the existing codes. Such “technicalities” should be
considered at the very beginning of any project which involves intensive compu-
tations as they might be difficult or impossible to overcome later. Keeping an eye
wide open on current trends in computer architecture design, usually reflected
in the policy of supercomputer centers, seems to be nowadays as important for
numerical modelers as the development and application of new algorithms.

3. A Few Critical Comments

In my introductory remarks I sketched a path that astrophysical hydrodynam-
ics followed from relatively simple one-dimensional Lagrangian models to full
three-dimensional simulations done with help of the SPH and AMR methods.
I find this development remarkable even though, as we could learn during this
conference, after three decades the problem of one-dimensional stellar collapse
may still offer enough of material for debates. As for the comparison between
SPH and AMR, the two so extremely distinct approaches to hydrodynamics,
there appears to exist a sharp boundary dividing the groups of users of these
two methods. However, both methods have their own limits and aspects which
ask for special attention. I will list them briefly.

The Lagrangian nature of the SPH method makes spatial resolution im-
possible to maintain comparable in all regions of the computational volume, a
worry for those who aim at studying properties of voids in cosmological simu-
lations. Resolution near the flow discontinuities is usually poor, equivalent to
a few smoothing lengths (~ particle “radii”), in most implementations of the -
SPH method shocks are handled with help of an artificial viscosity. Also the
resolution and stability (in multidimensions) of contact discontinuities is prob-.
lematic. SPH particles may “penetrate” each other increasing the diffusivity of
the scheme and making studies which involve mixing and shear flows difficult.

Contrary to SPH, the resolution of an Eulerian model is defined by the
smallest spatial scale and, would AMR not have been invented, no Eulerian
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calculation could achieve a resolution in mass comparable to that of large SPH
simulations. However, the nonuniformity of the spatial resolution makes the
AMR method unsuitable for studying turbulent flows which demand a smooth
sampling of the spatial scales. Also, the roughness of the AMR grids adds a
certain amount of vorticity to the model since each boundary between the levels
in the AMR hierarchy appears as an obstacle to the flow and acts as a source of
purely spurious vorticity.

Last but not least, the numerically “correct” results are those which corre-
spond to the convergent solution. The Eulerian routine of doubling the resolu-
tion from one model to another and comparing low- and high-resolution models
does not translate into doubling the number of particles in a SPH simulation.
The concept of the smoothing length, usually mentioned when the spatial res-
olution of the SPH model is presented, is in this respect misleading since a
twofold decrease of the smoothing length requires an increase in the number
of neighbouring particles by a factor of 2P, where D is the number of spatial
dimensions. Yet, in most cases convergence studies (if present at all!) are done
with the number of particles being varied by a factor of just a few.

I decided not to mention problems related to radiation transport or the
incorporation of magnetic fields into hydrodynamical simulations. I did it on
purpose since their complexity will likely add to the confusion; it is better to leave
out their discussion for the years to come and closely follow the development of
more efficient and correct algorithms. At this very moment it is my conviction
that even pure hydrodynamics still poses challenging problems and obtaining
physically meaningful results is, and as it has ever been, a difficult task.
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