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Partial Euler Products on the Critical Line

Keith Conrad

Abstract. The initial version of the Birch and Swinnerton-Dyer conjecture concerned asymptotics for

partial Euler products for an elliptic curve L-function at s = 1. Goldfeld later proved that these asymp-

totics imply the Riemann hypothesis for the L-function and that the constant in the asymptotics has

an unexpected factor of
√

2. We extend Goldfeld’s theorem to an analysis of partial Euler products for

a typical L-function along its critical line. The general
√

2 phenomenon is related to second moments,

while the asymptotic behavior (over number fields) is proved to be equivalent to a condition that in a

precise sense seems much deeper than the Riemann hypothesis. Over function fields, the Euler product

asymptotics can sometimes be proved unconditionally.

1 Introduction

Let E/Q be an elliptic curve. The Birch and Swinnerton-Dyer conjecture says, in part,
that the rank of E(Q) equals the order of vanishing of its L-function at s = 1. We
write the L-function, for Re(s) > 3/2, as

L(E, s) :=
∏

p|N

1

1 − ap p−s
·
∏

(p,N)=1

1

1 − ap p−s + p · p−2s
=

∑

n≥1

an

ns
,

where N is the conductor. By the elliptic modularity theorem [4, 7, 10, 30], L(E, s)
extends analytically to C and has a functional equation relating values at s and 2 − s.

In the original form of their conjecture [2], Birch and Swinnerton-Dyer recog-
nized the rank not as an order of vanishing, but as a growth exponent r:

(1.1)
∏

p≤x

#Ens(Fp)

p
∼ A(log x)r

for some constant A > 0, where Ens(Fp) is the set of nonsingular Fp-rational points
on a minimal Weierstrass model for E at p. Graphs illustrating (1.1) can be found in
[22, p. 460]. Actually, the factors in (1.1) at p|N were chosen differently by Birch and

Swinnerton–Dyer, and are omitted in [22], but this does not affect (1.1) since A has
not yet been specified.

Since, for all p, #Ens(Fp)/p equals the reciprocal of the p-th local Euler factor
in L(E, s), at s = 1, (1.1) can be reciprocated and written in terms of partial Euler

products as

(1.2) Prod(E, x) ∼ C

(log x)r
,
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268 K. Conrad

where C is a nonzero constant and

Prod(E, x) =

∏

p|N
p≤x

1

1 − ap/p
·
∏

(p,N)=1

p≤x

1

1 − ap/p + 1/p

=

∏

p≤x

1

#Ens(Fp)/p
.

The following theorem of Goldfeld [12] (which originally included an assumption
of modularity) addresses consequences of the equivalent estimates (1.1) and (1.2).

Theorem 1.1 (Goldfeld) Let E/Q be an elliptic curve. If Prod(E, x) ∼ C/(log x)r as

x → ∞, where C > 0 and r ∈ R, then L(E, s) satisfies the Riemann hypothesis (i.e.,
L(E, s) 6= 0 for Re(s) > 1), r = ords=1 L(E, s), and

(1.3) C =
L(r)(E, 1)

r!
· 1√

2erγ
,

where γ = .577215 . . . is Euler’s constant.

The versions of Theorem 1.1 in [12] and [22] are equivalent to this, but look
superficially different, e.g., the letter C has a different meaning in each paper.

Since
√

2erγ ≥
√

2 > 1, the constant C in (1.2) does not equal the leading Taylor
coefficient of L(E, s) at s = 1, which is quite surprising. When r = 0, the theorem
says in part: if the formal Euler product for L(E, 1) has a nonzero value, the value is
L(E, 1)/

√
2. Although Theorem 1.1 identifies the exponent r in (1.2) with an order

of vanishing at s = 1, it makes no identification with the rank of E(Q).
The goal of this paper is to put Theorem 1.1 in a more general context, and explain

how a large class of Euler products should behave on their critical line.
For instance, partial Euler products for L(E, s) at a point on Re(s) = 1 other than 1

do not have a
√

2 factor in the analogue of Theorem 1.1. Partial Euler products at
s = 1/2 for the L-function of a nontrivial Dirichlet character have no

√
2 in the

analogue of Theorem 1.1 unless the character is quadratic, when
√

2 appears in the
numerator rather than in the denominator. We will show the appearance of

√
2 is

generally governed by “second moments”, in the following sense.

Theorem 1.2 Let

L(s) =

∏

p

1

(1 − αp,1 Np−s) · · · (1 − αp,d Np−s)

be an Euler product over a number field, with |αp, j | ≤ 1 and Re(s) > 1. Assume

L(s) extends to a holomorphic function on Re(s) ≥ 1/2 and the second moment Euler

product ∏

p

1

(1 − α2
p,1 Np−s) · · · (1 − α2

p,d Np−s)
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extends to a holomorphic nonvanishing function on Re(s) = 1 except at one number

1 + it0, where the order of vanishing is R0 ∈ Z. For a complex number with real part

1/2, say 1/2 + it, assume

∏

Np≤x

1

(1 − αp,1 Np−(1/2+it)) · · · (1 − αp,d Np−(1/2+it))
∼ Ct

(log x)rt

as x → ∞, where Ct ∈ C× and rt ∈ C. Then, with Bt denoting the leading Taylor

coefficient of L(s) at s = 1/2 + it, Ct = Bt/ertγ if t 6= t0/2 and Ct = Bt/
√

2
R0

ertγ if

t = t0/2.

While Theorem 1.1 says (1.2) implies the Riemann hypothesis for L(E, s), experi-
ence suggests a certain degree of caution. There are many numerical patterns which
would imply the Riemann hypothesis for ζ(s) but eventually fail. Might (1.2) have a
similar fate?

No. Let
ψE(x) =

∑

pk≤x
(p,N)=1

(αk
p + βk

p) log p,

where αp and βp are the Frobenius eigenvalues at p. (Terms at pk when p|N can be

ignored, as they do not affect what we are about to say.) We will prove in Theorem
6.3 a result about L-functions which has the following as a special case.

Theorem 1.3 Equation (1.2) is equivalent to

(1.4) ψE(x) = o(x log x).

The Riemann hypothesis for L(E, s) is equivalent to ψE(x) = O(x(log x)2), so
in a precise sense (1.2) is much deeper than the Riemann hypothesis for L(E, s)
according to what is known today. The estimate (1.4) is plausible. Indeed, let-

ting ψ(x) =
∑

pk≤x log p as usual, the Riemann hypothesis for ζ(s) is equivalent

to ψ(x) − x = O(
√

x(log x)2) while Montgomery [16, p. 16] has given a reason to

believe the true order of magnitude of ψ(x) − x is at most
√

x(log log log x)2. This
suggests a comparable upper bound for ψE(x) may be around x(log log log x)2, which
would imply (1.4).

When this paper was finished, I learned from K. Murty that W. Kuo and R. Murty

[15] found and proved Theorem 1.3 independently, by a different method. We will
discuss this further at the end of Section 6.

The paper is organized as follows. In Section 2, we introduce some basic notation
and terminology for the Euler products we will be treating. In Section 3, we collect

several preliminary computations. Section 4 isolates the results which lead to the
appearance of

√
2. In Section 5, we generalize Theorem 1.1 to other Euler products.

Up to this point we can avoid explicit formulas (in the sense of analytic number
theory), so Theorem 1.1 can be proved without them. This simplifies Goldfeld’s

proof. In Section 6, we prove the equivalence of (1.2) and (1.4) using several explicit
formulas. We discuss in Section 7 how Dirichlet series associated to Euler products
should behave on the critical line. In Section 8, we treat function fields, where sharper
statements are possible. In particular, we prove the function field version of (1.2).
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270 K. Conrad

2 Notation and Terminology

Fix a number field K and a positive integer d. A normalized Euler product over K of
degree at most d is a product over the primes of K,

(2.1) L(s) :=
∏

p

1

(1 − αp,1 Np−s) · · · (1 − αp,d Np−s)
,

where |αp,1|, . . . , |αp,d| ≤ 1. (The L-function of an elliptic curve E/Q fits (2.1) when
written in the form L(E, s + 1/2).) Any finite product

∏

Np≤x

1

(1 − αp,1 Np−s) · · · (1 − αp,d Np−s)
,

taken over p with norm up to some bound x, will be called a partial Euler product for

L(s).
The bounds |αp, j | ≤ 1 make the Euler product absolutely convergent and non-

vanishing on Re(s) > 1. We do allow some αp, j to equal 0, as happens in natural
examples. Also in natural examples, we usually expect |αp, j | = 1 for all but finitely

many p, but we do not assume this condition holds. This gives our notion of normal-
ized Euler product a certain looseness (e.g., L(s + c) is also normalized for any c > 0),
which will be restricted when we start using a condition on second moments (in
Definition 4.4) systematically. We will consider Re(s) = 1/2 to be the critical line, al-

though a functional equation which justifies this terminology will not be introduced
until Section 6.

Since this paper concerns Euler products outside domains of absolute conver-
gence, we must be more careful than usual about calculations with partial sums and

products. In particular, we need to be attentive to the order of terms and any rear-
rangement of terms. It will always be understood that terms indexed by ideals in K

(such as an Euler product over K) are arranged according to increasing norm, with
terms indexed by ideals of equal norm being taken as one collective term:

∏

p

= lim
x→∞

∏

Np≤x

,
∑

p

∑

k≥1

= lim
x→∞

∑

Np≤x

∑

k≥1

,
∑

pk

= lim
x→∞

∑

Npk≤x

.

It is essential to distinguish between the two sums
∑

p

∑
k and

∑
pk . For instance,

this distinction is related to the
√

2 in Goldfeld’s theorem.
An ordinary Dirichlet series is a series

∑
n≥1 ann−s indexed by positive integers in

increasing order. Writing L(s) in (2.1) as an ordinary Dirichlet series
∑

ann−s, the
condition that all |αp, j | ≤ 1 is equivalent to both an = Oε(nε) for all ε > 0 and to

|apk | ≤
(

d+k−1
k

)
for prime powers pk > 1.

The factors in L(s) can be collected into a normalized Euler product over the

primes in any subfield of K. While the partial sums for the Dirichlet series of L(s)
over K and over Q are the same, the partial Euler products for L(s) over K and over Q

are different (when K 6= Q). This difference does not affect analytic properties of L(s)
(such as having an analytic continuation and a functional equation), but does change
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the meaning of auxiliary constructions (like a symmetric square). For instance, we
will see at the end of Section 5 that the

√
2 phenomenon in Goldfeld’s theorem dis-

appears when E/Q is a CM curve and we look at partial Euler products over primes
in the field of complex multiplication.

Given L(s) as in (2.1), its second moment (over K) is

(2.2) L2(s) =

∏

p

1

(1 − α2
p,1 Np−s) · · · (1 − α2

p,d Np−s)
.

In practice, this second moment is the ratio of a symmetric and exterior square L-
function over K. Note that we do not mean by “second moment” the Dirichlet series∑

a2
nn−s (cf. [17]). Also note that for K 6= Q, the second moment of L(s) is not really

determined by the holomorphic function L(s), but by the data αp, j .

3 Preliminary Calculations

We study Euler products through their logarithms. For Re(s) > 1, the logarithm of
L(s) in (2.1) is, by definition,

(3.1) log L(s) :=
∑

p

∑

k≥1

αk
p,1 + · · · + αk

p,d

k Npks
=

∑

pk

αk
p,1 + · · · + αk

p,d

k Npks
.

A more accurate notation would be (log L)(s).
Passing from the double sum to the single sum requires a rearrangement of terms,

which is harmless for Re(s) > 1. What can we say on the larger region Re(s) ≥ 1/2?

Lemma 3.1 For each s with Re(s) ≥ 1/2,

∑

Np≤x

∑

k≥1

αk
p,1 + · · · + αk

p,d

k Npks
=

∑

Npk≤x

αk
p,1 + · · · + αk

p,d

k Npks

+
∑

√
x<Np≤x

α2
p,1 + · · · + α2

p,d

2 Np2s
+ o(1)

as x → ∞. When Re(s) > 1/2, the second sum on the right is o(1) as x → ∞.

Proof Subtracting the first sum on the right from the sum on the left gives

(3.2)
∑

Np≤x

∑

k

Npk>x

αk
p,1 + · · · + αk

p,d

k Npks
=

∑
√

x<Np≤x

∑

k≥2

+
∑

Np≤√
x

∑

k

Npk>x

αk
p,1 + · · · + αk

p,d

k Npks
.

The second sum on the right side of (3.2) is bounded by

d
∑

Np≤√
x

∑

k>logNp
x

1

logNp
(x) · Npk/2

≤ d

2

∑

Np≤√
x

1
√

x(1 − 1/
√

2)
,
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which is O(πK (
√

x)/
√

x) = O(1/ log x), where πK(x) is the number of primes in K

with norm at most x. In the first sum on the right side of (3.2), the series over k ≥ 3

is bounded by

∑
√

x≤Np≤x

∑

k≥3

d

k Npk/2
≤ d

3

∑
√

x≤Np≤x

1

Np3/2(1 − 1/
√

2)
,

which tends to 0 since ζK(3/2) < ∞. (The indices are restricted below as well as
above.) Now we see the right side of (3.2) equals

∑
√

x<Np≤x

α2
p,1 + · · · + α2

p,d

2 Np2s
+ o(1),

which tends to 0 if Re(2s) > 1 by comparison with ζK(2s).

An extension of the last part of Lemma 3.1 to the line Re(s) = 1/2 is in Theo-
rem 4.9.

Lemma 3.2 Fix d ≥ 1. For each prime p of K, let γp,1, . . . , γp,d be complex numbers

in the open unit disk, and assume maxi |γp,i | → 0 as Np → ∞. Then the asymptotic

relation ∏

Np≤x

1

(1 − γp,1) · · · (1 − γp,d)
∼ C

(log x)r

as x → ∞, for some C ∈ C× and r ∈ C, is equivalent to

−
∑

Np≤x

(log(1 − γp,1) + · · · + log(1 − γp,d)) = −r log log x + C ′ + o(1)

for some C ′ with eC ′
= C. Here log is the principal branch of the logarithm.

Proof Since the number of p with any norm is bounded (by [K : Q]), this is a simple
extension of the standard fact that the product of a (linearly ordered) sequence of
complex numbers tending to 1 converges if and only if the corresponding series of
principal branch logarithms converges [1, pp. 191–192].

Lemma 3.2 lets questions about Euler products over number fields be reduced to
an analysis of sums. While this is trivial, it is false over function fields. We will see a

counterexample to Lemma 3.2 in the function field case in Example 8.3.

Theorem 3.3 For s0 ∈ C with Re(s0) > 1/2, the following are equivalent:

(1) The limit

lim
x→∞

∏

Np≤x

1

(1 − αp,1 Np−s0 ) · · · (1 − αp,d Np−s0 )

is nonzero.
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(2) The limit

lim
x→∞

∑

Npk≤x

αk
p,1 + · · · + αk

p,d

k Npks0

exists.

In this case, the ordinary Dirichlet series for log L(s) converges for s = s0 and for

Re(s) > Re(s0). Also, L(s) has an analytic continuation to Re(s) > Re(s0), where

(3.3) L(s) = lim
x→∞

∏

Np≤x

1

(1 − αp,1 Np−s) · · · (1 − αp,d Np−s)

and L(s) 6= 0. Equation (3.3) is valid at s = s0.

Proof The equivalence of (1) and (2) follows from Lemmas 3.1 and 3.2 with r = 0.

(The only point to check is the switch from
∑

p

∑
k to

∑
pk .)

Assuming the equivalent conditions hold at s0, we can use (2) to see that the or-
dinary Dirichlet series for log L(s) converges at s0 and therefore also when Re(s) >
Re(s0). Exponentiating with Lemma 3.1 leads to convergence of the Euler product on

this region, and Abel’s theorem applied to log L(s) lets us extend (3.3) to s0 from the
right, i.e., as s → s+

0 .

Loosely speaking, Theorem 3.3 says the Euler product for L(s) when Re(s) > 1/2

is not expected to contain any surprises.

Example 3.4 Having just used Abel’s theorem for Dirichlet series, we might as well
point out that there is no simple Abel’s theorem for Euler products. Goldfeld’s theo-
rem with r = 0 already illustrates the idea, but the hypothesis (1.2) for elliptic curves

over Q is unprovable at present. For a family of unconditional examples, choose
m ≥ 1. For Re(s) > 1,

ζ(ms − (m − 1))

ζ(s)
=

∏

p

1 − p−s

1 − pm−1−ms
.

At s = 1, the right side equals 1. Using the left side, we see the limit of the right side
as s → 1+ is 1/m. The case m = 2 is in [31].

Example 3.5 Abel’s theorem fails not only for Euler products, but for products of

the form
∏

(1 + anxn). In 1908, Hardy [13, pp. 263–271] gave an example of a real
sequence {an} such that

∏
(1 + an) converges and

∏

n≥1

(1 + anxn) → 2
∏

n≥1

(1 + an)

as x → 1−. Here there is an extra 2, instead of an extra 1/
√

2 as in Goldfeld’s theo-
rem. We will return to this example at the end of Section 5.
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4 The role of
√

2

To provide context for the 1/
√

2erγ in Goldfeld’s theorem, we discuss in this section
how

√
2 arises from a series rearrangement. (A role for γ in Euler product asymp-

totics is well-known.) We start with a Tauberian theorem for logarithmic singulari-
ties, whose proof is omitted.

Theorem 4.1 Let f (s) =
∑

ann−s, where an ≥ 0, and assume f extends holomor-

phically to Re(s) = 1 except for a simple pole at s = 1.

Let g(s) =
∑

bnn−s, where |bn| ≤ Can for some constant C. Assume g extends

holomorphically to Re(s) = 1 except at s = 1, where there is a logarithmic singularity:

g(s) = r log(s − 1) + G(s),

for Re(s) ≥ 1 with s 6= 1, where G(s) is holomorphic on Re(s) ≥ 1. Then

∑

n≤x

bn

n
= −r log log x − rγ + G(1) + o(1),

∑

n≥1

bn

n1+it
= g(1 + it)

for real t 6= 0.

While this holds for r = 0, the interesting case for us is r 6= 0.

Example 4.2 Let f (s) = ζK(s) and g(s) = log ζK(s) =
∑

pk 1/k Np
ks. By Theo-

rem 4.1, ∑

Npk≤x

1

k Npk
= log log x + γ + log ρK + o(1),

where ρK = Ress=1 ζK(s). We can replace
∑

Npk≤x with
∑

Np≤x

∑
k, by Lemma 3.1.

Then exponentiating implies

(4.1)
∏

Np≤x

1

1 − 1/Np
∼ ρK eγ log x,

which is a classical formula of Mertens for K = Q. (For a stronger relation between
the two sides of (4.1), see [21, Theorem 2].) We mention this example since (4.1)
resembles the hypothetical (1.2) with r = −1 = ords=1 ζK(s) and C = ρK/erγ .

However, s = 1 is at the edge of the critical strip for ζK (s) while it is on the critical
line for L(E, s). Also, the eγ in Goldfeld’s theorem will not arise from Theorem 4.1,
but rather from Lemma 5.1.

Theorem 4.3 For Re(s) > 1, let

L̃(s) =

∏

p

1

(1 − βp,1 Np−s) · · · (1 − βp,d Np−s)
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be a normalized Euler product. Assume L̃(s) extends to a holomorphic nonvanishing

function on Re(s) = 1 except for a zero of order R0 ∈ Z at, say, 1 + it0. Then

lim
x→∞

∑
√

x<Np≤x

βp,1 + · · · + βp,d

Np1+it
=

{
0, if t 6= t0,

−R0 log 2, if t = t0.

When R0 < 0, the zero at 1 + it0 is a pole, and when R0 = 0 there is no zero or
pole.

Proof Replacing L̃(s) with L̃(s + it0), we may assume t0 = 0. For Re(s) > 1, set

(log L̃)(s) =

∑

p

∑

k≥1

βk
p,1 + · · · + βk

p,d

k Npks
=

∑

n≥1

bn

ns
,

where bn =
∑

Npk=n(βk
p,1 + · · · + βk

p,d)/k. Write

(log L̃)(s) =

∑

n≥1

∑

Np=n

βp,1 + · · · + βp,d

Nps
+
∑

n≥1

∑

Npk=n
k≥2

βk
p,1 + · · · + βk

p,d

k Npks
,

where the second series is absolutely convergent for Re(s) > 1/2, so for any real t ,

∑

n≤x

bn

n1+it
=

∑

Np≤x

βp,1 + · · · + βp,d

Np1+it
+ ct + o(1)

for some constant ct . Therefore

(4.2)
∑

√
x<Np≤x

βp,1 + · · · + βp,d

Np1+it
=

∑
√

x<n≤x

bn

n1+it
+ o(1).

By hypothesis, L̃ ′(s)/L̃(s) is holomorphic on Re(s) ≥ 1 except for a simple pole at
s = 1 with residue R0. Thus for Re(s) ≥ 1 with s 6= 1,

(4.3) (log L̃)(s) = R0 log(s − 1) + H(s),

where H is holomorphic on Re(s) ≥ 1. By Theorem 4.1, with f (s) = ζK(s) and

g(s) = (log L̃)(s),

(4.4)
∑

n≥1

bn

n1+it
= (log L̃)(1 + it)

for t 6= 0 and
∑

n≤x

bn

n
= −R0 log log x + c + o(1)
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for some c. Thus when t 6= 0,

∑
√

x<Np≤x

βp,1 + · · · + βp,d

Np1+it
→ 0,

since this is a tail-end piece of a convergent series by (4.2) and (4.4). When t = 0,

∑
√

x<Np≤x

βp,1 + · · · + βp,d

Np
=

∑
√

x<n≤x

bn

n
+ o(1)

= −R0 log log x + R0 log log
√

x + o(1)

= R0 log(1/2) + o(1).

We now introduce a condition on L2(s) in (2.2) to extend the last part of Lem-
ma 3.1 to the line Re(s) = 1/2.

Definition 4.4 Let L(s) be a normalized Euler product over K. We say it satisfies
the second moment hypothesis when its second moment over K, L2(s), extends from

Re(s) > 1 to a holomorphic nonvanishing function on Re(s) = 1, except for a zero
or pole at perhaps one point on Re(s) = 1.

We label the exceptional point in Definition 4.4 as 1+it0, and its order of vanishing
is R0. For ease of exposition, when there is no such point we let 1 + it0 be any number

on the line Re(s) = 1, with R0 = 0.

The second moment hypothesis concerns behavior only on the line Re(s) = 1. In
practice, the exceptional point in the second moment hypothesis should arise when
the symmetric or exterior square of L(s) over K has a factor that is essentially the
Riemann zeta function.

Example 4.5 The second moment of ζK(s) over K is ζK (s), so the second moment
hypothesis is satisfied with a simple pole at s = 1 (R0 = −1).

Example 4.6 For a nontrivial Dirichlet character χ, the second moment of L(χ, s)
over Q is L(χ2, s). The second moment hypothesis is satisfied, with a simple pole
at s = 1 when χ is quadratic (R0 = −1) and with no zeros or poles when χ is
nonquadratic (R0 = 0).

Example 4.7 Let E/Q be an elliptic curve. Using a theorem of Shimura [27], the
symmetric square of L(E, s) is holomorphic and nonvanishing on Re(s) = 2. The

exterior square is ζ(s − 1) up to a finite number of Euler factors. Using L(E, s + 1/2)
instead of L(E, s), the second moment hypothesis is satisfied for L(E, s + 1/2), with a
simple zero at s = 1 (R0 = 1).
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Remark 4.8 Under the second moment hypothesis, applying the Wiener-Ikehara
Tauberian theorem to L ′

2(s + it0)/L2(s + it0) implies

(4.5)

∑
Np≤x(α2

p,1 + · · · + α2
p,d) Np

−it0

#{p : Np ≤ x} → −R0.

Therefore |R0| ≤ d.
When t0 = 0, the average on the left side of (4.5) is analogous to integrals of the

type
∫

I
x2 dµ which classically define the second moment of a measure µ. Therefore,

it is reasonable to call −R0 a second moment. This moment is 1 for quadratic char-
acters, 0 for linear characters with finite order greater than two, and −1 for elliptic
curves.

When L(s) is the Artin L-function of a character χ, d equals χ(1) and the Cheb-
otarev density theorem implies −R0 is the average value of χ(g2) over the Galois
group for χ. This average is the Frobenius-Schur indicator, and is known to be ei-
ther 1, 0, or −1 when χ is irreducible. Therefore when χ is possibly reducible, the

condition |R0| = d only occurs when χ is a sum of linear characters, so R0 = d does
not occur and R0 = −d occurs precisely when χ is a sum of trivial and quadratic
characters.

Theorem 4.9 Let L(s) be as in (2.1), and satisfy the second moment hypothesis. Then,

as x → ∞,

∑

Np≤x

∑

k≥1

αk
p,1 + · · · + αk

p,d

k Npk(1/2+it)
=

∑

Npk≤x

αk
p,1 + · · · + αk

p,d

k Npk(1/2+it)

+

{
o(1), if t 6= t0/2,

−R0 log
√

2 + o(1), if t = t0/2.

When R0 6= 0, note the exceptional behavior for L(s) happens at 1/2 + it0/2, not

at 1/2 + it0.

Proof By the argument in the proof of Lemma 3.1, at s = 1/2 + it we look at

∑
√

x<Np≤x

α2
p,1 + · · · + α2

p,d

2 Np2s
=

∑
√

x<Np≤x

α2
p,1 + · · · + α2

p,d

2 Np1+2it

as x → ∞. By Theorem 4.3 with L̃(s) = L2(s), this sum tends to −(1/2)R0 log 2 as
x → ∞ when 2t = t0, and it tends to 0 when 2t 6= t0.

Example 4.10 Applying Theorem 4.9 to L(s) = ζK(s), for Re(s) ≥ 1/2

∑

Np≤x

∑

k≥1

1

k Npks
=

∑

Npk≤x

1

k Npks
+

{
o(1), if s 6= 1/2,

log
√

2 + o(1), if s = 1/2.
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Example 4.10 illustrates the
√

2 phenomenon in a very basic form. The appear-
ance of

√
2 in Theorem 4.9 comes from the terms in the Dirichlet series for log L(s)

corresponding to squares of primes. This is also the source of irregularities in the
distribution of primes among quadratic residue and nonresidue classes [23] and an
extra term of 1/2 in a heuristic formula of Nagao [20, p. 213] for the rank of an ellip-
tic curve. Viewing this

√
2 as an effect of symmetric and exterior squares, there is a

relation to the quadratic excess of Brock and Granville [5], as explained by Katz [14].

We now show a result in the direction of the
√

2 factor in Theorem 1.1.

Corollary 4.11 Let L(s) be as in (2.1), and satisfy the second moment hypothesis. The

following conditions are equivalent:

(1) As x → ∞,

∏

Np≤x

1

(1 − αp,1/
√

Np) · · · (1 − αp,d/
√

Np)
∼ C

(log x)r

for some C ∈ C× and r ∈ C.

(2) As x → ∞,

∑

Npk≤x

αk
p,1 + · · · + αk

p,d

k Npk/2
= −r ′ log log x + C ′ + o(1)

for some C ′ and r ′ in C.

In this case r ′ = r and either C = eC ′
or C = eC ′

/
√

2
R0

.

Proof By Lemma 3.2, we have such an equivalence when the sum
∑

Npk≤x in the
second part is replaced with

∑
Np≤x

∑
k≥1. To pass from the latter to the former will,

by Theorem 4.9 at t = 0, have no effect if t0 6= 0 or introduce a new term −R0 log
√

2

if t0 = 0.

Unlike Theorem 3.3, in Corollary 4.11 the partial Euler products are allowed to
tend to 0 (in a specific manner).

5 Extending Goldfeld’s Theorem to More Euler Products

Having linked a peculiar role for
√

2 to second moments in Corollary 4.11, we are
ready to describe a version of Goldfeld’s theorem for fairly general Euler products.

Lemma 5.1 As s → 0+,

s

∫ ∞

e

log log x

xs+1
dx = − log s − γ + o(1).
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Proof Let u = log x and then y = su. Euler’s constant arises since

∫ ∞

s

e−y(log y) dy →
∫ ∞

0

e−y(log y) dy = −γ.

Lemma 5.1 is the source of eγ in Goldfeld’s theorem.

Lemma 5.2 Let h : [1,∞) → C be piecewise continuous with h(x) → 0 as x → ∞.

Then as s → 0+,

s

∫ ∞

1

h(x)

xs+1
dx → 0.

Proof Pick ε > 0, break up the integral at a point beyond which |h(x)| ≤ ε, esti-
mate, take lims→0+ and then let ε→ 0.

Theorem 5.3 Let L(s) be as in (2.1). If

(5.1)
∑

Npk≤x

αk
p,1 + · · · + αk

p,d

k Npk/2
= −r log log x + C ′ + o(1)

as x → ∞, for some C ′ and r in C, then L(s) extends to a holomorphic nonvanishing

function on Re(s) > 1/2, and

(5.2) L(s) ∼ eC ′
erγ(s − 1/2)r

as s → 1/2+. If L(s) is holomorphic at s = 1/2, then the order of vanishing there is r

and its leading Taylor coefficient is eC ′
erγ .

Proof Set

bn =

∑

Npk=n

αk
p,1 + · · · + αk

p,d

k
,

so log L(s) =
∑

bnn−s for Re(s) > 1. The condition (5.1) says
∑

n≤x bn/
√

n =

−r log log x + C ′ + o(1) as x → ∞. From this slow growth,
∑

bnn−s converges

for Re(s) > 1/2, so L(s) is holomorphic and nonvanishing on Re(s) > 1/2. For
Re(s) > 0,

(log L)(s + 1/2) =

∑

n≥1

bn√
n

1

ns
= s

∫ ∞

1

A(x)

xs+1
dx,

where A(x) =
∑

n≤x bn/
√

n = −r log log x + C ′ + o(1) as x → ∞. As s → 0+,

(log L)(s + 1/2) = s

∫ e

1

A(x)

xs+1
dx + s

∫ ∞

e

A(x)

xs+1
dx

= s

∫ ∞

e

−r log log x + C ′ + ox(1)

xs+1
dx + os(1)

= r log s + rγ + C ′ + os(1) by Lemmas 5.1 and 5.2,
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where ox(1) (resp., os(1)) is a term tending to 0 as x → ∞ (resp., as s → 0+). There-
fore L(s + 1/2) ∼ eC ′

erγsr as s → 0+.

Corollary 5.4 Let L(s) be as in (2.1). For some real t, assume

∑

Npk≤x

αk
p,1 + · · · + αk

p,d

k Npk(1/2+it)
= −rt log log x + C ′

t + o(1)

as x → ∞, for some C ′
t and rt in C. Then L(s) extends to a holomorphic nonvanishing

function on Re(s) > 1/2. If L(s) is holomorphic at 1/2 + it, then its order of vanishing

there is rt and its leading Taylor coefficient is eC ′
t ertγ .

Proof We can assume t = 0 by replacing αp, j with αp, j Np
−it . Now apply Theo-

rem 5.3.

Corollary 5.5 Let χ be a unitary Hecke character on a number field K, and assume it

is not of the form (N( · ))it for any real t. If

(5.3)
∏

Np≤x

1

1 − χ(p)/
√

Np
∼ C

(log x)r

as x → ∞, where C 6= 0, then L(χ, s) is holomorphic and nonvanishing for Re(s) >
1/2, r = ords=1/2 L(χ, s), and

C =

{√
2Be−rγ, if χ is quadratic,

Be−rγ, otherwise,

where B is the leading Taylor coefficient of L(χ, s) at s = 1/2.

Proof Apply Corollary 4.11 and Theorem 5.3. Whether or not the second moment
of L(χ, s) has a pole on Re(s) = 1 depends on whether or not χ is quadratic.

In the statement of Corollary 5.5, we excluded the possibility that χ is (N( · ))it

simply because part of the conclusion (no pole along Re(s) = 1) shows such χ do not
satisfy (5.3).

The case of Dirichlet L-functions is worth recording separately (with r = 0).

Corollary 5.6 Let χ be a nontrivial Dirichlet character. If
∏

p≤x(1 − χ(p)/
√

p)−1

has a nonzero limit as x → ∞, then L(χ, s) satisfies the Riemann hypothesis and

∏

p

1

1 − χ(p)/
√

p
=

{
L(χ, 1/2), if χ is nonquadratic,√

2L(χ, 1/2), if χ is quadratic.

https://doi.org/10.4153/CJM-2005-012-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-012-6


Partial Euler Products on the Critical Line 281

Corollary 5.7 (Goldfeld) Let E/Q be an elliptic curve. If Prod(E, x) ∼ C/(log x)r as

x → ∞, where C ∈ C× and r ∈ C, then L(E, s) 6= 0 for Re(s) > 1, r = ords=1 L(E, s),

and C = B/
√

2erγ , where B is the leading Taylor coefficient of L(E, s) at s = 1.

Proof Apply Corollary 4.11 and Theorem 5.3 to L(s) = L(E, s + 1/2).

This proof of Corollary 5.7 simplifies Goldfeld’s proof in [12]. We used his deriva-

tion of (5.2) more fully and avoided some delicate arguments from [12]. In particular,
we did not need explicit formulas. However, explicit formulas will be used in Section
6. Our use of the last part of Theorem 5.3 tacitly appeals to the elliptic modularity
theorem to get holomorphy of L(E, s) at s = 1. While holomorphy at this point is

logically weaker than the full elliptic modularity theorem, it seems unlikely that this
particular consequence will ever be (generally) proved in a simpler way on its own.

Example 5.8 Let χ4 be the quadratic character mod 4. We can not prove the partial
Euler products for L(χ4, s) at s = 1/2 converge, but if they do, we know the limit is
not L(χ4, 1/2) ≈ .67, but rather

√
2L(χ4, 1/2) ≈ .94. Table 1 gives crude numerical

evidence.

Example 5.9 The curve E3 : y2 + y = x3 − 7x + 6 has analytic rank 3, by [6]. If
(log x)3 Prod(E3, x) has a limit, it is not L(3)(E3, 1)/3! ≈ 1.73, but

L(3)(E3, 1)/3!
√

2e3γ ≈ .22.

This is consistent with Table 2.

x
∏

p≤x

(
1 − χ4(p)/

√
p
)−1

102 .94
103 .89
104 .98

105 .97

Table 1

x (log x)3 Prod(E3, x)

102 .22
103 .18
104 .25
105 .22

Table 2
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Example 5.10 The L-function of a CM elliptic curve E/Q fits both Corollaries 5.5
and 5.7, which leads to an interesting comparison. Write L(E, s + 1/2) = L(χ, s) for

a unitary Hecke character χ on the appropriate imaginary quadratic field K. Taking
partial Euler products at s = 1/2, we consider hypothetical asymptotic relations for
L(E, s) at s = 1 and L(χ, s) at s = 1/2:

(5.4)
∏

p≤x

p|N

1

1 − ap/p
·
∏

p≤x
(p,N)=1

1

1 − ap/p + 1/p
∼ C1

(log x)r1

and

(5.5)
∏

Np≤x

1

1 − χ(p)/
√

Np
∼ C2

(log x)r2
.

Corollaries 5.5 and 5.7 tell us that if (5.4) and (5.5) hold, then r1 = r2 but C1 6= C2.
Instead, C1 = C2/

√
2. That implies the ratio of the first partial Euler product to the

second tends not to 1, but to 1/
√

2. This can be proved unconditionally, and boils

down to the fact that ∏
√

x<p≤x
p inert in OK

1

1 + 1/p
→ 1√

2
.

Taking logarithms, this is equivalent to

(5.6)
∑

√
x<p≤x

p inert in OK

1

p
→ 1

2
log 2,

and (5.6) can be verified by writing the sum over both split and inert primes using
the quadratic character η of Gal(K/Q). Alternatively, (5.6) follows from Theorem 4.3
with βp,1 = 1, βp,2 = −η(p), and R0 = −1.

Here is a generalization of Goldfeld’s theorem to any point on the critical line for
a reasonable Euler product.

Theorem 5.11 Let L(s) be as in (2.1). Assume L(s) extends to a holomorphic function

on Re(s) ≥ 1/2 and satisfies the second moment hypothesis, with 1 + it0 being the

exceptional point for L2(s). For a complex number with real part 1/2, say 1/2 + it,

assume

(5.7)
∏

Np≤x

1

(1 − αp,1 Np−(1/2+it)) · · · (1 − αp,d Np−(1/2+it))
∼ Ct

(log x)rt

as x → ∞, where Ct ∈ C× and rt ∈ C. Then, with Bt denoting the leading Taylor

coefficient of L(s) at s = 1/2 + it,

(1) L(s) 6= 0 for Re(s) > 1/2,

(2) rt = ords=1/2+it L(s),
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(3) if t 6= t0/2, then Ct = Bt/ertγ , and if t = t0/2, then Ct = Bt/
√

2
R0

ertγ .

Proof We do not shift to the point 1/2, as in the proof of Corollary 5.4, but work
directly at 1/2 + it .

By Lemma 3.2, (5.7) is equivalent to

∑

Np≤x

∑

k≥1

αk
p,1 + · · · + αk

p,d

k Npk(1/2+it)
= −rt log log x + log Ct + o(1)

as x → ∞, where log Ct is a particular logarithm of Ct . Replacing
∑

Np≤x

∑
k with∑

Npk≤x by Theorem 4.9 (here we use the second moment hypothesis) yields

∑

Npk≤x

αk
p,1 + · · · + αk

p,d

k Npk(1/2+it)
=

{
−rt log log x + log Ct + o(1), if t 6= t0/2,

−rt log log x + log Ct + R0 log
√

2 + o(1), if t = t0/2.

Now use Corollary 5.4.

Remark 5.12 If the formal Euler product of L(s) at s = 1/2 + it is nonzero, it is

L(1/2+ it) when t 6= t0/2 and is L(1/2+ it)/
√

2
R0

when t = t0/2. This value depends

on L(1/2 + it) and (surprisingly) on the order of vanishing of L2(s) at s = 1 + 2it .

Example 5.13 In Example 3.5, we referred to an example of Hardy’s where

∏
(1 + anxn) → 2

∏
(1 + an)

as x → 1−. A close reading of Hardy’s example leads to the following general phe-
nomenon.

Suppose bn ∈ C satisfies the following conditions:
∑

bn and
∑

b2
n converge, and∑

b3
n is absolutely convergent. (These are “moment” hypotheses, up to order 3.) If,

for 0 ≤ x < 1,

(5.8)
∑

|bn|2xn
= r log(1 − x) + h(x),

where r ∈ R and h is continuous on [0, 1], and bn 6= −1 for each n, then the sequence
an := 2 Re(bn) + |bn|2 satisfies

(5.9)
∏

n≥1

(1 + anxn) → 1

2r

∏

n≥1

(1 + an)

as x → 1−. The assumption (5.8) resembles (4.3) when we take L̃(s) = L2(s) for an
Euler product L(s) satisfying the second moment hypothesis.

https://doi.org/10.4153/CJM-2005-012-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-012-6


284 K. Conrad

6 A Sharper Version of Theorem 5.11

To understand more clearly what (5.7) means, we will show under plausible hypothe-
ses extending those in Theorem 5.11 that (5.7), for any choice of t , is equivalent to an
estimate that seems deeper than the Riemann hypothesis for L(s).

We recall the notation:

L(s) =

∏

p

1

(1 − αp,1 Np−s) · · · (1 − αp,d Np−s)

with |αp, j | ≤ 1. Now let

(6.1) bn =

∑

Npk=n

αk
p,1 + · · · + αk

p,d

k
,

so when Re(s) > 1,

(6.2) log L(s) =

∑

n≥2

bn

ns
, −L ′(s)

L(s)
=

∑

n≥1

bn log n

ns
.

When we say L(s) has an analytic continuation and functional equation, we mean:
for some integer m ≥ 1 the function

(6.3) Λ(s) := As

m∏

i=1

Γ(λis + µi) · L(s),

where A > 0, λi > 0, and Re(µi) ≥ 0, satisfies the three conditions

• Λ(s) is entire,
• Λ(s) is bounded in vertical strips,
• for some nonzero complex number w, Λ(s) satisfies

(6.4) Λ(1 − s) = wΛ(s).

Necessarily, |w| = 1, and in practice λi = 1 or 1/2. Boundedness of Λ(s) in strips
is needed to justify shifting lines of integration in the derivation of explicit formulas.

The Riemann hypothesis for L(s) is the claim that all zeros of Λ(s) are on the line
Re(s) = 1/2. (We are only concerned with this condition for individual L-functions,

not in families.) Equivalently, all zeros of L(s) should be on the line Re(s) = 1/2 or
at the poles of

∏
Γ(λis +µi), and in the latter case the multiplicity of the zero should

equal the multiplicity of the Γ-pole. Any zeros of L(s) whose locations and multi-
plicities are explained by a Γ-pole are called trivial. They have real part ≤ 0, by the

constraints on λi and µi . The nontrivial zeros of L(s) are the remaining zeros. Since
L(s) is nonvanishing on Re(s) > 1, the functional equation (6.4) implies the nontriv-
ial zeros have real part in [0, 1], and the Riemann hypothesis for L(s) is equivalent to
L(s) 6= 0 for Re(s) > 1/2.
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The formalism of (6.3) and (6.4) makes sense if m = 0, but this is possible only
when L(s) is identically 1 [8, Theorem 3.1]. (For earlier results in this direction, see

[3, 29].) So there is no harm in taking m ≥ 1 when considering Euler products over
number fields. However, Euler products over function fields have m = 0. We will
discuss the function field case in Section 8.

Using the notation of (6.1), the basic hypothesis in Corollary 5.4 is that

(6.5)
∑

n≤x

bn

n1/2+it
+ rt log log x converges

as x → ∞, for some rt , and one of the conclusions is that rt is the order of vanishing
of L(s) at 1/2 + it . (We are assuming L(s) is entire.) Our next theorem shows that
the validity of (6.5), using the proper value of rt , is independent of t . We need the

following lemma concerning a growth condition that is the same for all t .

Lemma 6.1 For a sequence of complex numbers cn, suppose
∑

n≤x cn = o(
√

x log x).

Then, for each real t, ∑

n≤x

cn

nit
= o(

√
x log x).

Proof Use partial summation.

A similar result holds if we replace
√

x log x with xa(log x)b for 0 < a < 1 and

b > 0.

Returning to the notation of (6.1), set

ψL(x) =

∑

n≤x

bn log n =

∑

Npk≤x

(αk
p,1 + · · · + αk

p,d) log Np.

Then for Re(s) > 1,

(6.6) −L ′(s)

L(s)
= s

∫ ∞

1

ψL(x)

xs+1
dx

and the Riemann hypothesis holds for L(s) if and only if ψL(x) = O(
√

x(log x)2).

Theorem 6.2 Let L(s) be as in (2.1). Assume L(s) admits an analytic continuation

and functional equation. Fix a real number t, and let mt be the order of L(s) at s =

1/2 + it. Then the following conditions are equivalent:

(1) As x → ∞,
∑

n≤x

bn

n1/2+it
+ mt log log x

converges.

(2) ψL(x) = o(
√

x log x).
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That is, when L(s) is entire with a functional equation, the hypothesis of Corol-

lary 5.4, using the correct coefficient of log log x, is equivalent to ψL(x) = o(
√

x log x).

Theorem 1.3 follows from this with L(s) = L(E, s + 1/2).

Proof (The reader may want to read the application of this result in Theorem 6.3
before beginning the proof.)

The function L̃(s) = L(s + it) (here t is from the statement of the theorem, and
is unrelated to s) is a normalized Euler product, with bn replaced by bnn−it and Λ(s)

replaced by Λ̃(s) = A−it
Λ(s+it). Lemma 6.1 says the conditionsψL(x) = o(

√
x log x)

and ψL̃(x) = o(
√

x log x) are equivalent, so we may safely assume t = 0 and prove

(6.7)
∑

n≤x

bn√
n

+ m0 log log x converges as x → ∞ ⇐⇒ ψL(x) = o(
√

x log x).

Each side of (6.7) implies L(s) 6= 0 on the region Re(s) > 1/2 (the left side shows
log L(s) is holomorphic here, and the right side shows L ′(s)/L(s) is holomorphic here
by (6.6)), so we may—and will—use the Riemann hypothesis for L(s) to prove (6.7).

We will approach (6.7) in two stages. First we will use an explicit formula to find

a convenient expression for

∑

n≤x

bn log n√
n

+ m0 log x,

which is (6.12) below. Then, using two other explicit formulas, we will obtain (6.7).

Recall the Dirichlet series for −L ′(s)/L(s) in (6.2). For c > 1 and a real, Perron’s

formula gives for x > 1

1

2πi

∫ c+i∞

c−i∞
−L ′(s)

L(s)

xs

s − a
ds = xa

∑′

n≤x

bn log n

na
,

where the ′ means the last term in the sum is weighted by 1/2 if x is an integer.
Applying this at a = 1/2 and a = 0 and subtracting,

(6.8)
1

2πi

∫ c+i∞

c−i∞
−L ′(s)

L(s)

xs

2s(s − 1/2)
ds =

√
x
∑

n≤x

bn log n√
n

−
∑

n≤x

bn log n.

When x is integral, the last terms in the two sums cancel, so we removed the ′ on
each Σ.

We now write the integral in (6.8) as a sum of residues in the half-plane Re(s) ≤ 1,

yielding an explicit formula. The justification for this is tedious, but not delicate since
the s(s − 1/2) in the denominator makes the residue sum absolutely convergent. We
omit the justification (thus hiding our use of the functional equation for L(s) and the
boundedness of Λ(s) in vertical strips), and simply report the results.
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Writing the local expansions of L ′(s)/L(s) at s = 0 and s = 1/2 as

L ′(s)

L(s)
=

c

s
+ d + · · · , L ′(s)

L(s)
=

c ′

s − 1/2
+ d ′ + · · · ,

we have

(6.9) Ress=ρ

(
−L ′(s)

L(s)

xs

2s(s − 1/2)

)
=

{
c(log x + 2) + d, if ρ = 0,

−c ′
√

x(log x − 2) − d ′√x, if ρ = 1/2.

As ρ runs over the nontrivial zeros of L(s),
∑

ρ 1/|ρ|2 converges by the Riemann hy-

pothesis for L(s). (In the sum, ρ is repeated according to its multiplicity.) Therefore,
excluding 1/2,

(6.10)
∑

ρ nontr.

ρ 6=1/2

Ress=ρ

(
−L ′(s)

L(s)

xs

2s(s − 1/2)

)
= O(

√
x).

Since the Γ-poles of L(s) run in finitely many arithmetic progressions to the left, the

residue sum over these poles is absolutely convergent, and tends to 0 or is oscillatory
as x → ∞. (Oscillations occur only when there is a Γ-pole other than 0 on the
imaginary axis).

Adding up the residues in (6.9), (6.10), and at the Γ-poles, the explicit formula

version of (6.8) implies

(6.11) −c ′
√

x log x + O(
√

x) =
√

x
∑

n≤x

bn log n√
n

−
∑

n≤x

bn log n

as x → ∞. Dividing by
√

x and noting c ′ = m0, we arrive at the key equation

(6.12)
∑

n≤x

bn log n√
n

= −m0 log x +

∑
n≤x bn log n

√
x

+ O(1).

This completes the first stage of our proof.
Now we derive (6.7) from (6.12). We want to divide the nth term on the left side

of (6.12) by log n, which reminds us of the elementary implication (for cn ∈ C)

(6.13)
∑

n≤x

cn = A log x + O(1) =⇒
∑

2≤n≤x

cn

log n
= A log log x + const. + o(1).

If we could use (6.13) in (6.12), we would have the left side of (6.7) directly. Alas,
(6.13) can not be applied since (

∑
n≤x bn log n)/

√
x = ψL(x)/

√
x is surely not

bounded. (This is plausible by comparison to known oscillations for (ψ(x)− x)/
√

x,
and serves simply as motivation for our next step.) We consider instead a condition
which models (6.12) but is weaker than the hypothesis in (6.13):

∑

n≤x

cn = A log x + g(x) + O(1).
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We carry out the argument for (6.13) in this setting. (To simply absorb A log x into
g(x) on account of the generality of the notation would not help.) Writing C(n) =

c1 + · · · + cn = A log n + g(n) + O(1), we find by partial summation

∑

2≤n≤N

cn

log n
=

C(N)

log N
+

N−1∑

n=2

C(n)
( 1

log n
− 1

log(n + 1)

)

= A +
g(N)

log N
+ O
( 1

log N

)
+

N−1∑

n=2

C(n)
( 1

n(log n)2
+ O
( 1

n2(log n)2

))

=
g(N)

log N
+

N−1∑

n=2

( A

n log n
+

g(n)

n(log n)2
+ O
( C(n)

n2(log n)2

))
+ A ′ + o(1)

= A log log N +
g(N)

log N
+

N−1∑

n=2

( g(n)

n(log n)2
+ O
( C(n)

n2(log n)2

))

+ A ′ ′ + o(1),

where A ′ and A ′ ′ are new constants. We apply this to (6.12): cn = bn(log n)/
√

n,
A = −m0, and g(x) = ψL(x)/

√
x. Since g(x) = O(

√
x) (this is another way

of saying ψL(x) = O(x), not ψL(x) = O(
√

x) ), we get C(n) = O(
√

n). Then∑
n≥2 C(n)/n2(log n)2 is absolutely convergent, so as N → ∞, our partial summa-

tion computation shows (6.12) implies
(6.14)∑

n≤x

bn√
n

+ m0 log log x converges ⇐⇒ ψL(x)√
x log x

+
∑

n≤x

ψL(n)

n
√

n(log n)2
converges

as x → ∞. We now show the sum on the right side of (6.14) converges as x → ∞.
This follows from the following two facts: for cn in C,

(6.15)
1

x

∑

n≤x

cn = O(
√

x) =⇒
∑

n≥2

cn

n
√

n(log n)2
converges absolutely

(this is left to the reader to check by partial summation), and

(6.16)
1

x

∑

n≤x

ψL(n) = O(
√

x).

The proof of (6.16) (analogous to a property ofψ(x)−x), uses a modification of (6.8):

(6.17)
1

2πi

∫ c+i∞

c−i∞
−L ′(s)

L(s)

xs

s(s + 1)
ds =

∑

n≤x

bn log n
(

1 − n

x

)
.

By partial summation, the right side is (1/x)
∑

n≤x ψL(n) + O(1). Evaluating the left

side as an absolutely convergent sum of residues gives a second explicit formula:

1

x

∑

n≤x

ψL(n) = Res0 + Res−1 +
∑

L(ρ)=0

ρ 6=0,−1

xρ

ρ(ρ + 1)
+ O(1),
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where each ρ is repeated according to its multiplicity as a zero, and Res0 and Res−1

are residues of the integrand in (6.17). By computation, the residue at 0 is O(log x),

the residue at −1 is O((log x)/x), the residues at the trivial zeros of L(s) (excluding
0 and −1) have a bounded sum (as x → ∞) and the residues at the nontrivial zeros
are O(

√
x) by the Riemann hypothesis for L(s). Therefore we obtain (6.16). By (6.15)

and (6.16), (6.14) becomes, as x → ∞,

∑

n≤x

bn√
n

+ m0 log log x converges ⇐⇒ ψL(x)√
x log x

converges.

Our final step is based on a paper of Gallagher [11]. Assuming the Riemann hy-
pothesis for ζ(s), Gallagher used an explicit formula with remainder term for ψ(x) to
refine the standard estimate ψ(x) − x = O(

√
x(log x)2) coming from the Riemann

hypothesis to

(6.18) ψ(x) − x = O(
√

x(log log x)2)

off a closed subset of [2,∞) with finite logarithmic measure. (That is, (6.18) is satis-
fied for x ≥ 2 outside a closed set E with

∫
E

dx/x <∞.) Gallagher’s argument carries
over to ψL(x), but we omit the details related to this third explicit formula. In short,

then, the Riemann hypothesis for L(s) implies ψL(x) = O(
√

x(log log x)2) off a set of
x with finite logarithmic measure, so

lim
∣∣∣
ψL(x)√
x log x

∣∣∣ = 0.

Therefore ψL(x)/
√

x log x converges if and only if it tends to 0. We are done.

Theorem 6.3 Let L(s) be a normalized Euler product, as in (2.1). Assume L(s) ad-

mits an analytic continuation and functional equation, and satisfies the second moment

hypothesis. Then the following conditions are equivalent:

(1) For some real t, there are Ct ∈ C× and rt ∈ C such that

∏

Np≤x

1

(1 − αp,1 Np−(1/2+it)) · · · (1 − αp,d Np−(1/2+it))
∼ Ct

(log x)rt

as x → ∞.

(2) For all real t, there are Ct ∈ C× and rt ∈ C such that

∏

Np≤x

1

(1 − αp,1 Np−(1/2+it)) · · · (1 − αp,d Np−(1/2+it))
∼ Ct

(log x)rt

as x → ∞.

(3) As x → ∞, ψL(x) = o(
√

x log x).

https://doi.org/10.4153/CJM-2005-012-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-012-6


290 K. Conrad

Proof When the first condition holds, the proof of Theorem 5.11 tells us that rt is
the order of L(s) at s = 1/2 + it and that the first condition in Theorem 6.2 holds.

Therefore we deduce ψL(x) = o(
√

x log x). Now apply Lemma 3.2 and the equiva-
lence in Theorem 6.2 with any other choice of t . We are using the second moment
hypothesis in the application of Theorem 5.11.

We noted in the introduction that Montgomery conjectured that the true order
of magnitude of ψ(x) − x is at most

√
x(log log log x)2. Specifically, Montgomery

conjectures

lim
ψ(x) − x√

x(log log log x)2
= − 1

2π
, lim

ψ(x) − x√
x(log log log x)2

=
1

2π
.

He arrived at this conjecture from considerations related to the hypothesis that the
nontrivial zeros of ζ(s) are all simple and (under the Riemann hypothesis for ζ(s) )

the imaginary parts of the nontrivial zeros are linearly independent over Q. These
simplicity and linear independence hypotheses can fail for L-functions, e.g., the L-
function of an elliptic curve might have a multiple zero at the real point on its critical
line. It is reasonable to believe that when the L-function is primitive (in the sense of

[24], say), the only exceptions to these hypotheses should be because of one multiple
zero (with an algebraic or geometric cause), so it still seems reasonable to conjecture
that ψL(x) = O(

√
x(log log log x)2), which would imply ψL(x) = o(

√
x log x). It

would be interesting if these estimates on ψL(x) can be related to statements about

the vertical distribution of zeros on the line Re(s) = 1/2.
In [15], W. Kuo and R. Murty prove Theorem 1.3, and implicitly also Theorem 6.2,

by a simpler method than ours. They require neither functional equations nor ex-
plicit formulas. (They do need holomorphy on the critical line, which in practice is

nearly always proved at the same time as a functional equation.) Our proof of The-
orem 6.2 nevertheless remains interesting, for the following reason. Nagao [20] has
used a heuristic limit formula for the (analytic) rank of an elliptic curve to search for
curves with high (algebraic) rank. His formula does not converge, but the proof of

Theorem 6.2 suggests an alternate limit formula. Under the plausible conditions in
Theorem 6.2, this alternate formula provably converges to the analytic rank, and it
does not seem that the method of [15] can be directly applied here. This will be the
subject of a future paper with R. Murty.

7 Dirichlet Series on the Critical Line

Theorems 5.11 and 6.3 give information about Euler products along the critical line.

A topic that naturally arises when thinking about these theorems is Dirichlet series
along the critical line, for L(s), log L(s), and L ′(s)/L(s). Should the ordinary Dirichlet
series for these functions converge here? (If so, away from singularities the limits
must be the expected values by Abel’s theorem for Dirichlet series.) Throughout this

section, we assume L(s) has an analytic continuation and functional equation, and
satisfies the Riemann hypothesis.

Using these assumptions, a contour integration argument shows log L(s) and
L ′(s)/L(s) are represented by their ordinary Dirichlet series and L(s) is represented
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by its Euler product (2.1) for Re(s) > 1/2. I thank Rohrlich for pointing out to
me that for any entire L-function over a number field (with a functional equation

connecting s and 1 − s, and so on), its ordinary Dirichlet series should converge for
Re(s) > 1/2 − 1/2D, where D is the number of real Gamma factors plus twice the
number of complex Gamma factors. (In practice, all but finitely many Euler fac-
tors in L(s) have degree d and D = d. Alternatively, using the axiomatic notation

of (6.3), one expects D = 2
∑
λi , and this sum has an intrinsic characterization

through the asymptotic formula counting nontrivial zeros of L(s) with imaginary
part up to a given height [25].) Applying this to L(E, s + 1/2), the Dirichlet series
for L(E, s) should converge for Re(s) > (1/2 − 1/2 · 2) + 1/2 = 3/4. It is known to

converge for Re(s) > 5/6 [19, pp. 15–18], so L(E, 1) =
∑

an/n (and similarly for
higher derivatives of L(E, s) at s = 1), but

∑
an/n only converges conditionally since

#{n ≤ x : an 6= 0} grows like cx or cx/
√

log x for some c > 0, depending on whether
or not E has complex multiplication [26].

By Corollary 5.4, the ordinary Dirichlet series for log L(s) does not converge at
logarithmic singularities on the line Re(s) = 1/2. (These singularities exist since L(s)
has nontrivial zeros.) At any other point on this line, the ordinary Dirichlet series
for log L(s) converges if and only if ψL(x) = o(

√
x log x), by Theorem 6.2. Therefore

convergence is plausible, but a proof is not possible at present.

On the other hand, the ordinary Dirichlet series for L ′(s)/L(s) does not converge
anywhere on the critical line, by the next result. I am grateful to Stark for the state-

ment and the proof.

Theorem 7.1 Let f (s) =
∑

ann−s for Re(s) ≥ σ0 > σ1. Assume f has a meromor-

phic continuation to Re(s) ≥ σ1 and a simple pole somewhere along the line Re(s) = σ1.

Then
∑

ann−s converges at no point on this line.

Proof Replacing s with s+σ1, we can replace the line Re(s) = σ1 with the imaginary
axis. Shifting vertically, it suffices to show

∑
an does not converge.

Let A(x) =
∑

n≤x an. Assume A(x) converges as x → ∞, say to c. Then f (s)

equals
∑

ann−s for Re(s) > 0 and f (s) → c as s → 0+ by Abel’s theorem. Since f

is meromorphic at s = 0 and bounded as s → 0+, it must be holomorphic at s = 0
with f (0) = c.

When Re(s) > 0, ∫ ∞

1

A(x) − c

xs+1
dx =

f (s) − c

s
.

Let the simple pole of f on the imaginary axis be at iγ0. Necessarily γ0 6= 0. We

consider ( f (s) − c)/s at s = σ + iγ0 and then let σ → 0+.

Fixing ε > 0, |A(x) − c| ≤ ε for x ≥ N > 1. Then

∣∣∣∣
f (σ + iγ0) − c

σ + iγ0

∣∣∣∣ ≤
∫ ∞

1

|A(x) − c| dx

xσ+1

≤
∫ N

1

|A(x) − c| dx

xσ+1
+
ε

σ
.
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Multiply through by σ and let σ → 0+ to get

∣∣∣
Resiγ0

f

γ0

∣∣∣ ≤ ε.

Now let ε→ 0 to get a contradiction of the simple pole at iγ0.

Example 7.2 For a nontrivial Dirichlet character χ, the Dirichlet series for

L ′(χ, s)/L(χ, s)

will converge on Re(s) > 1/2 under the Riemann hypothesis for L(χ, s), but con-
verges nowhere on the line Re(s) = 1/2.

Example 7.3 While log ζ(s) =
∑

1/kpks converges on Re(s) = 1 with s 6= 1, there

is no contradiction of Theorem 7.1 since this series has a logarithmic singularity at
s = 1 rather than a (simple) pole.

8 Function Fields

We now consider partial Euler products over a function field with finite constant
field. Proofs similar to the number field case will be omitted.

In Section 6, we found (5.7) seems to lie deeper than the Riemann hypothesis over

number fields. In function fields, where the Riemann hypothesis is already a theorem,
the analogue of (5.7) turns out to be provable in some examples.

Let K be a function field (in one variable) with constant field of size q. Normalized
Euler products over K, by definition, have the form

(8.1) L(z) =

∏

v

1

(1 − αv,1zdeg v) · · · (1 − αv,dzdeg v)
,

where v runs over all the places of K and |αv, j | ≤ 1. The product is absolutely con-
vergent for |z| < 1/q, and we are interested in partial Euler products on the circle
|z| = 1/

√
q. In particular, we are interested in asymptotic relations of the form

∏

deg v≤n

1

(1 − αv,1zdeg v) · · · (1 − αv,dzdeg v)
∼ C

nr

as n → ∞. The second moment L2(z) is defined just as in the number field case,

and we say L(z) satisfies the second moment hypothesis when L2(z) extends from
|z| < 1/q to a holomorphic nonvanishing function on |z| = 1/q, except for a zero or
pole at perhaps one point z0, with |z0| = 1/q and order of vanishing R0 ∈ Z. (We
allow R0 < 0.) We will retain this meaning for z0,R0 throughout this section.

Since Dirichlet series over function fields are power series in z = q−s, their ana-
lytic treatment is simpler than in the number field case. We leave the function field
analogues of Theorems 4.1 and 4.3 to the reader, and pass to the statement of the
analogue of Theorem 4.9, which brings in

√
2.
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Theorem 8.1 Let L(s) be as in (8.1), and satisfy the second moment hypothesis. Pick

z with |z| = 1/
√

q. As n → ∞,

∑

deg v≤n

∑

k≥1

αk
v,1 + · · · + αk

v,d

k
zk deg v

=

∑

k deg v≤n

αk
v,1 + · · · + αk

v,d

k
zk deg v

+

{
o(1) if z2 6= z0,

−R0 log
√

2 + o(1) if z2
= z0.

Since the additive condition 2t = t0 in number fields becomes the multiplicative
condition z2

= z0, there are two exceptional points on the circle |z| = 1/
√

q (if
R0 6= 0), rather than one point as over number fields.

Corollary 5.4 has a function field analogue, as follows.

Theorem 8.2 Let L(z) be as in (8.1). For some u with |u| = 1/
√

q, assume

∑

k deg v≤n

αk
v,1 + · · · + αk

v,d

k
uk deg v

= −ru log n + C ′
u + o(1)

as n → ∞, for some C ′
u and ru in C. Then L(z) extends to a holomorphic nonvanishing

function on |z| < 1/
√

q. If L(z) is holomorphic at u, then its order of vanishing there is

ru and its leading term is eC ′
u eruγ(1 − z/u)ru .

We write the first term of L(z) at u with a power of 1− z/u instead of with a power

of z − u, for ease of comparison with Corollary 5.4. Owing to this, the coefficient
eC ′

u eruγ is not L(ru)(u)/ru!, but (−u)ru L(ru)(u)/ru!.
There is no function field analogue of the technique of proof of Theorem 5.11,

since Lemma 3.2 is false in the function field case. That is, if γv,1, . . . , γv,d lie in the

open unit disk and maxi |γv,i | → 0 as deg v → ∞, the condition

(8.2)
∏

deg v≤n

1

(1 − γv,1) · · · (1 − γv,d)
∼ C

nr

as n → ∞, for some C ∈ C× and r ∈ C, need not imply

(8.3) −
∑

deg v≤n

(log(1 − γv,1) + · · · + log(1 − γv,d)) = −r log n + C ′ + o(1)

for some C ′ as n → ∞. (The reverse implication, however, is trivially true.) This
failure is not a surprise, since #{v : deg v = n} is unbounded as n grows.

Example 8.3 We give a counterexample of (8.2) ⇒ (8.3) with d = 1, so we write
γv instead of γv,1. Let Nn be the number of degree n places on K. For all v with a
common degree n, set γv = 1 − e2πi/Nn . Then |γv| → 0 as deg v → ∞, and

∏

deg v≤n

1

1 − γv

= 1.
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Thus (8.2) holds with r = 0. However, (8.3) fails since

−
∑

deg v≤n

log(1 − γv) = −2πin.

For readers concerned about the logic of carrying over our results from number
fields to function fields, in light of the failure of Lemma 3.2, we note that this lemma
was not used in any results which we are extending to function fields with analogous

proofs. For the record, Lemma 3.2 is either explicitly or implicity used in the proofs
of Theorem 3.3, Corollaries 4.11, 5.5, 5.6, and 5.7, and Theorems 5.11 and 6.3.

Since (8.2) and (8.3) are not generally equivalent, we give up trying to prove func-

tion field equivalences like those in Corollary 4.11 or Theorem 6.3. Instead we exploit
the different structure of function field L-functions to prove better equivalences more
easily.

From now on, we assume L(z) as in (8.1) is entire and satisfies a functional equa-

tion

(8.4) L(1/qz) = cz−DL(z),

where c 6= 0 and D ∈ Z. Then D ≥ 0 and L(z) is a polynomial of degree D:

(8.5) L(z) = (1 − λ1z) · · · (1 − λDz).

Note for any u that

(8.6) ordz=u L(z) = #{i : λiu = 1}.

Theorem 8.4 When L(z) is entire and satisfies (8.4), the following are equivalent:

(1) For some u with |u| = 1/
√

q,

∑

k deg v≤n

αk
v,1 + · · · + αk

v,d

k
uk deg v + mu log n

converges as n → ∞, where mu = ordz=u L(z).

(2) For all i, |λi | =
√

q.

Proof The first condition implies L(z) 6= 0 for |z| < 1/
√

q by Theorem 8.2. There-

fore by the functional equation, L(z) satisfies the Riemann hypothesis.
For the converse direction, suppose all |λi| equal

√
q. Pick any u with |u| = 1/

√
q,

so |λiu| = 1 for all i. Taking logarithms in (8.1) and (8.5), when |z| < 1/q, and

comparing coefficients,

∑

k deg v=n

αk
v,1 + · · · + αk

v,d

k
= −

D∑

i=1

λn
i

n
.
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Therefore

∑

k deg v≤n

αk
v,1 + · · · + αk

v,d

k
uk deg v

=

∑

1≤ j≤n

(
−

D∑

i=1

λ
j
i

j

)
u j

= −
D∑

i=1

n∑

j=1

(λiu) j

j

= −#{i : λiu = 1}(log n) + const. + o(1),

since
∑

j z j/ j converges when |z| = 1 except at z = 1. Using (8.6), we are done.

Recall the notation z0, R0 when L(z) satisfies the second moment hypothesis.

Corollary 8.5 Let L(z) be entire and satisfy (8.4), the Riemann hypothesis, and the

second moment hypothesis. For u with |u| = 1/
√

q, let mu = ordz=u L(z) and let the

leading term of L(z) as a series in 1 − z/u be Bu(1 − z/u)mu . Then

∏

deg v≤n

1

(1 − αv,1udeg v) · · · (1 − αv,dudeg v)
∼ Cu

nmu

as n → ∞, with

Cu =

{
Bu/emuγ , if u2 6= z0,

Bu/
√

2
R0

emuγ , if u2
= z0.

Proof By the Riemann hypothesis and Theorem 8.4,

∑

k deg v≤n

αk
v,1 + · · · + αk

v,d

k
uk deg v

= −mu log n + C ′
u + o(1)

for some C ′
u. By Theorem 8.2, Bu = eC ′

u emuγ . Now use Theorem 8.1 and exponentiate.

Example 8.6 Let E/F2(T) be the elliptic curve defined by

y2 + xy = x3 + T3.

This curve lies in a family recently studied by Ulmer [28]. By Tate’s algorithm, the
conductor is n = (0) + 5(∞), so L(E, z) has degree deg n − 4 = 2. A calculation
shows L(E, z) = 1 − 4z2, so there is a simple zero at z = 1/2 (corresponding to
s = 1). The second moment hypothesis for L(E, z/

√
2) follows from holomorphy

and nonvanishing of the symmetric square on |z| = 1/2, which is a special case of
Deligne’s work [9], and is also discussed in [18].

The hypotheses of Corollary 8.5 are satisfied for L(z) = L(E, z/
√

2) with m1/
√

2 =

1, so the partial Euler products for L(E, z) at z = 1/2 tend to 0. For comparison

https://doi.org/10.4153/CJM-2005-012-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-012-6


296 K. Conrad

with the hypothetical (1.1), which motivated this whole chain of ideas in the first
place, we write the decay of the partial Euler products in terms of the growth of their

reciprocals:

(8.7)
∏

deg v≤n

#Ens(Fv)

Nv
∼

√
2

R0

eγn

2
=

eγn√
2
,

where Fv is the residue field at v. This estimate, unlike (1.1) over Q, is unconditionally
true. We illustrate it in Table 3, where the right column has a limit of eγ/

√
2 ≈ 1.26.

n (1/n)
∏

deg v≤n #Ens(Fv)/Nv

5 1.22

6 1.36
7 1.27
8 1.28
9 1.22

10 1.29

Table 3

Acknowledgments I thank B. Conrad, D. Goldfeld, D. Rohrlich, M. Rubinstein,
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