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1. Introduction
Let G be a group acting properly by isometries on a proper geodesic space (X, d). In
particular, G is countable. It will always be endowed with the discrete topology. Its
exponential growth rate measures the size of its orbits and is defined as

ω(G, X) = lim sup
�→∞

1
�

ln |{g ∈ G : d(o, go) ≤ �}|.

This number does depend on the space X. Nevertheless, if the context is clear, we simply
write ωG instead of ω(G, X). It is also the critical exponent of the Poincaré series of G
defined by

PG(s) =
∑
g∈G

e−sd(o,go),

that is, PG(s) diverges (respectively converges) whenever s < ωG (respectively s > ωG).
If G is the fundamental group of a hyperbolic manifold M acting on the universal cover
X = M̃ , then ωG has numerous interpretations: it is the entropy of the geodesic flow, the
Hausdorff dimension of the radial limit set of G, etc. In this context, the exponential growth
rate is a central object connecting geometry, group theory, dynamical systems, etc.

1.1. Growth spectrum. In this article, we are interested in the (normal) subgroup growth
spectrum of G, that is, the set

Spec(G, X) = {ω(N , X) : N � G}.
Note that Spec(G, X) is contained in [0 , ωG]. In particular, ωN = 0 (respectively
ωN = ωG) if N is finite (respectively has finite index in G). A natural question, which
has received much attention, is to understand more precisely the extremal values of this
set. This problem is rather well understood if G is a group acting properly, co-compactly
by isometries on a Gromov hyperbolic metric space X. For instance, any infinite normal
subgroup N � G satisfies
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1
2ω(G, X) < ω(N , X) ≤ ω(G, X),

see [36]. Moreover, the second inequality is an equality if and only if G/N is amenable.
Similarly, if G has Kazhdan property (T), then ωN cannot be arbitrarily close to ωG, unless
N has finite index in G. See [18] and the references therein.

1.2. Contracting elements. In the past decades, there have been many efforts to investi-
gate the marks of negative curvature in groups, beyond the context of hyperbolic spaces.
One notion which has emerged is the one of contracting element. Roughly speaking, a
subset Y ⊂ X is contracting if any ball disjoint from Y has a projection onto Y, whose
diameter is uniformly bounded [6].

Remark. In the literature, this property is sometimes called strong contraction to distin-
guish it from a weaker version involving a certain system of non-geodesic paths, see for
instance [1]. Since we will work with this single notion, we simply call it contraction.

An element g ∈ G is contracting if the orbit map Z → G sending n to gnx is a
quasi-isometric embedding with contracting image. Contracting elements can be thought
of as hyperbolic directions in the space X. Here are a few examples of group actions with
contracting elements.
• If X is a hyperbolic space (in the sense of Gromov) endowed with a proper action of

G, then every loxodromic element in G is contracting [26]. This is typically the case if
G is the fundamental group of a manifold M whose sectional curvature is negative and
bounded away from zero, and X the universal cover of M. Any metric quasi-isometric
to this one will also work.

• Assume that G is hyperbolic relative to {P1, . . . , Pm}. Suppose that G acts properly,
co-compactly on X (e.g. X is the Cayley graph of G with respect to a finite generating
set of G). Any infinite order element of G which is not conjugated in some Pi is
contracting [23, 46].

• If X is a CAT(0) space endowed with a proper, co-compact action of G, then any rank
one element of G is contracting [6]. Recall that the universal cover of any closed,
compact manifold with non-positive sectional curvature is CAT(0) [7].

• Let � be a closed, compact surface. Assume that G is the mapping class group of �
and X the Teichmüller space of � endowed with the Teichmüller metric. Then any
pseudo-Anosov element is contracting [37].

Groups with a contracting element are known to be acylindrically hyperbolic, see Sisto
[47]. Acylindrical hyperbolicity is a powerful tool for studying the structure of a given
group. Nevertheless, it is rather useless here as the exponential growth rate ω(G, X)
heavily depends on the metric space X. The typical spaces X we are interested in are indeed
not hyperbolic.

1.3. Main results. The goal of this article is to investigate the extremal values of
the subgroup growth spectrum in the context of group actions admitting a contracting
element. Some of our results refine existing statements in the literature. In particular,
we answer most of the questions raised by Arzhantseva and Cashen in [2]. Our main
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contribution though is the method that we use: we extend to this context the construction
of Patterson–Sullivan measures (see below).

When it comes to counting problems, the behavior of the Poincaré series of G at the
critical exponent plays a major role. This motivates the following definition. The action of
G on X is divergent (respectively convergent) if the Poincaré series PG(s) of G diverges
(respectively converges) at s = ωG. Our first statement deals with the bottom of the
subgroup growth spectrum.

THEOREM 1.1. (See Corollary 4.29 and Proposition 5.23) Let X be a proper geodesic
metric space. Let G be a group acting properly, by isometries on X with a contracting
element. Let N be an infinite normal subgroup of G. Then

ω(N , X)+ 1
2ω(G/N , X/N) ≥ ω(G, X).

Assume in addition that G is not virtually cyclic and the action of G is divergent. Then

ω(N , X) > 1
2ω(G, X).

Remark. The first inequality was proved by Matsuzaki and Jaerisch when G is a finitely
generated free group acting on its Cayley graph with respect to a free basis [28]. Their
method involves fine estimates of the Cheeger constant and the spectral radius of the
random walk in G/N . To the best of our knowledge, this result is new, even if G is a
hyperbolic group.

The second inequality is well known in the context of hyperbolic spaces, see [42] and
[36]. For groups acting with a contracting element, it was proved by Arzhantseva and
Cashen under the stronger assumption that G has pure exponential growth, that is, when
the map

� �→ |{g ∈ G : d(o, go) ≤ �}|e−ωG�

is bounded from above and away from zero [2]. Note that even if X is Gromov hyperbolic,
there are groups G acting on X, which are divergent but do not have pure exponential
growth.

The next two results focus on the top of the subgroup growth spectrum. Let Q be a
discrete group. The left action of Q on itself induces an action of Q on �∞(Q). The group
Q is amenable if there exists a Q-invariant mean �∞(Q) → R.

THEOREM 1.2. (See Corollary 4.27) Let X be a proper, geodesic, metric space. Let G be
a group acting properly, by isometries on X with a contracting element. Let N be a normal
subgroup of G. If G/N is amenable, then ω(N , X) = ω(G, X).

Remark. This type of result has a long history. Assume that G is the fundamental group of
a compact hyperbolic manifold and X the universal cover of M. Let N be a normal subgroup
of G. Brooks proved that ωN = ωG if and only if G/N is amenable [8]—Brooks’ result is
actually stated in terms of the bottom spectra of certain Laplace operators, but they can be
related to the growth rates of the groups via Sullivan’s formula [48]. A similar statement
was obtained independently by Grigorchuk and Cohen when G is a free group acting on
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its Cayley graph X with respect to a free basis [12, 25]. The ‘easy direction’ stated above
was generalized by Roblin to the settings of CAT(−1) spaces [42].

Recall that two subgroups H1 and H2 of G are commensurable if H1 ∩H2 has finite
index in both H1 and H2. A subgroup H ⊂ G is commensurated if H and gHg−1 are
commensurable, for every g ∈ G. The class of commensurated subgroups contains all
normal subgroups and finite index subgroups of G. More generally, any subgroup of G
that is commensurable with a normal subgroup of G is commensurated. However, there
are numerous other examples, see Remark 5.26.

THEOREM 1.3. (See Theorem 5.25) Let X be a proper, geodesic, metric space. Let G
be a group acting properly, by isometries on X with a contracting element. Let H be
a commensurated subgroup of G. If the action of H on X is divergent, then ω(H , X) =
ω(G, X) and the action of G on X is divergent.

Remark. To the best of our knowledge, the statements in the literature only cover the case
where H is normal. With this stronger assumption, it was proved by Matsuzaki and Yabuki
if G is a Kleinian group, and generalized by Matsuzaki, Yabuki, and Jaerisch when X is
Gromov hyperbolic [35, 36].

1.4. Patterson–Sullivan theory. Assume that G is the fundamental group of a closed
Riemannian manifold M with negative sectional curvature. In this context dynamical
systems—first and foremost, the study of the geodesic flow on the unit tangent bundle of
M—provide efficient tools to tackle counting problems. For instance, using the dynamics
of the geodesic flow, Margulis proved that the number c(�) of simple closed geodesics on
M of length at most � behaves like

c(�) ∼
�→∞

eωG�

ωG�
.

See [34]. Fix a base point o ∈ X. Denote by X = M̃ the universal cover of M and ∂X
its visual boundary. In this topic, measures on the boundary play a prominent role. Recall
that a G-invariant, ωG-conformal density is a collection ν = (νx)x∈X of non-zero finite
measures on X ∪ ∂X, all in the same measure class, satisfying the following properties:
for all g ∈ G, for all x, y ∈ X, we have:
• g∗νx = νgx (invariance);
• dνx/dνy(ξ) = e−ωGbξ (x,y)ν-almost everywhere (a.e.) (conformality),
where bξ stands for the Buseman cocycle at ξ ∈ ∂X. In particular, ωG can be interpreted
as the dimension of the measure νo. Patterson’s construction provides examples of such
densities which are supported on ∂X. These measures are designed so that the action of
G on (∂X, νo) captures many properties of the geodesic flow on M. The theory can be
generalized for groups acting on a Gromov hyperbolic space, see for instance [13] and
[4]. For such groups, Theorems 1.1, 1.2, and 1.3 can be proved using invariant conformal
densities.

In the past years, growth problems in groups with a contracting element have
been investigated by various people, see for instance [1, 2, 20, 32, 49–51]. Since no
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Patterson–Sullivan theory existed in this context, each time the authors developed ad
hoc methods. Actually, they often make a point of avoiding ‘fairly sophisticated’ results
about Patterson–Sullivan ‘machinery’. We adopt here an opposite point of view. For us,
these results witnessed the fact that a Patterson–Sullivan theory should exist. Building
this ‘missing’ theory is the purpose of this work. If the ambient space X is CAT(0),
this task has been achieved by Link [33] extending the work of Knieper [29, 30]. Our
approach does not require any CAT(0) assumption though. Our goal is to stress that this
construction is particularly robust and requires very little hypotheses, beside the existence
of a contracting element. Once the basic properties of invariant conformal densities have
been established, they provide a unified framework for solving various growth problems.
We believe that these tools can be used for many other applications inspired by non-positive
curvature.

1.5. Strategy. We would like to understand the behavior of certain densities supported
on the ‘boundary at infinity’ of X. Thus, the first task is to build an appropriate
compactification of X to carry these measures. There have been many attempts to build an
analogue of the Gromov boundary for groups with a contracting element: the contracting
and Morse boundaries [11, 15, 38], the sublinearly Morse boundary [40, 41], etc. However
these boundaries are sometimes ‘too small’ (for instance, the Morse boundary cannot be
used as a topological model of the Poisson boundary) and often not compact. This can
be a difficulty to build Patterson–Sullivan measures. Instead, we choose to work with the
horocompactification. In short, it is the ‘smallest’ compactification X̄ of X such that the
map

X ×X ×X → R

(x, y, z) �→ d(x, z)− d(y, z)

extends continuously to a map X ×X × X̄ → R. The horoboundary of X is ∂X = X̄ \X.
A point in the horoboundary is a cocycle c : X ×X → R, playing the role of a Buseman
cocycle. Hence, this choice is natural to give a rigorous sense to conformal densities.
If X is CAT(0), then the horoboundary coincides with the visual boundary. In general,
this boundary is slightly too large though for invariant conformal densities to behave as
expected. Let us illustrate this fact with an example.

Example. Consider a group G acting properly, co-compactly, by isometries on a CAT(0)
space X0. Build a new space X = X0 × [0 , 1] endowed with the L1-metric. Let G act
trivially on [0 , 1] and consider the diagonal action of G on X. This action is still proper
and co-compact and ω(G, X) = ω(G, X0). The horoboundary of X is homeomorphic to
∂X = ∂X0 × [0 , 1]. To carry the analogy with negatively curved manifold, we would like
that if μ = (μx) is a G-invariant, ωG-conformal density supported on ∂X, then the action
of G on (∂X, μo) is ergodic. However, in this example, we can choose a G-invariant,
ωG-conformal density ν = (νx) on ∂X0 and form the average μ = (ν0 + ν1)/2, where
νi is a copy of ν supported on ∂X0 × {i}. Then the action of G on (∂X, μo) is not
ergodic.
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This issue already arises if X is Gromov hyperbolic. In this context, it can be fixed by
passing to the reduced horoboundary. Endow the horoboundary ∂X with the equivalence
relation ∼ defined as follows: two cocycles c, c′ ∈ ∂X are equivalent if ‖c − c′‖∞ < ∞.
The reduced horoboundary is the quotient ∂X/ ∼. If X is hyperbolic, then it coincides with
the Gromov boundary. Moreover, the projection π : ∂X � ∂X/ ∼ is very well understood,
see [14]. Pushing forward in ∂X/ ∼, the densities built in ∂X provides well-behaved
measures.

However, in general, the reduced horoboundary ∂X/ ∼ is a rather nasty topological
space. For instance, ifX = R

2 is endowed with the taxicab metric, then ∂X/ ∼ is not even
Hausdorff. To bypass this difficulty, we adopt a measure theoretic point of view. Denote
by R the σ -algebra that consists of all Borel sets which are saturated for the equivalence
relation ∼. We make an abuse of vocabulary and call the measurable space (∂X, R)
the reduced horoboundary. When restricted to the reduced horoboundary, the invariant,
conformal densities are well behaved. For instance, we prove the following partial form of
the Hopf–Tsuji–Sullivan dichotomy (we refer the reader to §4.6 for the definition of the
radial limit set).

THEOREM 1.4. (See Corollaries 4.25 and 5.19) Let X be a proper geodesic metric space
and o ∈ X. Let G be a group acting properly, by isometries on X with a contracting
element. Suppose that G is not virtually cyclic. Let ω ∈ R+. Let μ = (μx) be the
restriction to the reduced horoboundary (∂X, R) of a G-invariant, ω-conformal density.
The following are equivalent.

(i) The action of G on X is divergent (and thus ω = ωG).
(ii) μo gives positive measure to the radial limit set.

(iii) μo gives full measure to the radial limit set.

Remark. In a forthcoming work, see [17], we plan to complete the Hopf–Tsuji–Sullivan
dichotomy by investigating the ergodicity of the geodesic flow in this context and its
consequences for growth problems.

If the action of G on X is divergent, we prove that invariant, conformal densities are
ergodic and essentially unique, when restricted to the reduced horoboundary.

THEOREM 1.5. (See Proposition 5.22) Let X be a proper, geodesic, metric space and
o ∈ X. Let G be a non-virtually cyclic group acting properly, by isometries on X with
a contracting element. Assume that the action of G on X is divergent. Let μ = (μx) be the
restriction to the reduced horoboundary (∂X, R) of a G-invariant, ωG-conformal density.
Then:

(i) μo is ergodic;
(ii) μo is non-atomic;

(iii) μ is almost unique in the following sense: there is C ∈ R
∗+, such that if μ′ = (μ′

x) is
the restriction to the reduced horoboundary of another G-invariant, ωG-conformal
density, then for every x ∈ X, we have μ′

x ≤ Cμx .

Finally, we complete Theorem 1.3 as follows.
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THEOREM 1.6. (See Theorem 5.25) Let X be a proper, geodesic, metric space. Let G be
a group acting properly, by isometries on X with a contracting element. Suppose that G
is not virtually cyclic. Let H be a commensurated subgroup of G. If the action of H on
X is divergent, then any H-invariant, ωH -conformal density is G-almost invariant when
restricted to the reduced horoboundary (∂X, R).

Remark. Other applications can be found in §§4.6 and 5.5. In this article, we focused
on growth problems. Nevertheless, we believe that the tools we introduced can be used
for other purposes, e.g. to generalize the ‘no proper conjugation’ property of divergent
subgroups exhibited by Matsuzaki, Yabuki, and Jaerisch [36].

1.6. Strongly positively recurrent actions. As we mentioned before, divergent actions
play an important role in counting problems. Any proper and co-compact action is
divergent. In particular, if G acts properly on X with a quasi-convex orbit, then its action is
divergent. This framework has been generalized independently by Schapira and Tapie [44]
and Yang [50] under the names strongly positively recurrent action (SPR) and statistically
convex co-compact action (SCC), respectively—the idea also implicitly appears in the
work of Arzhantseva, Cashen, and Tao [1]. The notion has an independent dynamical
origin as well, see for instance [27, 43]. Roughly speaking, the idea is to ask that the
elements of g ∈ G which ‘violate’ the quasi-convexity of G are statistically very rare.
It was proved by Yang that such actions are divergent. In Appendix A, we provide an
alternative proof of this fact in the spirit of Schapira and Tapie [44].

Remark. Since obtaining the results in this article, we have learned that Wenyuan Yang
independently investigated conformal measures in the same context [52]. The techniques
used by Wenyuan Yang are slightly different. For instance, his proof of Theorem 1.5 (partial
form of the Hopf–Tsuji–Sullivan dichotomy) relies on projection complexes introduced by
Bestvina, Bromberg, and Fujiwara [5]. In contrast, we tried to use, whenever possible,
low-tech arguments (both of geometric and measure theoretic nature).

2. Groups with a contracting element
2.1. Notation and vocabulary. In this article, (X, d) is a proper, metric space. A
geodesic is a path γ : I → X (where I ⊂ R is an interval) such that

d(γ (t), γ (t ′)) = |t ′ − t | for all t , t ′ ∈ I .

From now on, we assume that X is geodesic, that is, any two points are joined by a
(non-necessarily unique) geodesic. Note that we do require X to be geodesically complete.

For every x ∈ X and r ∈ R+, we denote by B(x, r) the open ball of radius r centered at
x. Let Y be a closed subset of X. Given x ∈ X, a point y ∈ Y is a (nearest point) projection
of x on Y if d(x, y) = d(x, Y ). The projection of a subset Z ⊂ X onto Y is

πY (Z) = {y ∈ Y : y is the projection of a point z ∈ Z}.

https://doi.org/10.1017/etds.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.10


3224 R. Coulon

Let I ⊂ R be a closed interval and γ : I → X a continuous path intersecting Y. The entry
point and exit point of γ in Y are the points γ (t) and γ (t ′), where

t = inf {s ∈ I : γ (s) ∈ Y } and t ′ = sup {s ∈ I : γ (s) ∈ Y }.
If I is bounded, such points always exist (the subset Y is closed). Given d ∈ R+, we denote
by Nd(Y ) the d-neighborhood of Y, that is, the set of points x ∈ X such that d(x, Y ) ≤ d .
The distance between two subsets Y , Y ′ of X is

d(Y , Y ′) = inf
(y,y′)∈Y×Y ′ d(y, y′).

2.2. Contracting set

Definition 2.1. (Contracting set) Let α ∈ R
∗+. A closed subset Y ⊂ X is α-contracting if

for any geodesic γ with d(γ , Y ) ≥ α, we have diam(πY (γ )) ≤ α. The set Y is contracting
if Y is α-contracting for some α ∈ R

∗+.

The next statements are direct consequences of the definition. Their proofs are left to
the reader.

LEMMA 2.2. (Quasi-convexity) Let Y be an α-contracting subset. If γ is a geodesic joining
two points of Nα(Y ), then γ lies in the 5α/2-neighborhood of Y.

LEMMA 2.3. (Projections) Let Y be an α-contracting subset. Let x, y ∈ X and γ be a
geodesic from x to y. Let p and q be respective projections of x and y onto Y. If d(x, Y ) < α

or d(p, q) > α, then the following hold:
(i) d(γ , Y ) < α;

(ii) the entry point (respectively exit point) of γ inNα(Y ) is 2α-closed to p (respectively
q);

(iii) d(x, y) ≥ d(x, p)+ d(p, q)+ d(q, y)− 8α.

Remark 2.4. It follows from the above statement that the nearest point projection onto Y is
large-scale 1-Lipschitz. Actually, refining the above argument, one can prove that for every
subset Z ⊂ X, we have

diam(πY (Z)) ≤ diam(Z)+ 4α.

LEMMA 2.5. For every α, d ∈ R
∗+, there exists β ∈ R

∗+ with the following property. Let Y
and Z be two closed subsets of X. Assume that the Hausdorff distance between them is at
most d. If Y is α-contracting, then Z is β-contracting.

2.3. Contracting element. Consider now a group G acting properly, by isometries on X.

Definition 2.6. (Contracting element) Let y ∈ X. An element g ∈ G is contracting, for its
action on X, if the orbit map Z → G sending n to gny is a quasi-isometric embedding with
contracting image.

Note that the definition does not depend on the point y (see Lemma 2.5). The next
statement is a reformulation of [51, Lemma 3.3 (and its proof)].
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LEMMA 2.7. Let g ∈ G be a contracting element. For every d ∈ R+ and z ∈ X, there
is α ∈ R

∗+ with the following property. Let p, q ∈ Z with p ≤ q. Let x, y ∈ X such that
d(x, gpz) ≤ d and d(y, gqz) ≤ d . Let γ be a geodesic joining x to y. Then any subpath of
γ is α-contracting. Moreover, for every integer n ∈ �p, q�, the point gnz is α-close to γ .

Let g ∈ G be a contracting element and A be the 〈g〉-orbit of a point y ∈ X. Define
E(g) as the set of elements u ∈ G such that the Hausdorff distance between A and uA
is finite. It follows from the definition that E(g) is a subgroup of G that does not depend
on y. It is the maximal virtually cyclic subgroup of G containing 〈g〉. Moreover, E(g)
is almost-malnormal, that is, uE(g)u−1 ∩ E(g) is finite for every u ∈ G \ E(g), see [50,
Lemma 2.11].

LEMMA 2.8. Assume that G is not virtually cyclic and contains a contracting element. Let
H ⊂ G be a commensurated subgroup. If H is infinite, then H is not virtually cyclic and
contains a contracting element.

Proof. We only sketch the proof. For more details, we refer the reader to [1, §3] where
similar arguments are given. We first claim that for every contracting element g ∈ G, the
group H is not contained in E(g). Assume on the contrary that H ⊂ E(g). Since G is not
virtually cyclic, there is u ∈ G \ E(g). By malnormality, uHu−1 ∩H is finite and cannot
have finite index in H, which contradicts the fact that H is commensurated.

We now fix once and for all a contracting element g ∈ G. We denote by A an orbit of
〈g〉. It is α-contracting for some α ∈ R

∗+. Moreover, there is C ∈ R+ such that for every
u ∈ G \ E(g), we have diam(πA(uA)) ≤ C, see [50, Lemma 2.11]. We choose n ∈ N such
that d(o, gno) is very large compared to both α and C.

We claim that there is an element h ∈ H \ E(g) such that both gnhg−n and g−nhgn
belong to H. Since H is commensurated, both g−nHgn ∩H and gnHg−n ∩H have finite
index in H. Thus,

H0 = (g−nHgn) ∩ (gnHg−n) ∩H
has finite index in H. It follows that H0 is not contained in E(g). Indeed, otherwise,
E(g) should also contain H, contradicting our previous claim. Any element h ∈ H0 \ E(g)
satisfies the conclusions of our second claim.

Consider now the element

f = (gnhg−n)(g−nhgn)−1 = gn(hg−2nh−1)gn.

Note that f belongs to H. We claim that f is contracting. For simplicity, we let g0 = gn

and g1 = hg−2nh−1 so that f = g0g1g0. They respectively act ‘by translation’ on the
α-contracting sets A0 = A and A1 = hA. Fix a point x ∈ πA(hA). Since πA(hA) has
diameter at most C, any geodesic γ : [0 , T ] → X from x to f x fellow-travels for a long
time with A0 = A, g0A1 = g0hA, and g0g1A0 = fA (see Figure 1).

Note that the construction has been designed so that the end of γ and the beginning of
f γ both fellow-travel with fA in the ‘same direction’. Consequently, the concatenation
of γ and f γ cannot backtrack much. We extend γ to a bi-infinite 〈f 〉-invariant path, still
denoted by γ : R → X, which is characterized as follows: γ (t + kT ) = f kγ (t) for every
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FIGURE 1. The geodesic from x to f x. The gray shapes are ‘axis’ of conjugates of g.

FIGURE 2. The ‘axis’ of f.

t ∈ R and k ∈ Z. One proves that γ is a quasi-geodesic which fellow-travels for a long time
with f kA for every k ∈ Z (see Figure 2). This suffices to show that f is contracting.

We are left to prove that H is not virtually cyclic. If H was virtually cyclic, it would be
contained in E(f ). This contradicts our first claim.

3. Compactification of X
3.1. Horocompactification. Let C(X) be the set of all real valued, continuous functions
on X endowed with the topology of uniform convergence on every compact subset. We
denote by C∗(X) the quotient of C(X) by the subspace consisting of all constant functions
and endowed with the quotient topology. Given a base point o ∈ X, one can think ofC∗(X)
as the set of all continuous functions that vanish at o. Alternatively, C∗(X) is the set of
continuous cocycles c : X ×X → R. By cocycle, we mean that

c(x, z) = c(x, y)+ c(y, z) for all x, y, z ∈ X.

For example, given z ∈ X, we define the cocycle bz : X ×X → R by

bz(x, y) = d(x, z)− d(y, z) for all x, y ∈ X.

Since X is geodesic, the map

ι : X→ C∗(X)
z �→ bz

is a homeomorphism from X onto its image.

Definition 3.1. (Horoboundary) The horocompactification X̄ of X is the closure of ι(X) in
C∗(X). The horoboundary of X is the set ∂X = X̄ \ ι(X).
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From now on, we identify X with its image under the map ι : X → C∗(X). By construc-
tion, every cocycle c ∈ X̄ is 1-Lipschitz, or equivalently |c(x, x′)| ≤ d(x, x′), for every
x, x′ ∈ X. It is a consequence of the Azerla–Ascoli theorem that the horocompactification
X̄ is indeed a compact set. We denote by B the Borel σ -algebra on X̄. In the remainder of
the article, we make an abuse of notation and write (∂X, B) to denote the horoboundary
endowed with the σ -algebra B restricted to ∂X.

Definition 3.2. Let c ∈ X̄ and ε ∈ R+. An ε-quasi-gradient arc for c is a path γ : I → X

parameterized by arc length such that

(t − s)− ε ≤ c(γ (s), γ (t)) ≤ t − s for all s, t ∈ I .

A gradient arc for c is a 0-quasi-gradient arc for c. If I = R+, we call γ a (quasi-)gradient
ray.

Remark 3.3. The following observations follow from the definition and/or the triangle
inequality.
• Since cocycles in X̄ are 1-Lipschitz, a gradient arc is always geodesic.
• Conversely, let x, y ∈ X and ε ∈ R+ such that c(x, y) ≥ d(x, y)− ε. Any geodesic

from x to y is an ε-quasi-gradient arc for c.
• Let γ1 : [a1 , b1] → X and γ2 : [a2 , b2] → X be two paths such that γi is an

εi-quasi-gradient arc for c. If γ1(b1) = γ2(a2), then the concatenation of γ1 and γ2
is an (ε1 + ε2)-quasi-gradient arc for c.

The existence of gradient rays is given by the next statement.

LEMMA 3.4. Let c ∈ ∂X. For every x ∈ X, there exists a gradient ray γ : R+ → X for c
such that γ (0) = x.

Proof. Let (zn) be a sequence of points of X converging to c. For every n ∈ N, we let
bn = ι(zn) and denote by γn : [0 , �n] → X a geodesic from x to zn. Since X is proper,
(γn) converges, up to passing to a subsequence, to a geodesic ray γ : R+ → X starting at
x. As (bn) converges uniformly on every compact subset to c, we check that γ is a gradient
ray for c.

Given c ∈ ∂X and a gradient ray γ : R+ → X for c, we think of γ as a geodesic
from γ (0) to c. The next definition is designed to handle simultaneously the cocycles
corresponding to points in X and the ones in ∂X.

Definition 3.5. Let x ∈ X and c ∈ X̄. A gradient arc from x to c is:
• any geodesic from x to z if c = ι(z) for some z ∈ X,
• any gradient ray for c starting at x if c belongs to ∂X.

3.2. Reduced horoboundary. Given a cocycle c ∈ C∗(X), we write ‖c‖∞ for its uniform
norm, that is,

‖c‖∞ = sup
x,x′∈X

|c(x, x′)|.
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Note that ‖c‖∞ can be infinite. If K ⊂ X is compact, then ‖c‖K is the uniform norm of
c restricted to K ×K . We endow X̄ with a binary relation: two cocycles c, c′ ∈ X̄ are
equivalent, and we write c ∼ c′ if one of the following holds:
• either c and c′ lie in the image of ι : X → C∗(X) and c = c′;
• or c, c′ ∈ ∂X and ‖c − c′‖∞ < ∞.
Given a subset B ⊂ X̄, the saturation of B, denoted by B+, is the union of all equivalence
classes intersecting B. We say that B is saturated if it is a union of equivalence classes,
or equivalently if B+ = B. Note that the collection of saturated subsets is closed under
complement as well as (uncountable) union and intersection. The reduced algebra, denoted
by R, is the sub-σ -algebra of B which consists of all saturated Borel subsets.

Definition 3.6. The reduced horocompactification and reduced horoboundary of X are
respectively the measurable spaces (X̄, R) and (∂X, R).

LEMMA 3.7. If F ⊂ X̄ is closed, then F+ belongs to R.

Proof. It suffices to prove that F+ is a Borel subset. Without loss of generality, we can
assume that F is contained in ∂X. Given D ∈ R+ and a compact subset K ⊂ X, we write

FK ,D = {c ∈ ∂X : there exists b ∈ F , ‖c − b‖K ≤ D}.
Since F is compact, FK ,D is closed. Using again the fact that F is compact, we observe
that

F+ =
⋃
D∈R+

⋂
K⊂X

FK ,D ,

where K runs over all compact subsets of X. Hence the result.

3.3. Boundary at infinity of a contracting set. The goal of this section is to understand
how cocycles at infinity interact with contracting subsets of X.

Definition 3.8. Let Y be a closed subset of X. Let c ∈ X̄. A projection of c on Y is a point
q ∈ Y such that for every y ∈ Y , we have c(q, y) ≤ 0.

Given z ∈ X, the projection of b = ι(z) on Y coincides with the definition of the nearest
point projection.

LEMMA 3.9. Let Y be a closed subset of X. Let c ∈ X̄. Assume that c admits a projection
q on Y and denote by γ : I → R+ a gradient arc for c starting at q. Then for every t ∈ I ,
the point q is a projection of γ (t) on Y.

Proof. Let t ∈ I . Note that

d(q, γ (t)) ≤ c(q, γ (t)) ≤ c(q, y)+ c(y, γ (t)) ≤ c(q, y)+ d(y, γ (t)).

The first inequality holds since γ is a gradient line for c, while the last one follows from
the fact that c is 1-Lipschitz. However, q being a projection of c on Y, we have c(q, y) ≤ 0.
Consequently, d(q, γ (t)) ≤ d(y, γ (t)) for every y ∈ Y , which completes the proof.
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If c is a point in ∂X, a projection of c on Y may exist or not. This leads to the following
definition.

Definition 3.10. Let Y be a closed subset of X. The boundary at infinity of Y, denoted by
∂+Y , is the set of all cocycles c ∈ ∂X for which there is no projection of c on Y.

We give several equivalent characterizations of the boundary at infinity of a contracting
subset.

PROPOSITION 3.11. Let α ∈ R
∗+. Let Y be an α-contracting subset of X. Let (zn) be a

sequence of points in X which converges to a cocycle c ∈ ∂X. For every n ∈ N, denote
by qn a projection of zn onto Y. Let γ : R+ → X be a gradient ray for c. Define
T ∈ R+ ∪ {∞} by

T = sup {t ∈ R+ : d(γ (t), Y ) ≤ α}
with the convention that T = 0, whenever γ does not intersect Nα(Y ). The following are
equivalent.
(i) c /∈ ∂+Y .

(ii) For every x ∈ X, the map Y → R sending y to c(x, y) is bounded from above.
(iii) The ray γ does not stay in a neighborhood of Y.
(iv) The projection πY (γ ) is bounded.
(v) T < ∞.

(vi) The sequence (qn) is bounded.
Moreover, in this situation:
• the diameter of the set Q = πY (γ [T ,∞)) is at most α;
• any accumulation point q∗ of (qn) is a projection of c on Y which lies in the

α-neighborhood of Q.

Remark. It follows from item (ii) that ∂+Y is saturated (as the notation suggested).

Proof. The equivalences (iii) ⇐⇒ (iv) and (iv) ⇐⇒ (v) are standard properties of con-
tracting sets, which only use the fact that γ is a geodesic. Note that c(x, y) = c(x, x ′)+
c(x′, y) for every x, x′ ∈ X and y ∈ Y . The implication (i) ⇒ (ii) follows from this
observation. The proof of (ii) ⇒ (iii) is by contraposition. Suppose that there exists d ∈ R+
such that γ lies inNd(Y ). Let x = γ (0). Let t ∈ R+. We denote by qt a projection of γ (t)
onto Y. Using the fact that c is 1-Lipschitz, we get

c(x, qt ) ≥ c(γ (0), γ (t))− d(γ (t), qt ) ≥ t − d .

This inequality holds for every t ∈ R+, hence the map Y → R, sending y to c(x, y), is not
bounded from above.

We now focus on implication (v) ⇒ (vi). For every n ∈ N, we let bn = ι(zn). Assume
that T < ∞. Let Q be the projection onto Y of γ restricted to [T , ∞). Since Y is
contracting, the diameter of Q is at most α. Let q ∈ Q be a projection of γ (T ) on Y.
We claim that there is N ∈ N, such that for every n ≥ N , the point qn stays at a distance at
most α of Q. Assume on the contrary that it is not the case. Up to passing to a subsequence,
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d(qn, Q) > α for every n ∈ N. Using Lemma 2.3, we observe that for every t ≥ T , for
every n ∈ N,

bn(γ (t), q) ≥ d(q, γ (t))− 4α.

After passing to the limit, we get c(γ (t), q) ≥ d(q, γ (t))− 4α for every t ≥ T . In
particular, t �→ c(γ (t), q) diverges to infinity as t tends to infinity, which contradicts the
fact that γ is a gradient line for c. This completes the proof of our claim and thus implies
item (vi).

We finish the proof with implication (vi) ⇒ (i). Assume now that (qn) is bounded. Let
q∗ be an accumulation point of (qn). As Y is closed, q∗ belongs to Y. Observe that for
every y ∈ Y , for every n ∈ N, we have

bn(q
∗, y) ≤ bn(qn, y)+ d(q∗, qn) ≤ d(q∗, qn).

By construction, bn converges to c on every compact subset, and hence c(q∗, y) ≤ 0 for
every y ∈ Y . Thus, q∗ is a projection of c onto Y. In particular, c /∈ ∂+Y .

The next statement is a variation on the previous one, sharpening the estimates.

LEMMA 3.12. Let α ∈ R
∗+. Let Y be an α-contracting set. Let c ∈ X̄ \ ∂+Y and q be a

projection of c on Y. Fix a sequence (zn) of points in X converging to c. Denote by q∗ an
accumulation point of (qn) where qn stands for a projection of zn on Y. Then d(q, q∗) ≤ α.

Proof. Consider a gradient line γ : R+ → X from q to c. According to Lemma 3.9, q is
a projection of any point γ (t) on Y. Assume that, in contrast to our claim, d(q, q∗) > α.
Reasoning as in the proof of Proposition 3.11, we observe that c(γ (t), q) ≥ d(q, γ (t))−
4α for every t ∈ R+, which contradicts the fact that γ is a gradient line for c.

The next two statements extend Lemma 2.3 for a gradient ray joining a point x ∈ X to a
cocycle c ∈ ∂X. We distinguish two cases depending on whether c belongs to ∂+Y or not.

COROLLARY 3.13. Let α ∈ R
∗+. Let Y be an α-contracting set. Let x ∈ X and

c ∈ X̄ \ ∂+Y . Let γ be a gradient arc from x to c. Let p and q be respective projections of
x and c on Y. If d(x, Y ) < α or d(p, q) > 4α, then the following hold:
• d(γ , Y ) < α;
• the entry point (respectively exit point) of γ in Nα(Y ) is 2α-closed (respectively

5α-closed) to p (respectively q);
• c(x, q) ≥ d(x, p)+ d(p, q)− 14α.

Proof. If c is the cocycle associated to a point z ∈ X, then the statement is just a particular
case of Lemma 2.3. Assume now that c belongs to ∂X \ ∂+Y . Fix a sequence (zn) of
points in X converging to c. Denote by q∗ an accumulation point of (qn), where qn stands
for a projection of zn on Y. Denote by γ (T ) the exit point of γ from Nα(Y ), and Q the
projection onto Y of γ restricted to [T , ∞). According to Proposition 3.11, such an exit
point exists. Moreover, Q has diameter at most α and q∗ is a projection of c on Y lying in
the α-neighborhood of Q.
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Suppose that d(x, Y ) < α or d(p, q) > 4α. According to Lemma 3.12, d(p, q∗) >
3α, and hence, d(p, Q) > α. It follows from the definition of contracting sets that
d(γ , Y ) < α. Let p′ (respectively q ′) be a projection of the entry (respectively exit) point
of γ in Nα(Y )—note that if d(x, Y ) < α, then x is the entry point of γ in Nα(Y ), so we
can choose p′ = p. Using again the contraction of Y, we see that d(p, p′) ≤ α. Moreover,
q ′ belongs to Q, thus d(q ′, q∗) ≤ 2α. In addition,

d(x, γ (T )) ≥ d(x, p′)+ d(p′, q ′)+ d(q ′, γ (T ))− 4α.

The path γ is a gradient line, thus c(x, γ (T )) = d(x, γ (T )), and hence

c(x, γ (T )) ≥ d(x, p′)+ d(p′, q ′)+ d(q ′, γ (T ))− 4α.

Combined with the fact that c is 1-Lipschitz, we get

c(x, q ′) ≥ c(x, γ (T ))− d(q ′, γ (T )) ≥ d(x, p′)+ d(p′, q ′)− 4α. (1)

We observed that d(p, p′) ≤ α, while d(q ′, q) ≤ d(q ′, q∗)+ d(q∗, q) ≤ 4α. The conclu-
sion follows from equation (1) and the triangle inequality.

COROLLARY 3.14. Let α ∈ R
∗+. Let Y be an α-contracting set and c ∈ ∂+Y . Let x ∈ X

and p be a projection of x onto Y. Let γ : R+ → X be a gradient ray from x to c. Then the
following hold:
• d(γ , Y ) < α;
• the entry point of γ in Nα(Y ) is 2α-closed to p;
• c(x, p) ≥ d(x, p)− 4α.

Proof. According to Proposition 3.11(iv), the set πY (γ ) is unbounded. Thus there exists
s ∈ R+ and a projection q of γ (s) onto Y such that d(p, q) > α. It follows that
d(γ , Y ) < α. Let γ (t) be the entry point of γ in Nα(Y ). Using again the contraction
of Y, we get d(p, γ (t)) ≤ 2α. Since γ is a gradient line, we have c(x, γ (t)) = d(x, γ (t)).
Combined with the triangle inequality and the fact that cocycles are 1-Lipschitz, we get
c(x, p) ≥ d(x, p)− 4α.

PROPOSITION 3.15. Assume that G is not virtually cyclic. Let g be a contracting element
and A an orbit of 〈g〉. There exists u ∈ G such that ∂+A ∩ ∂+(uA) = ∅.

Proof. Consider an element u ∈ G such that ∂+A ∩ ∂+(uA) is not empty. Let c be a
cocycle in this intersection and γ : R+ → X a gradient ray for c. By Proposition 3.11(iii),
there exist d , T ∈ R+ such that γ restricted to [T , ∞) is contained in Nd(A) ∩Nd(uA).
In particular, the diameter of this intersection is infinite. It follows that u ∈ E(g), see
[50, Lemma 2.12]. Recall that E(g), unlike G, is virtually cyclic. Thus there exists
u ∈ G \ E(g). It follows from the above discussion that ∂+A ∩ ∂+(uA) = ∅.
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4. Conformal densities
As previously, (X, d) is a proper, geodesic, metric space, while G is a group acting
properly, by isometries on X.

4.1. Definition and existence. If μ is a finite measure on X̄, we denote by ‖μ‖ its total
mass.

Definition 4.1. (Density) Let ω ∈ R+. Let A be a G-invariant sub-σ -algebra of the Borel
σ -algebra B. A density on (X̄, A) is a collection ν = (νx) of positive finite measures on
(X̄, A) indexed by X such that νx � νy for every x, y ∈ X, and normalized by ‖νo‖ = 1.
Such a density is:

(i) G-invariant if g∗νx = νgx , for every g ∈ G and x ∈ X;
(ii) ω-conformal if for every x, y ∈ X,

dνx

dνy
(c) = e−ωc(x,y), νy-a.e.

(iii) ω-quasi-conformal, if there is C ∈ R
∗+ such that for every x, y ∈ X,

1
C
e−ωc(x,y) ≤ dνx

dνy
(c) ≤ Ce−ωc(x,y), νy-a.e.

Vocabulary. Let ν = (νx) be a density on (X̄, A). We make an abuse of vocabulary and
say that a property on (X̄, A) holds ν-a.e. if it holds νx-a.e. for some (hence every) x ∈ X.

Remark 4.2. Let ν = (νx) be an ω-conformal density on (X̄, A). Recall that every cocycle
in X̄ is 1-Lipschitz. It follows that

μx(A) ≤ eωd(x,y)μy(A) for all x, y ∈ X, for all A ∈ A. (2)

This observation will be useful many times later.

In practice, we will consider only two σ -algebras on X̄: the Borel σ -algebra B and the
reduced σ -algebra R (see §3.2). If ν is a conformal density on (X̄, B), then its restriction
to the reduced σ -algebra R is not necessarily quasi-conformal. We will see later that this
pathology can be avoided if the action of G on X is divergent.

4.1.1. Topology. We denote by D(ω) the set of all ω-conformal densities on the
horocompactification (X̄, B). We endow D(ω) with the following topology: a sequence
νn = (νnx ) of densities converges to ν = (νx) if for every x ∈ X, the measure νnx converges
to νx for the weak-* topology. Let P(X̄) be the set of all Borel probability measures on
X̄ (endowed with the weak-* topology). An ω-conformal density ν ∈ D(ω) is entirely
determined by the measure νo. More precisely, the map

D(ω)→ P(X̄)
ν �→ νo

(3)

is a homeomorphism. We denote by D(G, ω) the convex closed subspace of D(ω)
consisting of all G-invariant, ω-conformal densities on (X̄, B). The densities ν = (νx)
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in D(G, ω) for which the action of G on (X̄, B, νo) is ergodic are exactly the extremal
points ofD(G, ω).

4.1.2. Patterson’s construction. We now prove the existence of invariant conformal
densities supported on the horoboundary. Actually, we focus on a slightly more general
setting that will be useful for our applications. A map χ : G → R is a quasi-morphism if
there exists C ∈ R+ such that for every g, g′ ∈ G, we have

|χ(g)+ χ(g′)− χ(gg′)| ≤ C. (4)

To such a quasi-morphism χ , we associate a twisted Poincaré series defined as

Pχ (s) =
∑
g∈G

eχ(g)e−sd(o,go),

and write ωχ for its critical exponent. It follows from equation (4) that

e−2CPχ (s) ≤ P−χ (s) ≤ e2CPχ (s) for all s ∈ R+.

Hence, ω−χ = ωχ . Note also that

1
2

[Pχ (s)+ P−χ (s)] ≥
∑
g∈G

ch(χ(g))e−sd(o,go) ≥ PG(s).

Thus, ωχ ≥ ωG.

PROPOSITION 4.3. Let H be a subgroup of G. Let χ : G → R be a quasi-morphism such
that χ(hg) = χ(g) for all h ∈ H and g ∈ G. There is an H-invariant, ωχ -conformal
density ν = (νx) on (X̄, B) with the following properties:
• ν is supported on ∂X;
• there is C ∈ R

∗+ such that for every g ∈ G and x ∈ X, we have

1
C
νx ≤ e−χ(g)g−1∗νgx ≤ Cνx .

Remark. If H = G and χ is the trivial morphism, then the proposition says that there
exists a G-invariant, ωG-conformal density supported on ∂X.

Proof. The proof follows Patterson’s strategy [39]. As Burger and Mozes already
observed, this construction can be carried without difficulty in the horocompactification of
X [9]. We only review here its main steps. Note that the twisted Poincaré series Pχ (s)may
converge at the critical exponent s = ωχ . Using Patterson’s idea, one produces a ‘slowly
growing’ function θ : R+ → R+ with the following properties—see [42, Lemme 2.1.1].
(P1) For every ε > 0, there exists t0 ≥ 0, such that for every t ≥ t0 and u ≥ 0, we have

θ(t + u) ≤ eεuθ(t).
(P2) The weighted twisted Poincaré series, defined by

Q(s) =
∑
g∈G

θ(d(o, go))eχ(g)e−sd(go,o) (5)
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is divergent whenever s ≤ ωχ and convergent otherwise. In particular, Q(s)
diverges to infinity as s approaches ωχ (from above).

For every x ∈ X and s > ωχ , we define a measure on X̄ by

νsx = 1
Q(s)

∑
g∈G

θ(d(x, go))eχ(g)e−sd(x,go)Dirac(go). (6)

Since X̄ is compact, the space of probability measures on X̄ is compact for the weak-*
topology. Consequently, there exists a sequence of real numbers (sn) converging to ωχ
from above and such that for every x ∈ X, the measure νsnx converges to a measure on
X̄ that we denote by νx . Note that νs = (νsx) is H-invariant for every s > ωχ . Moreover,
since χ is a quasi-morphism, there exists C ∈ R

∗+ such that for every s > ωχ , g ∈ G, and
x ∈ X, we have

1
C
νsx ≤ e−χ(g)g−1∗νsgx ≤ Cνsx .

Hence, the same properties hold for ν. The horocompactification is precisely designed so
that the map

X ×X ×X → R

(x, y, z) �→ d(x, z)− d(y, z)

extends continuously to a mapX ×X × X̄ → R. Taking advantage of this fact, one checks
that ν is ωχ -conformal. Since Q(s) diverges when s approaches ωχ , the density ν is
supported on ∂X.

4.2. Group action on the space of density

4.2.1. Group action. The action of G on X induces a right action of G on the set of
densities. Let A be a G-invariant sub-σ -algebra of B. Given a density ν = (νx) on (X̄, A)
and g ∈ G, we define a new density νg as follows:

ν
g
x = 1

‖νgo‖g
−1∗νgx for all x ∈ X.

We make the following observations.
(i) If ν is ω-conformal, then the same holds for νg .

(ii) If ν is H-invariant for some subgroup H ⊂ G, then νg is Hg-invariant, where
Hg = g−1Hg.

In particular, if N is a normal subgroup of G, then the map

D(N , ω)×G → D(N , ω)
(ν, g) �→ νg

defines a right action of G onD(N , ω) which is trivial when restricted to N.
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4.3. Fixed point properties. For our study, we need to distinguish several fixed point
properties for the action of G on the space of densities. Recall that a density ν = (νx) is:
(i) G-invariant if g∗νx = νgx for every g ∈ G and x ∈ X.
We say that ν is:
(ii) G-almost invariant if there exists C ∈ R

∗+ such that for every g ∈ G and x ∈ X,

1
C
νgx ≤ g∗νx ≤ Cνgx ;

(iii) fixed by G if νg = ν for every g ∈ G;
(iv) almost-fixed by G if there exists C ∈ R

∗+ such that for every g ∈ G and x ∈ X,

1
C
νx ≤ ν

g
x ≤ Cνx ;

(v) G-quasi-invariant if g∗νo � νo for every g ∈ G.
If we want to emphasize the constant C in item (iv), we will say that ν is C-almost-fixed by
G. These properties are related as follows:

(ii)

(i) (iv) (v).

(iii)

The reverse implications do not hold in general. The next statement highlights the role of
quasi-morphisms in our study.

LEMMA 4.4. Let ν = (νx) be a density. Assume that ν is fixed (respectively almost-fixed)
by G. Then the map χ : G → R sending g to ln ‖νgo‖ is a morphism (respectively
quasi-morphism).

Proof. Assume that ν is almost-fixed by G (if ν is fixed by G, the proof works in the exact
same way). There exists C ∈ R

∗+ such that for every g ∈ G and x ∈ X, we have

1
C
νx ≤ ν

g
x ≤ Cνx .

Let g, g′ ∈ G. Comparing the total masses of the above measures for x = g′o, we get

1
C

‖νg′o‖ ≤ ‖νgg′o‖
‖νgo‖ ≤ C‖νg′o‖.

LEMMA 4.5. Let H be a subgroup of G. Let μ = (μx) be an H-invariant, ω-quasi-
conformal density on the reduced horocompactification (X̄, R). Assume that for every
g ∈ G, the action of Hg ∩H on (X̄, R, μo) is ergodic. If μ is G-quasi-invariant, then μ
is almost-fixed by G.
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Proof. Since μ is G-quasi-invariant, we can define the following map:

F : G× X̄ → R+

(g, c) �→ d(g−1∗μgo)
dμo

(c)

Claim 4.6. There exists C ∈ R
∗+ such that for every g1, g2 ∈ G, we have

1
C

F(g1g2, c)
F (g2, c)

≤ F(g1, g2c) ≤ C
F(g1g2, c)
F (g2, c)

, μ-a.e.

Let g1, g2 ∈ G. The computation gives

F(g1g2, c) = d(g−1
1 ∗μg1g2o)

dμg2o
(g2c)

d(g−1
2 ∗μg2o)

dμo
(c), μ-a.e. (7)

Since μ is ω-quasi-conformal, there exists C ∈ R+ such that for every x, y ∈ X, for every
g ∈ G, we have

1
C

dμx

dμy
≤ dμgx

dμgy
◦ g ≤ C

dμx

dμy
.

Hence,

1
C

d(g−1∗μgy)
dμy

≤ d(g−1∗μgx)
dμx

≤ C
d(g−1∗μgy)

dμy
.

It follows that the first factor in the right-hand side of (7) is F(g1, g2c)—up to a
multiplicative error that does not depend on g1 or g2—while the second factor is exactly
F(g2, c). This completes the proof of our claim.

Let g ∈ G and set H0 = Hg ∩H . Let h ∈ H0. According to our claim, we have

1
C

F(gh, c)
F (h, c)

≤ F(g, hc) ≤ C
F(gh, c)
F (h, c)

, μ-a.e.

Recall that μ is H-invariant, thus

F(h, c) = 1 and F(gh, c) = F(ghg−1g, c) = F(g, c), μ-a.e.

Our previous inequalities becomes

1
C
F(g, c) ≤ F(g, hc) ≤ CF(g, c), μ-a.e.

We now define an auxiliary function Fg : X̄ → R+ by

Fg(c) = inf
h∈H0

F(g, hc).

By construction, Fg is H0-invariant. Since the action of H0 on (X̄, R, μo) is ergodic, Fg
is constant. From now on, we denote by Fg its essential value. It follows from our previous
observation that

Fg ≤ F(g, c) ≤ CFg , μ-a.e.
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Coming back to the definition of F, this means that

Fg ≤ d(g−1∗μgo)
dμo

≤ CFg , μ-a.e.

Integrating these inequalities, we see that Fg ≤ ‖μgo‖ ≤ CFg . Hence,

1
C

‖μgo‖ ≤ d(g−1∗μgo)
dμo

≤ C‖μgo‖.

Recall that C does not depend on g. We have proved that there exists C ∈ R
∗+ such that for

every g ∈ G,

1
C
μo ≤ μ

g
o ≤ Cμo.

Using the quasi-conformality of μ, we conclude that μ is almost-fixed by G.

Remark. The same argument shows that if μ is ω-conformal (instead of ω-quasi-
conformal), then μ is fixed by G.

4.4. The shadow principle. Given x, y ∈ X and c ∈ X̄, we define the following Gromov
product:

〈x, c〉y = 1
2 [d(x, y)+ c(y, x)].

Remark. If c = ι(z) for some z ∈ X, then the above formula coincides with the usual
definition of the Gromov product.

Since cocycles in X̄ are 1-Lipschitz, we always have 0 ≤ 〈x, c〉y ≤ d(x, y). We also
observe that

|〈x, c〉y − 〈x′, c〉y′ | ≤ d(x, x′)+ d(y, y′) for all x, x′, y, y′ ∈ X. (8)

Definition 4.7. Let x, y ∈ X. Let r ∈ R+. The r-shadow of y seen from x is the set

Ox(y, r) = {c ∈ X̄ : 〈x, c〉y ≤ r}.

By construction, Ox(y, r) is a closed subset of X̄. It follows from equation (8) that for
every x, x′, y, y′ ∈ X and r ∈ R+,

Ox(y, r) ⊂ Ox′(y′, r ′) where r ′ = r + d(x, x′)+ d(y, y′). (9)

Remark. A more intuitive definition of shadows could have been the following: a cocycle
c ∈ X̄ belongs to Ox(y, r) if some gradient arc from x to c passes at a distance at most r
from y. Nevertheless, unlike our approach, this definition is very sensitive to the change of
point x.

Following Roblin with small variations, we define the shadow principle [42].
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Definition 4.8. Let ω ∈ R+ and (ε, r0) ∈ R
∗+ × R+. Let ν = (νx) be an ω-conformal

density on (X̄, B). We say that (G, ν) satisfies the shadow principle with parameters
(ε, r0) if for every g ∈ G and r ≥ r0, we have

νo(Oo(go, r)) ≥ ε‖νgo‖e−ωd(o,go). (10)

We say that (G, ν) satisfies the shadow principle if there are (ε, r0) ∈ R
∗+ × R+ such that

(G, ν) satisfies the shadow principle with parameters (ε, r0).

Remark. If the inequality in equation (10) holds for r = r0, then it automatically holds for
every r ≥ r0. We will see later that a similar upper bound is always satisfied without any
additional assumption.

Our next task is to adapt Sullivan’s celebrated shadow lemma (Corollary 4.10). It states
that (G, ν) satisfies the shadow principle whenever ν is an ω-conformal density which is
N-invariant for some infinite normal subgroup N � G.

PROPOSITION 4.9. Assume that G is not virtually cyclic and contains a contracting
element. Let D0 be a closed subset of G-quasi-invariant densities on X̄. There exists
(ε, r0) ∈ R

∗+ × R+ with the following property. For every r ≥ r0, for every density
ν = (νx) inD0, for every z ∈ X, we have

νo(Oz(o, r)) ≥ ε.

Proof. Assume that our claim fails. We can find a sequence (rn) diverging to infinity, a
sequence (zn) of points in X, and a sequence νn = (νnx ) of densities inD0 such that

νno (Ozn(o, rn))

converges to zero. Since D0 is closed, up to passing to a subsequence, we may assume
that νn converges to a density ν in D0. Note that for every x, y ∈ X and r ∈ R+, we have
Ox(y, r) = X̄, whenever d(x, y) ≤ r . Hence, d(o, zn) necessarily diverges to infinity. Up
to passing again to a subsequence, we can assume that zn converges to b ∈ ∂X.

By assumption G is not virtually cyclic and contains a contracting element. According
to Proposition 3.15, there exists a contracting element h ∈ G such that b /∈ ∂+A, where
A = 〈h〉o is α-contracting for some α ∈ R

∗+. For every n ∈ N, we write pn for a projection
of zn onto A. Up to passing to a subsequence, (pn) converges to a point p ∈ A which is a
projection of b onto A (Proposition 3.11). We introduce the following closed subset of X̄:

F = {c ∈ X̄ : c(p, y) ≤ 4α for all y ∈ Y }.
We are going to prove that νo(F ) = 1.

Let c ∈ X̄ \ F . Suppose first that c /∈ ∂+A. Let q be a projection of c onto A. Since c is
1-Lipschitz, we have

c(p, y) ≤ d(p, q)+ c(q, y) ≤ d(p, q) for all y ∈ A.

As c does not belong to F, necessarily d(p, q) > 4α. In particular, there exists N0 ∈ N,
such that for every n ≥ N0, we have d(pn, q) > 4α. According to Corollary 3.13,
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〈zn, c〉pn ≤ 2α. Note that the conclusion still holds if c ∈ ∂+A. This is indeed a conse-
quence of Corollary 3.14. Hence, in all cases, we have

〈zn, c〉o ≤ 〈zn, c〉pn + d(o, pn) ≤ 2α + d(o, pn).

Recall that (pn) is bounded. Consequently, there is N1 ≥ N0 such that for every n ≥ N1,
the set X̄ \ F is contained in Ozn(o, rn). In particular, νno (X̄ \ F) converges to zero. Since
X̄ \ F is an open subset of X̄, we deduce that νo(X̄ \ F) = 0, that is, νo(F ) = 1.

The group 〈h〉 has unbounded orbits. Thus, there is g ∈ 〈h〉 such that d(gp, p) > 36α.
We claim that F ∩ gF is empty. Let c ∈ F . Remember that c does not belong to ∂+A by
Proposition 3.11(ii). Choose a projection q of c onto A. It follows from Corollary 3.13 that

4α ≥ c(p, q) ≥ d(p, q)− 14α.

Hence, d(p, q) ≤ 18α. Suppose now that, in contrast to our claim, c also belongs to gF . In
particular, g−1q is a projection of g−1c onto A. Following the same argument as above, we
get d(p, g−1q) ≤ 18α. Consequently, d(p, gp) ≤ 36α, which is a contradiction. Observe
that

νo(gF ) = g−1∗νo(F ) = ‖νgo‖νgg−1o
(F ).

As an element ofD0, the density ν is G-quasi-invariant, and hence νo � ν
g

g−1o
. We proved

that νo(F ) > 0, thus νo(gF ) > 0. Consequently,

νo(F ∪ gF) = νo(F )+ νo(gF ) > 1.

This contradicts the fact that νo is a probability measure.

COROLLARY 4.10. Assume that G is not virtually cyclic and has a contracting element.
Let N be an infinite normal subgroup of G. Let ω ∈ R+. There exists (ε, r0) ∈ R

∗+ × R+
such that for every r ≥ r0, for every N-invariant, ω-conformal density ν = (νx), for every
g ∈ G, we have

ε‖νgo‖e−ωd(o,go) ≤ νo(Oo(go, r)) ≤ e2ωr‖νgo‖e−ωd(o,go). (11)

In particular, (G, ν) satisfies the shadow principle with parameters (ε, r0).

Proof. Let ν = (νx) be an ω-conformal density. A classical computation shows that for
every g ∈ G and r ∈ R+, we have

νo(Oo(go, r)) = ‖νgo‖
∫

1O
g−1o(o,r)(c)e

−ωc(g−1o,o) dν
g
o (c).

Shadows have been designed so that for every c ∈ Og−1o(o, r), we have

d(o, go)− 2r ≤ c(g−1o, o) ≤ d(o, go).

Consequently,

ν
g
o (Og−1o(o, r)) ≤ eωd(go,o)

‖νgo‖ νo(Oo(go, r)) ≤ e2ωrν
g
o (Og−1o(o, r)).
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The upper bound in equation (11) follows from the fact that νgo is a probability measure.
Let us focus on the lower bound. To that end, we assume now that ν is N-invariant. As
N is a normal subgroup of G, the density νg is N-invariant as well. Since G contains a
contracting element and is not virtually cyclic, the same holds for N (Lemma 2.8). The
result now follows from Proposition 4.9 applied with the group N and the closed set
D0 = D(N , ω).

Remark 4.11. Note that the upper bound in equation (11) was proved without assuming
any invariance for ν. Moreover, it works for any r ∈ R+.

Here is another variation of the shadow lemma.

COROLLARY 4.12. Assume that G is not virtually cyclic and contains a contracting
element. Let ω ∈ R+ and ν = (νx) be an ω-conformal density. If ν is almost fixed by G,
then (G, ν) satisfies the shadow principle.

Proof. Let g ∈ G and r ∈ R+. Reasoning as in the proof of Corollary 4.10, we see that

νo(Oo(go, r)) ≥ ‖νgo‖e−ωd(o,go)ν
g
o (Og−1o(o, r)).

Since ν is almost-fixed by G, there is ε ∈ R
∗+, which does not depend on g or r, such that

ν
g
o ≥ ενo. Consequently,

νo(Oo(go, r)) ≥ ε‖νgo‖e−ωd(o,go)νo(Og−1o(o, r)).

The result now follows from Proposition 4.9 applied withD0 = {ν}.

4.5. Contracting tails. To take full advantage of the shadow lemma, we consider a
particular kind of shadow namely shadows of the form Ox(y, r) where x is joined to y
by a ‘geodesic’ whose tail is contracting. The next definition quantifies the ‘contraction
strength’ of this tail.

Definition 4.13. Let α ∈ R
∗+ and L ∈ R+. Let x, y ∈ X. The pair (x, y) has an

(α, L)-contracting tail if there exists an α-contracting geodesic τ ending at y and a
projection p of x on τ satisfying d(p, y) ≥ L. The path τ is called a (contracting) tail of
(x, y)—the contracting strength and the length of the tail should be clear from the context.

Notation 4.1. Given α ∈ R
∗+ and L ∈ R+, we denote by T(α, L) the set of all elements

g ∈ G such that the pair (o, go) has an (α, L)-contracting tail.

The next statement is essentially a reformulation of Corollary 3.13. It states that if (x, y)
has a sufficiently long contracting tail, then the shadow of y seen from x behaves according
to our intuition coming from hyperbolic geometry.

LEMMA 4.14. Let α ∈ R
∗+ and r , L ∈ R+ with L > r + 13α. Let x, y ∈ X. Assume

that (x, y) has an (α, L)-contracting tail, say τ . Let p be a projection of x on τ . Let
c ∈ Ox(y, r). Let γ be a gradient arc from x to c. Let q be a projection of c onto τ . Then
the following hold.
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(i) d(y, q) ≤ r + 7α.
(ii) d(γ , τ) < α.
(iii) The entry point of γ in Nα(τ ) is 2α-close to p.
(iv) The exit point of γ from Nα(τ ) is 5α-close to q.

Proof. Since τ is a contracting tail, there is a projection p′ of x on τ such that
d(p′, y) ≥ L. The computation shows that

d(y, q)+ 〈x, c〉p′ + 〈p′, c〉q = 〈x, c〉y + 〈x, y〉p′ + 〈y, c〉q + 〈p′, y〉q ,

(it suffices to expand the definition of the Gromov products). On the one hand, we observed
that 〈x, c〉p′ ≥ 0 and 〈p′, c〉q ≥ 0. On the other hand, since τ is contracting, we have
〈x, y〉p′ ≤ 2α (Lemma 2.3) and 〈y, c〉q ≤ 5α (Corollary 3.13). It follows that

d(y, q) ≤ r + 7α + 〈p′, y〉q .

We now discuss the relative positions of p′, q, and y on τ . If p′ lies between q and y, then
〈p′, y〉q = d(p′, q) while d(y, q) = d(y, p′)+ d(p′, q). It forces L ≤ d(y, p′) ≤ r +
7α, which contradicts our assumption. Thus, q lies between p′ and y so that 〈p′, y〉q = 0.
Consequently, d(y, q) ≤ r + 7α, which completes the proof of item (i).

By assumption, p is another projection of x on τ , which is α-contracting, thus
d(p, p′) ≤ 2α. Consequently,

d(p, q) ≥ d(p′, y)− d(p, p′)− d(y, q) ≥ L− (r + 9α) > 4α.

According to Corollary 3.13, d(γ , τ) < α. Moreover, the entry (respectively exit) point of
γ in Nα(τ ) is 2α-close to p (respectively 5α-closed to q). Hence the result.

LEMMA 4.15. Let α ∈ R
∗+ and r , L ∈ R+ with L > r + 13α. Let x, y1, y2 ∈ X such

that (x, yi) has an (α, L)-contracting tail, say τi . Let pi be a projection of x on τi . If
Ox(y1, r) ∩ Ox(y2, r) is non-empty, then:
(i) d(y1, y2) ≤ |d(x, y1)− d(x, y2)| + 4r + 48α; and

(ii) d(p1, p2) ≤ |d(x, p1)− d(x, p2)| + 8α.

Proof. Let c be a cocycle in the intersection Ox(y1, r) ∩ Ox(y2, r). Let γ be a gradient
arc from x to c. According to Lemma 4.14, the points y1 and y2 lie in the (r + 12α)-
neighborhood of γ , while p1 and p2 are 2α-closed to γ . The result follows.

To state the next lemma, we need a notion of spheres in G (for the metric induced by
X). This is the purpose of the following notation. Given �, a ∈ R+, we let

S(�, a) = {g ∈ G : �− a ≤ d(o, go) < �+ a}.
LEMMA 4.16. Assume that G has a contracting element. There is α ∈ R

∗+ such that for
every L ∈ R+, for every g ∈ G, there exist u ∈ S(L, α) and a geodesic τ : [0 , T ] → X

from o to guo with the following properties.
(i) The path γ restricted to [T − L , T ] is α-contracting. In particular, gu ∈ T(α, L).

(ii) The point go is α-close to τ(T − L).
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Proof. Let h ∈ G be a contracting element. Denote by A the 〈h〉-orbit of o. It is
β-contracting for some β ∈ R

∗+. Let α0 ∈ R
∗+ be the parameter given by Lemma 2.7

applied with the element h, the point z = o, and d = 2β. Up to increasing the value of
α0, we can assume that α0 ≥ 2β + d(o, ho).

Let L ∈ R+. Since h is contracting, the orbit map Z → X sending n to hno is a
quasi-isometric embedding. Thus, there is N ∈ N such that for every n ≥ N , we have
d(o, hno) ≥ L+ 2β. We choose N minimal with the above property. In particular,

L+ 2β ≤ d(o, hNo) ≤ d(o, hN−1o)+ d(o, ho) < L+ 2β + d(o, ho).

Hence, hN and h−N belong to S(L, α0).
Let g ∈ G. There is k ∈ Z such that hko is a projection of g−1o onto A. If k ≤ 0

(respectively k ≥ 0), we choose u = hN (respectively u = h−N ). We now prove that u
satisfies the announced properties. We suppose that k ≥ 0. The other case works in the
exact same way. Let γ : [0 , T ] → X be a geodesic from g−1o to h−No. According to
Lemma 2.3, hko is 2β-close to the entry point γ (t) of γ inNβ(A). By our choice of N, we
have

T − t ≥ d(γ (t), γ (T )) ≥ d(hko, h−No)− 2β ≥ d(o, hN+ko)− 2β ≥ L.

In particular, t ≤ T − L ≤ T . It follows from Lemma 2.7 and our choice of α0 that:
• γ restricted to [T − L , T ] is α0-contracting;
• there is s ∈ [T − L , T ] such that d(γ (s), o) ≤ α0.
Using the triangle inequality, we observe that

|d(γ (s), h−No)− d(o, h−No)| ≤ d(γ (s), o) ≤ α0.

On the one hand, d(γ (s), h−No) = T − s. On the other hand, h−N ∈ S(L, α0). Thus,
|(T − L)− s| ≤ 2α0. Consequently, the triangle inequality yields

d(o, γ (T − L)) ≤ d(o, γ (s))+ d(γ (s), γ (T − L)) ≤ 3α0.

Observe now that the path τ = gγ satisfies the conclusion of the lemma with the parameter
α = 3α0.

Given α, r , L, � ∈ R+, we consider the following set:

A�(α, r , L) =
⋃

g∈S(�,r)∩T(α,L)

Oo(go, r).

Observe that for a fixed � ∈ R, the set A�(α, r , L) is a non-decreasing function of r
(respectively α) and a non-increasing function of L.

PROPOSITION 4.17. Assume that G contains a contracting element. There is α ∈ R
∗+

such that for every ω, a ∈ R+ and (ε, r0) ∈ R
∗+ × R+, there exist r1, C ∈ R

∗+, with the
following property. Let ν = (νx) be an ω-conformal density. If (G, ν) satisfies the shadow
principle with parameters (ε, r0), then for every r ≥ r1, L > r + 13α, and � ∈ R+,∑

g∈S(�,a)
‖νgo‖e−ωd(o,go) ≤ Ce2ωLνo(A�+L(α, r , L)).
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Proof. We choose for α the parameter given by Lemma 4.16. Let ω, a ∈ R+ and (ε, r0) ∈
R

∗+ × R+. The action of G on X is proper, so there is M ∈ N such that

|{g ∈ G : d(o, go) ≤ 2a + 12α}| ≤ M .

In addition, we set

r1 = max{r0, a + 3α}.

Let ν = (νx) be an ω-conformal density such that (G, ν) satisfies the shadow principle
with parameters (ε, r0). Let r ≥ r1, L > r + 13α and � ∈ R+. According to Lemma 4.16,
for every g ∈ S(�, a), there is ug ∈ S(L, α) such that gug belongs to T(α, L). Moreover,
there is a geodesic τg : [0 , Tg] → X joining o to gugo, whose restriction to [Tg − L , Tg]
is α-contracting, and such that go is α-close to zg = τg(Tg − L). In particular,

|d(o, go)+ d(o, ugo)− d(o, gugo)| ≤ 2α.

Since g ∈ S(�, a) and ug ∈ S(L, α), we get gug ∈ S(�+ L, a + 3α). Hence, Oo(gugo, r)
is contained in A�+L(α, r , L).

Consider now g, g′ ∈ S(�, a) such that Oo(gugo, r) ∩ Oo(g′ug′o, r) is non-empty. By
construction, go and g′o are α-close to zg and zg′ . Note that zg = τg(Tg − L) is the
(unique) projection of o on τg restricted to [Tg − L , Tg], which is α-contracting. A similar
statement holds for τg′ . Using Lemma 4.15 and the triangle inequality, we observe that

d(go, g′o) ≤ d(zg , zg′)+ 2α ≤ |d(o, zg)− d(o, zg′)| + 10α

≤ |d(o, go)− d(o, g′o)| + 12α

≤ 2a + 12α.

It follows from our choice of M that any cocycle c ∈ X̄ belongs to at most M shadows of
the form Oo(gugo, r), where g ∈ S(�, a). Consequently,

∑
g∈S(�,a)

νo(Oo(gugo, r)) ≤ Mνo(A�+L(α, r , L)). (12)

Recall that (G, ν) satisfies the shadow principle with parameters (ε, r0). Hence, for every
g ∈ S(�, a), we have

νo(Oo(gugo, r)) ≥ ε‖νgugo‖e−ωd(o,gugo) ≥ εe−2ω(L+α)‖νgo‖e−ωd(o,go).

The second inequality follows from equation (2). Consequently, equation (12) becomes

∑
g∈S(�,a)

‖νgo‖e−ωd(o,go) ≤
(
Me2ωα

ε

)
e2ωLνo(A�+L(α, r , L)).
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COROLLARY 4.18. Assume that G contains a contracting element. For every ω, a ∈ R+
and (ε, r0) ∈ R

∗+ × R+, there exists C ∈ R
∗+ with the following property. Let ν = (νx) be

an ω-conformal density. Assume that (G, ν) satisfies the shadow principle with parameters
(ε, r0). For every � ∈ R+,

∑
g∈S(�,a)

‖νgo‖e−ωd(o,go) ≤ Cνo(X̄ \ B(o, �)).

Proof. Denote by α, r1, C the parameters given by Proposition 4.17 applied with ω, a, and
(ε, r0). We choose r ≥ r1 and L > max{2r , r + 15α}. Let ν = (νx) be an ω-conformal
density such that (G, ν) satisfies the shadow principle with parameters (ε, r0). By
Proposition 4.17, we have

∑
g∈S(�,a)

‖νgo‖e−ωd(o,go) ≤ Ce2ωLνo(A�+L(α, r , L)) for all � ∈ R+.

Consider now x, y, z ∈ X. By the very definition of shadows, if z ∈ Ox(y, r), then

d(x, y)− d(x, z) ≤ 〈x, z〉y ≤ r .

Hence, for every � ∈ R+, the set A�+L(α, r , L) lies in X̄ \ B(o, �+ L− 2r). The result
follows from the fact that L ≥ 2r .

4.6. First applications. For our first applications, we assume that G is a group acting
properly, by isometries on X with a contracting element. In addition, we suppose that G is
not virtually cyclic.

PROPOSITION 4.19. There exists C ∈ R+ such that for every � ∈ R+,

|{g ∈ G : d(o, go) ≤ �}| ≤ CeωG�.

Remark. An alternative proof of this fact can be found in [50].

Proof. According to Proposition 4.3, there exists a G-invariant, ωG-conformal density ν =
(νx). By Corollary 4.10, the pair (G, ν) satisfies the shadow principle for some parameters
(ε, r0) ∈ R

∗+ × R+. Fix a ∈ R
∗+. Applying Corollary 4.18, there exists C ∈ R+ such that

for every � ∈ R+,
∑

g∈S(�,a)
‖νgo‖e−ωGd(o,go) ≤ Cνo(X̄ \ B(o, �)) ≤ C.

However, since ν is G-invariant, ‖νgo‖ = ‖νo‖ = 1 for every g ∈ G. Hence, we get

|S(�, a)| ≤ CeωGaeωG� for all � ∈ R+.

The result follows by summing this inequality over � ∈ aN.

Before stating our next application, we define the radial limit set for the action of
G on X.
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Definition 4.20. Let r ∈ R+ and ∈ X. The set �rad(G, x, r) consists of all cocycles
c ∈ ∂X with the following property: for every T ≥ 0, there exists g ∈ G with d(x, go) ≥
T such that c ∈ Ox(go, r). The radial limit set of G is the union

�rad(G) =
⋃
r≥0

G�rad(G, o, r).

Remark 4.21. Note that �rad(G, x, r) is a non-decreasing function of r. The radial limit
set �rad(G) is G-invariant. It follows from equation (9) that

�rad(G) =
⋃
r≥0

�rad(G, o, r).

LEMMA 4.22. The radial limit set is saturated.

Proof. Let x, y ∈ X and r ∈ R+. Let c, c′ ∈ ∂X such that c ∼ c′. Note that if c belongs to
Ox(y, r), then c′ belongs to Ox(y, r ′), where r ′ = r + ‖c − c′‖∞. The result follows from
this observation.

PROPOSITION 4.23. Let ω ∈ R+ and ν = (νx) be an ω-conformal density. If (G, ν)
satisfies the shadow principle, then the series

∑
g∈G

‖νgo‖e−sd(o,go) (13)

converges whenever s > ω. If, in addition, νo gives positive measure to the radial limit set
�rad(G), then the series diverges at s = ω. In particular, its critical exponent is exactly ω.

Proof. Fix a ∈ R
∗+. According to Corollary 4.18, there is C ∈ R

∗+ such that for every
� ∈ R+,

∑
g∈S(�,a)

‖νgo‖e−ωd(o,go) ≤ Cνo(X̄ \ B(o, �)) ≤ C.

Hence, the series in equation (13) converges whenever s > ω. The second part of the
proposition is proved by contraposition. Suppose that the series in equation (13) converges
at s = ω. Let r ∈ R+. For simplicity, we write � = �rad(G, o, r). Observe that for every
T ∈ R+,

� ⊂
⋃
g∈G

d(o,go)≥T

Oo(go, r).

It follows from Remark 4.11 that

νo(�) ≤
∑
g∈G

d(o,go)≥T

νo(Oo(go, r)) ≤ e2ωr
∑
g∈G

d(o,go)≥T

‖νgo‖e−ωd(o,go).
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The right-hand side of the inequality is the remainder of the series in which we are
interested. Since this series converges at s = ω, we get νo(�) = 0. We observed in Remark
4.21 that

�rad(G) =
⋃
r≥0

�rad(G, o, r).

Hence, νo(�rad(G)) = 0.

Remark 4.24. Note that the proof of the second assertion (the series diverges at s = ω,
whenever νo gives positive measure to the radial limit set) only uses the upper estimate
from the shadow lemma. Hence, it holds even if G is virtually cyclic or does not contain a
contracting element.

COROLLARY 4.25. Let ω ∈ R+. Let ν = (νx) be a G-invariant, ω-conformal density.
Then ω ≥ ωG. Moreover, if νo gives positive measure to the radial limit set �rad(G), then
ω = ωG and the action of G on X is divergent.

Remark. If the action of G on X is proper and co-compact, one checks that the radial limit
set is actually ∂X. Hence, if ν = (νx) is a G-invariant, ω-conformal density supported on
∂X, then ω = ωG.

Proof. By Corollary 4.10, the pair (G, ν) satisfies the shadow principle. Since the density
ν is G-invariant, the series in equation (13) which appears in Proposition 4.23 is exactly
the Poincaré series of G. The result follows.

COROLLARY 4.26. Let ω ∈ R+. Let ν = (νx) be an ω-conformal density and μ = (μx)

its restriction to the reduced horocompactification (X̄, R). Assume that (G, ν) satisfies the
shadow principle. If μ is almost-fixed by G, then ω ≥ ωG.

Proof. According to Lemma 4.4, the map χ : G → R+ sending g to ln ‖νgo‖ is a
quasi-morphism. Note that the exponent of the series∑

g∈G
‖νgo‖e−sd(o,go) =

∑
g∈G

eχ(g)e−sd(o,go)

is exactly ωχ . We observed earlier that ωχ ≥ ωG. The result follows from
Proposition 4.23.

COROLLARY 4.27. Let N be a normal subgroup of G such that G/N is amenable. Then
ωN = ωG.

Proof. The proof follows Roblin’s argument [42]. Assume first that N is finite. This forces
G to be itself amenable. However, since G contains a contracting element, G has to be
virtually cyclic (otherwise G would contain a free subgroup). Hence, ωG = 0 and the result
holds. Suppose now that N is infinite. For simplicity, we letQ = G/N . Denote by ν = (νx)

an N-invariant, ωN -conformal density on X̄. We are going to ‘average’ the G-orbit of ν
to produce another N-invariant, ωN -conformal density. The construction goes as follows.
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Choose a Q-invariant mean M : �∞(Q) → R. Let x ∈ X and f ∈ C(X̄). Consider the
function

ψx,f : G → R

u �→
∫
f dνux

According to equation (2), we have ‖νux ‖ ≤ eωNd(o,x) for every u ∈ G. Consequently, ψx,f

is a bounded function. Since ν is N-invariant, we also observe that ψx,f induces a map
bounded map Q → R that we still denote by ψx,f . Using Riesz representation theorem,
we define a new measure μx by imposing∫

f dμx = M(ψx,f ) for all f ∈ C(X̄).
One checks that μ = (μx) is still ωN -conformal. Since N is a normal subgroup, it is also
N-invariant. In particular, it satisfies the shadow principle (Corollary 4.10). According to
Proposition 4.23, the series ∑

g∈G
‖μgo‖e−sd(o,go) (14)

converges whenever s > ωN . Consider now the map

χ : G → R

g �→M(ln ψgo,1)

Note that

ψg1g2o,1(u) = ψg2o,1(ug1)ψg1o,1(u) for all u, g1, g2 ∈ G.

Since M is Q-invariant, χ is a homomorphism (factoring through the projection G� Q).
The exponential is a convex function, and hence the Jensen inequality yields

eχ(g) ≤ ‖μgo‖ for all g ∈ G.

Consequently, ∑
g∈G

‖μgo‖e−sd(o,go) ≥
∑
g∈G

eχ(g)e−sd(o,go).

The critical exponent of the sum on the right-hand side is ωχ . Combined with the above
discussion, it yields ωN ≥ ωχ . We observed previously that for a homomorphism χ ,
we have ωχ ≥ ωG, and thus ωN ≥ ωG. The other inequality follows from the fact that
N ⊂ G.

Remark 4.28. In the proof, we have used the fact that N is normal in a crucial way to
ensure that μ is N-invariant and therefore satisfies the shadow principle. It would be nice
to generalize this strategy to the case of a co-amenable subgroup H, that is, when there is a
G-invariant mean on the coset space H\G. We know from the Patterson construction that
H fixes a point ν inD(ωH ). Since G acts on this compact space, it would be tempting to use
the fixed point characterization of co-amenability due to Eymard [22, Exposé 1, §2] and
conclude that G should fix a point μ in D(ωH ). Even though μ may not be H-invariant,
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that would be enough to ensure that it satisfies the shadow principle. One has to be careful
though that the action of G on D(ωH ) is not affine. Hence, the fixed point criterion does
not apply here. In this context, one can easily prove that the ‘average’ density μ we have
built is G-quasi-invariant. Unfortunately, this information is not sufficient to prove that it
satisfies the shadow principle.

COROLLARY 4.29. Let N be an infinite, normal subgroup of G. Then

ω(N , X)+ 1
2ω(G/N , X/N) ≥ ω(G, X).

Proof. Let Q = G/N . Denote by π : G� Q and ζ : X → X/N the canonical projec-
tions. For simplicity, we write ωN and ωG for the growth rates of N and G acting on X,
while ωQ stands for the growth rate of Q acting on X/N . We denote by H the Hilbert
spaceH = �2(Q). Given s, t ∈ R+, we consider the following maps:

φs : Q → R and ψt : Q → R

q �→
∑

g∈π−1(q)

e−sd(o,go) q �→ e−td(ζ(o),qζ(o))

One checks thatψt ∈ H (respectivelyψt /∈ H) whenever 2t > ωQ (respectively 2t < ωQ).
Similarly, φs /∈ H, whenever s < ωN . We now prove that the converse essentially holds
true.

Claim 4.30. If s > ωN , then φs ∈ H.

Let s > ωN . Consider the N-invariant, s-conformal density νs = (νsx) on X̄ defined by

νsx = 1
PN(s)

∑
h∈N

e−sd(x,ho)Dirac(ho).

The computation shows that

‖φs‖2 =
∑

g1,g2∈G
π(g1)=π(g2)

e−s[d(o,g1o)+d(o,g2o)] =
∑
g∈G

e−sd(o,go)
( ∑
h∈N

e−sd(go,ho)
)

= PN(s)
∑
g∈G

‖νsgo‖e−sd(o,go).

Fix a ∈ R
∗+. According to Corollary 4.10, νs satisfies the shadow principle. By Corollary

4.18, there exists C ∈ R
∗+ such that for every � ∈ R+,
∑

g∈S(�,a)
‖νsgo‖e−sd(o,go) ≤ Cνso(X̄ \ B(o, �)).

Unfolding the definition of νs , we get

PN(s)
∑

g∈S(�,a)
‖νsgo‖e−sd(o,go) ≤ C

∑
h∈N

d(o,ho)≥�

e−sd(o,ho).
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It follows that

‖φs‖2 ≤ C
∑
k∈N

∑
h∈N

d(o,ho)≥ka

e−sd(o,ho) ≤ C
∑
h∈N

∑
k∈N

ka≤d(o,ho)

e−sd(o,ho).

Up to replacing C by a larger constant, we have

‖φs‖2 ≤ C
∑
h∈N

[1 + d(o, ho)]e−sd(o,ho). (15)

Note that the series

−
∑
h∈N

d(o, ho)e−sd(o,ho)

is the derivative of the Poincaré series of N, and hence it converges. Consequently, the
right-hand side in equation (15) converges. Thus, ‖φs‖ is finite, which completes the proof
of our claim.

Let s, t ∈ R+ with s > ωN and 2t > ωQ. The scalar product of φs and ψt can be
computed as follows:

(φs , ψt) =
∑
q∈Q

e−td(ζ(o),qζ(o))
( ∑
g∈π−1(q)

e−sd(o,go)
)

=
∑
g∈G

e−sd(o,go)e−td(ζ(o),π(g)ζ(o)).

The projection ζ : X � X/N is 1-Lipschitz. Combined with the Cauchy–Schwartz
inequality, it gives

PG(s + t) ≤ (φs , ψt) ≤ ‖φs‖‖ψt‖ < ∞.

Consequently, s + t ≥ ωG. This inequality holds for every s, t ∈ R+ with s > ωN and
2t > ωQ, whence the result.

Remark. We keep the notation of the proof. Corollary 4.29 is sharp.
• Indeed, assume that X is a Cayley graph of G. If Q has subexponential growth, then

ωQ = 0 and Q is amenable, so that ωN = ωG by Corollary 4.27.
• At the other end of the spectrum, assume thatG = Fr is the free group of rank r acting

on its Cayley graph X with respect to a free basis. Let g ∈ G \ {1}. For every k ∈ N,
denote by Nk the normal closure of gk . Then

lim
k→∞ ωNk = 1

2ωG and lim
k→∞ ωG/Nk = ωG.

The first limit is due to Grigorchuk [24], see also Champetier [10]. The second limit
was proved by Shukhov [45], see also Coulon [16].

5. Divergent actions
5.1. Contracting tails, continued. We continue here our study of shadows of elements
g ∈ T(α, L) having a contracting tail. First we recall the proof of the following classical
result.
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LEMMA 5.1. Let C ∈ R+. Let x, y ∈ X and γ : [a , b] → X be a continuous path from
x to y. Let ν : I → X be a geodesic. Denote by p = ν(c) and q = ν(d) respective
projections of x and y on ν, and suppose that c ≤ d . Assume in addition that γ lies in
the C-neighborhood of ν. Then ν restricted to [c , d] lies in the 2C-neighborhood of γ .

Proof. Fix a point r = ν(t0) on ν where t0 ∈ [c , d]. Consider the set J consisting of all
s ∈ [a , b] such that γ (s) admits a projection on ν of the form ν(t) with t ≤ t0. Note that J
is non-empty as it contains a. Now set s0 = sup J . Let ε > 0. Since γ is continuous, there
is η > 0 such that for every s ∈ [a , b], we have d(γ (s), γ (s0)) ≤ ε provided |s − s0| ≤
η. By definition of J, there is s1 ∈ (s0 − η, s0] such that γ (s1) admits a projection on
ν of the form ν(t1) with t1 ≤ t0. However, we claim that there is s2 ∈ [s0, s0 + η) such
that γ (s2) admits a projection on ν of the form ν(t2) with t2 ≥ t0. Indeed, if s0 = b, we
can simply take s2 = b. Otherwise, it follows from the definition of J. By assumption,
d(ν(ti), γ (si)) ≤ C. Hence, the triangle inequality yields

d(ν(t1), ν(t2)) ≤ d(γ (s1), γ (s2))+ 2C ≤ 2C + 2ε

and then

d(r , γ ) ≤ 1
2d(ν(t1), ν(t2))+ max{d(ν(t1), γ (s1)), d(ν(t2), γ (s2))} ≤ 2C + ε.

This inequality holds for every ε > 0, whence the result.

LEMMA 5.2. Let α ∈ R
∗+ and r , L ∈ R+ with L > r + 16α. Let x, y1, y2 ∈ X with

d(x, y1) ≤ d(x, y2). Assume that the pairs (x, y1) and (x, y2) have an (α, L)-contracting
tail. If Ox(y1, r) ∩ Ox(y2, r) is not empty, then Ox(y2, r) is contained in Ox(y1, r + 42α).

Proof. By assumption, there is an α-contracting geodesic τi ending at yi and a projection
pi of x on τi satisfying d(pi , yi) ≥ L. In addition, we write zi for the point on τi satisfying
d(yi , zi) = r + 13α. We split the proof in several claims.

Claim 5.3. Let c ∈ Ox(yi , r) and γ : I → X a gradient line from x to c. Then zi lies in
the 5α-neighborhood of γ . In particular, c ∈ O(zi , 5α).

According to Lemma 4.14, γ intersectsNα(τi). Denote by γ (si) and γ (ti) the entry and
exit point of γ in Nα(τi). We know, again from Lemma 4.14, that d(γ (si), pi) ≤ 2α and
d(γ (ti), yi) ≤ r + 12α. In particular, if mi and ni stand for projections of γ (si) and γ (ti)
on τi , respectively, then mi , zi , ni , and yi are aligned in this order along τi . The path γ
restricted to [si , ti] lies in the 5α/2-neighborhood of τ (Lemma 2.2). It follows that zi is
5α-close to γ (Lemma 5.1).

Claim 5.4. We have 〈x, z2〉z1 ≤ 24α.

According to our assumption, Ox(y1, r) ∩ Ox(y2, r) is not empty. Let γ : I → X be a
gradient arc from x to a cocycle c in this intersection. It follows from our previous claim
that there is ui ∈ R+ such that γ (ui) is 5α-close to zi . Hence, the triangle inequality yields

〈x, z2〉z1 ≤ 〈x, γ (u2)〉γ (u1) + 10α. (16)
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Observe that

d(x, z1)+ d(z1, y1)− 4α ≤ d(x, y1) ≤ d(x, y2) ≤ d(x, z2)+ d(z2, y2).

Indeed, the first inequality follows from Lemma 2.3 applied to τ1, the second one is part
of our assumptions, while the last one is just the triangle inequality. By construction,
d(y1, z1) = d(y2, z2). Combined with the triangle inequality, it yields

d(x, γ (u1)) ≤ d(x, γ (u2))+ 14α.

Therefore, 〈x, γ (u2)〉γ (u1) ≤ 14α, which combined with equation (16) completes the proof
of our second claim.

Claim 5.5. Ox(y2, r) is contained in Ox(y1, r + 42α).

Consider c ∈ Ox(y2, r). According to our first claim, 〈x, c〉z2 ≤ 5α. Since cocyles are
1-Lipschitz, we get, in combination with the previous claim,

〈x, c〉z1 ≤ 〈x, c〉z2 + 〈x, z2〉z1 ≤ 29α.

However, d(y1, z1) = r + 13α. It follows from equation (8) that 〈x, c〉y1 ≤ r + 42α.

The next statement will be used later to estimate the measures of various saturated sets
using a Vitali-type argument.

LEMMA 5.6. Let α ∈ R
∗+ and r , L ∈ R+ with L > r + 16α. Let S be a subset of T(α, L).

There is a subset S∗ ⊂ S with the following properties.
(i) The collection (Oo(go, r))g∈S∗ is pairwise disjoint.

(ii)
⋃
g∈S Oo(go, r) ⊂ ⋃

g∈S∗ Oo(go, r + 42α).

Proof. Since the action of G on X is proper, we can index the elements g0, g1, g2 . . . of S
such that d(o, gio) ≤ d(o, gi+1o) for every i ∈ N. We build by induction a sequence (in)
as follows. Set i0 = 0. Let n ∈ N for which in has been defined. We search for the minimal
index j > in such that

( n⋃
k=0

Oo(gik o, r)
)

∩ Oo(gj o, r) = ∅.

If such an index exists, we let in+1 = j . Otherwise, we let in+1 = in, in other words, the
sequence (in) eventually stabilizes. Finally, we set

S∗ = {gin : n ∈ N}.
Note that property (i) directly follows from the construction. Let g ∈ S. If g does not
belong to S∗, it means that there is h ∈ S∗, with d(o, ho) ≤ d(o, go) such thatOo(go, r) ∩
Oo(ho, r) is non-empty. Hence, by Lemma 5.2, the shadow Oo(go, r) is contained in
Oo(ho, r + 42α). This completes the proof of property (ii).
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LEMMA 5.7. Let α ∈ R
∗+ and r , L ∈ R+ with L > r + 13α. Let x, y ∈ X such that (x, y)

has an (α, L)-contracting tail. Let K be a closed ball of radius R centered at x. If d(x, y) >
R + r + 13α, then for every c, c′ ∈ Ox(y, r), we have ‖c − c′‖K ≤ 20α.

Proof. Denote by τ a contracting tail of (x, y) and let p be a projection of x on τ such
that d(p, y) ≥ L. Fix x′ ∈ K and denote by p′ a projection of x′ onto τ . Let q be a
projection of c on τ , so that d(y, q) ≤ r + 7α (Lemma 4.14). We claim that d(p′, q) > 4α.
If d(p, p′) ≤ α, then this is just a consequence of the triangle inequality. Thus, we can
assume that d(p, p′) > α. According to Lemma 2.3, we have d(x, p′) ≤ d(x, x′)+ 2α.
Hence,

d(p′, q) ≥ d(x, y)− d(x, p′)− d(q, y) ≥ d(x, y)− d(x, x′)− d(q, y)− 2α

≥ d(x, y)− (R + r + 9α) > 4α.

It follows from Corollary 3.13 that

d(x′, q)− 10α ≤ c(x′, q) ≤ d(x′, q).

This estimate holds for every x′ ∈ K . Consider now x1, x2 ∈ K . Since c is a cocycle,
c(x1, x2) = c(x1, q)+ c(q, x2), thus

|c(x1, x2)− [d(x1, q)− d(x2, q)]| ≤ 10α.

The same argument holds for c′, thus ‖c − c′‖K ≤ 20α.

5.2. The contracting limit set

5.2.1. Contracting limit set. We now introduce a variation of the radial limit set that
keeps track of the elements fellow-traveling with some contracting geodesics. Let α, r , L ∈
R+ and x ∈ X. The set �ctg(G, x, α, r , L) consists of all cocycles c ∈ ∂X with the
following property: for every T ≥ 0, there exists g ∈ G such that:
• d(x, go) ≥ T ;
• (x, go) has an (α, L)-contracting tail;
• c ∈ Ox(go, r).
We also let

�ctg(G, x, α, r) =
⋂
L∈R+

�ctg(G, x, α, r , L).

Remark. Observe that the set �ctg(G, x, α, r , L) is a non-decreasing (respectively
non-increasing) function of α and r (respectively L).

Definition 5.8. The contracting limit set of G is

�ctg(G) =
⋃

α,r∈R+
G�ctg(G, o, α, r).

It follows from the definition that the contracting limit set is G-invariant and contained
in the radial limit set.
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PROPOSITION 5.9. Let α ∈ R
∗+. For every r ∈ R+ and L > r + 13α, we have

G�ctg(G, o, α, r , L) ⊂ �ctg(G, o, α, r + 12α, L− α).

In particular, G�ctg(G, o, α, r) ⊂ �ctg(G, o, α, r + 12α). Moreover, the contracting
limit set can also be described as

�ctg(G) =
⋃

α,r∈R+
�ctg(G, o, α, r).

Proof. Let h ∈ G and c be a cocycle in

h�ctg(G, o, α, r , L) = �ctg(G, ho, α, r , L).

For simplicity, we let b = h−1c. For every n ∈ N, we can find an element gn ∈ T(α, L)
such that d(o, gno) ≥ n and b ∈ Oo(gno, r). Denote by τn the contracting tail for the pair
(o, gno) and pn a projection of o on τn satisfying d(pn, gno) ≥ L. Up to passing to a
subsequence, we can assume that d(o, gno) ≥ d(o, h−1o)+ L+ α for every n ∈ N.

Let n ∈ N. We claim that hgn belongs to T(α, L− α). Let p′
n be a projection of

h−1o on τn. It suffices to prove that d(p′
n, gno) ≥ L− α. Indeed, after translating

the figure by h, it tells us that hτn is a contracting tail for the pair (o, hgno). We
distinguish two cases. Assume first that d(pn, p′

n)>α. It follows from Lemma 2.3 that
d(o, p′

n)≤d(o, h−1o)+2α. The triangle inequality yields

d(p′
n, gno) ≥ d(o, gno)− d(o, p′

n) ≥ d(o, gno)− d(o, h−1o)− 2α ≥ L− α.

Assume now that d(pn, p′
n) ≤ α. The triangle inequality yields

d(p′
n, gno) ≥ d(pn, gno)− d(pn, p′

n) ≥ L− α,

which completes the proof of our claim.
We now prove that c ∈ Oo(hgno, r + 18α). Let qn be a projection of b onto τn.

According to Lemma 4.14, we have d(qn, gno) ≤ r + 7α. Combining the above discussion
with the triangle inequality, we have

d(p′
n, qn) ≥ d(p′

n, gno)− d(qn, gno) ≥ L− (r + 8α) > 4α.

On the one hand, by Corollary 3.13, we have

b(h−1o, qn) ≥ d(h−1o, qn)− 10α,

that is, 〈h−1o, b〉qn ≤ 5α. Consequently,

〈h−1o, b〉gno ≤ 〈h−1o, b〉qn + d(qn, gno) ≤ r + 12α.

Recall that b = h−1c. The above inequality implies that c belongs to the shadow
Oo(hgno, r + 12α), which completes the proof of our claim. Note that d(o, hgno) diverges
to infinity, and hence c ∈ �ctg(G, o, α, r + 12α, L− α).

The points in the contracting limit set have a specific behavior with respect to the
equivalence relation ∼ used to define the reduced horoboundary (see §3.2). Proceeding
as for the radial limit set (see Lemma 4.22), one checks that the contracting limit set is
saturated. The next statement precises this fact.
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PROPOSITION 5.10. Let α ∈ R
∗+ and r , L ∈ R+ with L > r + 29α. Let c, c′ ∈ ∂X such

that c ∼ c′. Assume that c belongs to �ctg(G, o, α, r , L). Then ‖c − c′‖∞ ≤ 20α and c′
belongs to �ctg(G, o, α, r + 16α, L). In particular, the saturation of �ctg(G, o, α, r) is
contained in �ctg(G, o, α, r + 16α).

Proof. Since c belongs to �ctg(G, o, α, r , L), there exists a sequence of elements
gn ∈ T(α, L) such that d(o, gno) diverges to infinity and c ∈ Oo(gno, r) for every n ∈ N.
For each n ∈ N, the pair (o, gno) has an (α, L)-contracting tail, say τn. Let qn (respectively
q ′
n) be a projection of c (respectively c′) onto τn. We break the proof into several steps.

Claim 5.11. For every n ∈ N, we have d(qn, q ′
n) ≤ 4α.

Fix n ∈ N. Let γ : R+ → X be a gradient ray for c starting at qn. Let t ∈ R+. According
to Lemma 3.9, qn is a projection of γ (t) on τn. Assume that, contrary to our claim,
d(q ′

n, qn) > 4α. It follows from Corollary 3.13 applied with c′ that

c′(γ (t), q ′
n) ≥ d(q ′

n, γ (t))− 10α ≥ −10α.

On the other hand, since γ is a gradient ray for c, we know that

c(γ (t), q ′
n) = c(γ (t), qn)+ c(qn, q ′

n) = −t + c(qn, q ′
n).

These two estimates hold for every t ≥ T , thus contradicting the fact that ‖c − c′‖∞ < ∞.
It completes the proof of our first claim.

Claim 5.12. For every n ∈ N, the cocycle c′ belongs to Oo(gno, r + 16α). In particular,
c′ ∈ �ctg(G, o, α, r + 16α, L).

Let n ∈ N. Since (o, gno) has a contracting tail, there is a projection pn of o on τn
such that d(pn, gno) ≥ L. According to Lemma 4.14, d(qn, gno) ≤ r + 7α. Our previous
claim, combined with the triangle inequality, gives

d(pn, q ′
n) ≥ d(pn, gno)− d(q ′

n, qn)− d(qn, gno) ≥ L− (r + 11α) > 4α.

Hence, by Corollary 3.13, we have 〈o, c′〉q ′
n

≤ 5α, which combined with equation (8) yields

〈o, c′〉gno ≤ 〈o, c′〉q ′
n
+ d(q ′

n, qn)+ d(qn, gno) ≤ r + 16α.

This completes the proof of our second claim.

Claim 5.13. ‖c − c′‖∞ ≤ 20α.

Consider a closed ball K of radius R centered at o. If n ∈ N is sufficiently large,
then d(o, gno) > R + r + 29α. According to our previous claim, c and c′ both belong to
Oo(gno, r + 16α). It follows from Lemma 5.7 that ‖c − c′‖K ≤ 20α. This estimate does
not depend on K, whence the result.

In a CAT(-1) settings, shadows are known to provide a basis of open neighborhoods for
the points in the boundary at infinity. This is no more the case in our context. However, we
can still approximate saturated subsets of the contracting limit set using shadows. This is
the purpose of the next lemma.
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COROLLARY 5.14. Let α ∈ R
∗+ and r , L ∈ R+ with L > r + 13α. Let B be a saturated

subset of �ctg(G, o, α, r , L) and V an open subset of X̄ containing B. Let b ∈ B.
There exists T ∈ R+ such that for every g ∈ T(α, L) with d(o, go) ≥ T , if b belongs to
Oo(go, r), then Oo(go, r) ⊂ V .

Proof. Assume on the contrary that our statement fails. We can find a sequence of ele-
ments gn ∈ T(α, L) such that d(o, gno) diverges to infinity, b belongs to Oo(gno, r), and
Oo(gno, r) \ V is non-empty. For every n ∈ N, we write cn for a cocycle inOo(gno, r) \ V .
Up to passing to a subsequence, we can assume that cn converges to c ∈ X̄. As V is open,
c /∈ V . We claim that ‖c − b‖∞ < ∞. Let K be a closed ball of radius R centered at o.
As cn converges to c, there is N ∈ N such that for every n ≥ N , we have ‖cn − c‖K ≤ 1.
By construction, b and cn both belong to Oo(gno, r). According to Lemma 5.7, if n is
sufficiently large, ‖b − cn‖K ≤ 20α so that ‖b − c‖K ≤ 20α + 1. This inequality holds
for every compact subset K ⊂ X, which completes the proof of our claim. Since B is
saturated, c ∈ B. It contradicts the fact that B ⊂ V .

5.3. Measure of the contracting limit set. From now on, we assume that G is not
virtually cyclic and contains a contracting element. According to Corollary 4.10, there
are (ε, r0) ∈ R

∗+ × R+ such that any G-invariant, ωG-conformal density ν = (νx) satisfies
the shadow principle with parameters (ε, r0). The goal of this section is to prove that if the
action of G on X is divergent, then any such density gives full measure to the contracting
limit set. The proof is an application of the Kochen–Stone theorem, which generalizes the
second Borel–Cantelli lemma.

PROPOSITION 5.15. (Kochen–Stone [31]) Let (�, μ) be a probability space. Let (Bn) be
a sequence of subsets of � such that∑

n∈N
μ(Bn) = ∞.

Assume that there exists C ∈ R
∗+ such that for every N ∈ N,

N∑
n1=0

N∑
n2=0

μ(Bn1 ∩ Bn2) ≤ C

( N∑
n=0

μ(Bn)

)2

.

Then

μ

( ⋂
N∈N

⋃
n≥N

Bn

)
≥ 1
C

.

Recall that for every α, r , �, L ∈ R+, the set A�(α, r , L) is defined by

A�(α, r , L) =
⋃

g∈S(�,r)∩T(α,L)

Oo(go, r).

These are the sets with which we will apply the Kochen–Stone theorem. The aim of the
next lemmas is to make sure that the hypotheses of Proposition 5.15 are satisfied.
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LEMMA 5.16. Let a ∈ R
∗+. There are α, r1, C1 ∈ R

∗+ such that for every r ≥ r1 and L >
r + 13α, the following holds. Let ν = (νx) be a G-invariant, ωG-conformal density. For
every integer N ∈ N,

∑
g∈G

d(o,go)≤Na−L

e−ωGd(o,go) ≤ C1e
2ωGL

N∑
n=0

νo(Bn),

where Bn = Ana(α, r , L).

Proof. Recall that (ε, r0) are the shadow principle parameters which have been fixed once
and for all at the beginning of §5.3. We denote by α, r1, C ∈ R+ the parameters given by
Proposition 4.17 applied with ωG, a, and (ε, r0). Fix r ≥ r1 andL > r + 13α. Let ν = (νx)

be a G-invariant, ωG-conformal density. Recall that (G, ν) satisfies the shadow principle
with parameters (ε, r0). It follows from Proposition 4.17 that for every � ∈ R+,

∑
g∈S(�,a)

e−ωGd(o,go) ≤ Ce2ωLνo(A�+L(α, r , L)).

Summing this identity, we get for every N ∈ N,

N∑
n=0

∑
g∈S(na,a)

e−ωGd(o,go) ≤ Ce2ωL
N∑
n=0

νo(Ana+L(α, r , L)).

Note that Ana+L(α, r , L) is covered by A(m−1)a(α, r , L) and Ama(α, r , L), where
m = n+ �L/a�. Hence,

∑
g∈G

d(o,go)≤(N+1)a

e−ωGd(o,go) ≤ 2Ce2ωL
N+�L/a�∑
n=0

νo(Bn),

whence the result.

LEMMA 5.17. Let a, α, r ∈ R
∗+. There are b, C2 ∈ R+ such that for every L > r + 13α,

the following holds. Let ν = (νx) be a G-invariant, ωG-conformal density. For every
N ∈ N, we have

N∑
n1=0

N∑
n2=0

νo(Bn1 ∩ Bn2) ≤ C2

( ∑
g∈G

d(o,go)≤Na+b

e−ωGd(o,go)
)2

,

where Bn = Ana(α, r , L).

Proof. Let L > r + 13α. Let ν = (νx) be a G-invariant, ωG-conformal density. Let
N ∈ N. Observe first that
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N∑
n1=0

N∑
n2=0

νo(Bn1 ∩ Bn2) ≤ 2
N∑

n1=0

N∑
n2=n1

νo(Bn1 ∩ Bn2)

≤ 2
N∑

n1=0

N−n1∑
n2=0

νo(Bn1 ∩ Bn1+n2). (17)

Consider now n1, n2 ∈ N with 0 ≤ n1 ≤ n1 + n2 ≤ N . By definition, we have

Bn1 ∩ Bn1+n2 =
⋃

(g1,g2)∈U
Oo(g1o, r) ∩ Oo(g1g2o, r),

where U is the set of pairs (g1, g2) ∈ G with the following properties:
(U1) g1, g1g2 ∈ T(α, L);
(U2) g1 ∈ S(n1a, r) and g1g2 ∈ S(n1a + n2a, r).
Let (g1, g2) ∈ U for which Oo(g1o, r) ∩ Oo(g1g2o, r) is non-empty. According to Lemma
4.15, we have

d(o, g2o) ≤ d(g1o, g1g2o) ≤ |d(o, g1g2o)− d(o, g1o)| + 4r + 48α.

In particular,

d(o, g1g2o) ≥ d(o, g1o)+ d(o, g2o)− 4r − 48α.

Moreover, combined with property (U2), it shows that g2 ∈ S(n2a, 6r + 48α). Using
Remark 4.11, we estimate the measure of each shadow:

νo(Oo(g1o, r) ∩ Oo(g1g2o, r)) ≤ νo(Oo(g1g2o, r))

≤ e2ωGre−ωGd(o,g1g2o)

≤ eωG(6r+48α)e−ωG[d(o,g1o)+d(o,g2o)].

Consequently,

νo(Bn1 ∩ Bn1+n2) ≤ eωG(6r+48α)
∑

g1∈S(n1a,r),
g2∈S(n2a,6r+48α)

e−ωG[d(o,g1o)+d(o,g2o)].

Note that for every d ∈ R+, an element g ∈ G belongs to at most �2d/a� spheres of the
form S(na, d) when n runs over N. Summing the previous inequality over n1 and n2, and
using equation (17), we get

N∑
n1=0

N∑
n2=0

νo(Bn1 ∩ Bn2) ≤ C2
∑

g1,g2∈G
d(o,g1o),d(o,g2o)≤Na+b

e−ωG[d(o,g1o)+d(o,g2o)]

≤ C2

( ∑
g∈G

d(o,go)≤Na+b

e−ωGd(o,go)
)2

,

https://doi.org/10.1017/etds.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.10


3258 R. Coulon

where

b = a + 6r + 48α and C2 = 2eωG(6r+48α)
⌈

12r + 96α
a

⌉2

only depend on a, α, and r.

PROPOSITION 5.18. Assume that the action of G on X is divergent. There exists α, r ∈ R
∗+

with the following property. Let ν = (νx) be a G-invariant, ωG-conformal density. For
every L > r + 13α, we have

ν0(�ctg(G, o, α, r , L)) > 0.

Proof. Fix a ∈ R
∗+. Let α, r1, C1 be the parameters given by Lemma 5.16. Fix r ≥ r1.

Let b, C2 be the parameters given by Lemma 5.17 applied with a, α, and r. Choose L >
r + 13α and set a′ = max{a, b, L}. We write C for the constant given by Corollary 4.18
applied with ωG, a′, and (ε, r0).

Let ν = (νx) be a G-invariant, ωG-conformal density. For simplicity, for every n ∈ N,
we let Bn = Ana(r , α, L). Since the action of G is divergent, Lemma 5.16 tells us that∑

n∈N
νo(Bn) = ∞.

Recall that (G, ν) satisfies the shadow principle with parameters (ε, r0). By Corollary 4.18,∑
g∈S(�,a′)

e−ωGd(o,go) ≤ C for all � ∈ R+.

Since the Poincaré series of G diverges at s = ωG, we deduce from Lemmas 5.16 and 5.17
that there exists C′ ∈ R

∗+ such that for every sufficiently large N ∈ N,

N∑
n1=0

N∑
n2=0

νo(Bn1 ∩ Bn2) ≤ C′
( N∑
n=0

νo(Bn)

)2

.

Applying Proposition 5.15, we observe that

ν0(�ctg(G, o, α, r , L)) = νo

( ⋂
N∈N

⋃
n≥N

Bn

)
≥ 1
C′ .

COROLLARY 5.19. Assume that the action of G on X is divergent. There exist α, r ∈ R
∗+

with the following property. If ν = (νx) is a G-invariant, ωG-conformal density, then νo
gives full measure to

�ctg(G, o, α, r) =
⋂
L∈R+

�ctg(G, o, α, r , L).

In particular, νo gives full measure to the contracting limit set �ctg(G) and thus to the
radial limit set �rad(G).

Remark 5.20. The corollary is reminiscent of the fact that contracting elements are
‘generic’ in G, see [51].
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Proof. Let α, r be the parameters given by Proposition 5.18. Let ν = (νx) be a G-invariant,
ωG-conformal density. Let L > r + 13α. For simplicity, we let

B = G�ctg(G, o, α, r , L).

We claim that νo gives full measure to B. Assume on the contrary that the set A = X̄ \ B
has positive measure. We define a new density ν∗ = (ν∗

x ) by

ν∗
x = 1

νo(A)
1Aνx .

Note that ν∗ is ωG-conformal. By construction, B, and thus A, is G-invariant. Hence, ν∗
is also G-invariant. It follows from Proposition 5.18 that the ν∗

o gives positive measure
to B, which is a contradiction. According to Proposition 5.9, the set B is contained in
�ctg(G, o, α, r + 12α, L− α). Hence, the latter has full measure as well. These facts hold
for every L > r + 13α. Thus,

ν0

( ⋂
L∈R+

�ctg(G, o, α, r + 12α, L)
)

= 1,

that is,

ν0(�ctg(G, o, α, r + 12α)) = 1.

5.4. Passing to the reduced horoboundary. We now study the restriction to the reduced
horoboundary of invariant conformal densities. We still assume that G is not virtually
cyclic and contains a contracting element. The shadow principle parameters (ε, r0) ∈
R

∗+ × R+ are as in the previous section.

PROPOSITION 5.21. Assume that the action of G on X is divergent. There is C ∈ R
∗+ with

the following property. Let ν = (νx) and ν′ = (ν′
x) be two G-invariant, ωG-conformal

densities. Denote by μ = (μx) and μ′ = (μ′
x) their respective restrictions to the reduced

horocompactification (X̄, R). Then μo ≤ Cμ′
o.

Proof. Let α, r ∈ R
∗+ be the parameters given by Corollary 5.19. Without loss of

generality, we can assume that r ≥ r0. Set r ′ = r + 16α. For simplicity, we write� and�′
for the set �ctg(G, o, α, r) and �ctg(G, o, α, r ′), respectively. Let ν = (νx) and ν′ = (ν′

x)

be as in the statement. Let B ⊂ ∂X be a saturated Borel subset. We want to compare
μo(B) = νo(B) and μ′

o(B) = ν′
o(B). According to Corollary 5.19, both νo and ν′

o give full
measures to �. In addition, the saturated set (B ∩�)+ is contained in �′, see Proposition
5.10 (note that we do not claim that (B ∩�)+ is measurable; we will use it only as an
auxiliary tool to describe sets and will never compute its measure). Let V be an open
subset of X̄ containing B. Choose L > r ′ + 16α. Using Corollary 5.14 with (B ∩�)+, we
build a subset S ⊂ T(α, L) such that

B ∩� ⊂ (B ∩�)+ ⊂
⋃
g∈S
Oo(go, r ′) ⊂ V .
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According to Lemma 5.6, there is a subset S∗ of S such that:
• the collection (Oo(go, r ′))g∈S∗ is pairwise disjoint; and
• B ∩� is covered by (Oo(go, r ′ + 42α))g∈S∗ .
Recall that (G, ν′) satisfies the shadow principle. Since � has full measure, we get

νo(B) ≤ νo(B ∩�) ≤
∑
g∈S∗

νo(Oo(go, r ′ + 42α)) ≤ e2ωG(r ′+42α)
∑
g∈S∗

e−ωGd(o,go)

≤ C
∑
g∈S∗

ν′
o(Oo(go, r)),

where C = e2ωG(r ′+42α)/ε does not depend on ν and ν′. Hence, νo(B) ≤ Cν′
o(V ). This

inequality holds for every open subset V containing B, thus νo(B) ≤ Cν′
o(B).

PROPOSITION 5.22. Let ν = (νx) be a G-invariant, ωG-conformal density and μ = (μx)

its restriction to the reduced horocompactification (X̄, R). Assume that the action of G on
X is divergent. Then:

(i) μo is supported on the contracting limit set;
(ii) μo is ergodic;
(iii) μo is non-atomic, in particular, no equivalence class for ∼ has positive measure;
(iv) μ is a G-invariant, ωG-quasi-conformal density;
(v) μ is almost-unique, that is, there is C ∈ R

∗+ such that if μ′ = (μ′
x) is the restriction

to the reduced horocompactification of another G-invariant, ωG-conformal density,
then for every x ∈ X, we have μ′

x ≤ Cμx .

Proof. Let α, r ∈ R
∗+ be the parameters given by Corollary 5.19 andC ∈ R+ the one given

by Proposition 5.21. Let ν = (νx) be a G-invariant, ωG-conformal density and μ = (μx)

its restriction to the reduced horocompactifiction (X̄, R). It follows from Corollary 5.19
that μo gives full measure to the contracting limit set. Let us prove the ergodicity of μo.
Let B be a G-invariant saturated Borel subset such that μo(B) > 0. Consider the density
ν∗ = (ν∗

x ) defined by

ν∗
x = 1

νo(B)
1Bνx .

Since B is G-invariant, ν∗ is a G-invariant, ωG-conformal density. Denote by μ∗ = (μ∗
x)

its restriction to the reduced horocompactifiction. It follows from Proposition 5.21 that
μo ≤ Cμ∗

o. Consequently, μo(X̄ \ B) = 0, that is, μo(B) = 1.
We now focus on non-atomicity. Assume on the contrary that B ∈ R is an atom of

μo. For every g ∈ G, we write O+
o (go, r) for the saturation of the shadow Oo(go, r).

Note that O+
o (go, r) is measurable (Lemma 3.7). Consequently, the measure of B ∩

O+
o (go, r) is either zero or equals μo(B). By Corollary 5.19, μo only charges the set
� = �ctg(G, o, α, r), and hence �rad(G, o, r). Consequently, for every n ∈ N, there is
gn ∈ G, with d(o, gno) ≥ n such that

μo(O+
o (gno, r)) ≥ μo(B ∩ O+

o (gno, r)) ≥ μo(B).
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By Proposition 5.10, O+
o (gno, r) ∩� is contained in Oo(gno, r + 20α). Since νo gives full

measure to �, we get

0 < μo(B) ≤ νo(O+
o (gno, r)) ≤ νo(O+

o (gno, r) ∩�) ≤ νo(Oo(gno, r + 20α)).

Recall that d(o, gno) diverges to infinity. Hence, the above inequality contradicts the
shadow lemma (Corollary 4.10).

Let us prove item (iv). It follows from the construction that μ is G-invariant,
‖μo‖ = 1, and μx � μy for every x, y ∈ X. Hence, we are only left to prove that μ
is quasi-conformal. Let x, y ∈ X. We define two auxiliary maps as follows.

X̄ → R and X̄ → R

c �→ inf
c′∼c

c′(x, y) c �→ sup
c′∼c

c′(x, y) .

We denote them by c �→ β−
c (x, y) and c �→ β+

c (x, y), respectively. As X̄ is separable, one
checks that these maps are R-measurable. Let B be a saturated Borel subset. Using the
conformality of ν, we have

νx(B) ≤
∫

1B(c)e
−ωGc(x,y) dνy(c) ≤

∫
1B(c)e

−ωGβ−
c (x,y) dνy(c).

Since B is saturated and c �→ β−
c (x, y) is R-measurable, we get

μx(B) ≤
∫

1B(c)e
−ωGβ−

c (x,y) dμy(c).

This inequality holds for every B ∈ R. Hence,

dμx

dμy
(c) ≤ e−ωGβ−

c (x,y), μ-a.e.

In the same way, we obtain a lower bound for the Radon–Nikodym derivative with
β+
c (x, y) in place of β−

c (x, y). By Proposition 5.10, for μ-almost every c ∈ X̄, we have

c(x, y)− 20α ≤ β−
c (x, y) ≤ β+

c (x, y) ≤ c(x, y)+ 20α.

Hence, μ is quasi-conformal. Point (v) now follows from Proposition 5.21 and the
quasi-conformality.

5.5. More applications

PROPOSITION 5.23. Assume that the action of G on X is divergent. For every infinite
normal subgroup of G, we have

ωN >
1
2ωG.

Proof. Let Q = G/N and ωQ be the growth rate of Q on X/N . According to Corollary
4.29, we have

ωN + 1
2ωQ ≥ ωG.

https://doi.org/10.1017/etds.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.10


3262 R. Coulon

Since the map X → X/N is 1-Lipschitz, ωQ ≤ ωG. Hence,

ωN ≥ 1
2ωG.

Suppose now that, in contrast to our claim, ωG = 2ωN . We choose:
• a G-invariant, ωG-conformal density ν = (νx); and
• an N-invariant, ωN -conformal density ν′ = (ν′

x) such that the action of N on
(X̄, B, ν′

o) is ergodic.
We write μ and μ′ for their respective restrictions to the reduced horocompactification
(X̄, R). In particular, the action of N on (X̄, R, μ′

o) is ergodic. We claim that μ0 is
absolutely continuous with respect to μ′

0. According to Corollary 4.10, (G, ν′) satisfies
the shadow lemma for some parameters (ε, r0) ∈ R

∗+ × R+. By Corollary 5.19, there
exists α, r ∈ R

∗+ such that νo gives full measure to � = �ctg(G, o, α, r). Without loss
of generality, we can assume that r ≥ r0. For simplicity, we set r ′ = r + 16α and write �′
for �ctg(G, o, α, r).

Let B be a saturated subset contained in �ctg(G, o, α, r). Let V be an open set
containing B. Observe that (B ∩�)+ is contained in �′ (Proposition 5.10). Fix L >
r ′ + 16α. Using Corollary 5.14 with (B ∩�)+, we build a subset S ⊂ T(α, L) such that

B ∩� ⊂ (B ∩�)+ ⊂
⋃
g∈S
Oo(go, r ′) ⊂ V .

According to Lemma 5.6, there is a subset S∗ of S such that:
• the collection (Oo(go, r ′))g∈S∗ is pairwise disjoint; and
• B ∩� is covered by (Oo(go, r ′ + 42α))g∈S∗ .
Since ν gives full measure to�, we have νo(B) = νo(B ∩�). Using Remark 4.11 with the
density ν, we get

νo(B) ≤
∑
g∈S∗

νo(Oo(go, r ′ + 42α)) ≤ e2ωG(r ′+42α)
∑
g∈S∗

e−ωGd(o,go).

Recall that for every g ∈ G, we have ‖ν′
go‖ ≥ e−ωNd(o,go). Since ωG = 2ωN , we obtain

νo(B) ≤ e2ωG(r ′+42α)
∑
g∈S∗

‖ν′
go‖e−ωNd(o,go).

Using now the shadow principle with the density ν′, we obtain

νo(B) ≤ C
∑
g∈S∗

ν′
o(Oo(go, r ′)) ≤ Cν′

o(V ) where C = 1
ε
e2ωG(r ′+42α)

does not depend on B. This inequality holds for every open subset V containing B, and
hence νo(B) ≤ Cν′

o(B), that is, μo(B) ≤ Cμ′
o(B). This completes the proof of our claim.

Denote by f the Radon–Nikodym derivative f = dμo/dμ
′
o. Both μ and μ′ are

N-invariant. Hence, the setA = {c ∈ X̄ : f (c) > 0} is N-invariant. Note that μ′
o(A) > 0.

Indeed otherwise, μo would be the zero measure. Since the action of N on (X̄, R, μ′
o) is

ergodic, we get μ′
o(A) = 1. Hence, μo and μ′

o are in the same class of measures. Since
μo is G-invariant, μ′

o is G-quasi-invariant. We assumed that μ′
o is ergodic for the action of
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N. It follows from Lemma 4.5 that μ′ is almost fixed by G. Thus, ωN ≥ ωG by Corollary
4.26. This contradicts our assumption and completes the proof.

PROPOSITION 5.24. LetH ⊂ G be a subgroup which is not virtually cyclic and contains a
contracting element. Let ν = (νx) be an H-invariant, ωH -conformal density and μ = (μx)

its restriction to the reduced horocompactification (X̄, R). Assume that the action of H is
divergent. If μ is almost fixed by G, then (G, ν) satisfies the shadow principle.

Proof. According to Corollary 5.19, there are α, r0 ∈ R
∗+ such that ν gives full measure

to �ctg(H , o, α, r0). Proceeding as in the proof of Corollary 4.10, we show that for every
g ∈ G and r ∈ R+,

νo(Oo(go, r)) ≥ ‖νgo‖e−ωHd(o,go)ν
g
o (Og−1o(o, r)). (18)

Choose now r ≥ r0 and g ∈ G. We denote by O+
g−1o

(o, r) the saturation of the shadow
Og−1o(o, r), which is measurable by Lemma 3.7. According to Proposition 5.10,

O+
g−1o

(o, r) ∩�ctg(H , o, α, r) ⊂ Og−1o(o, r + 20α).

Recall that ν gives full measure to �ctg(H , o, α, r0), and thus to �ctg(H , o, α, r) as well.
Since μ is almost fixed by G, we have

ν
g
o (Og−1o(o, r + 20α)) ≥ μ

g
o(O+

g−1o
(o, r)) ≥ εμo(O+

g−1o
(o, r))

≥ ενo(Og−1o(o, r)),

where ε ∈ R
∗+ does not depend on g and r. Combined with equation (18), it shows that for

every r ≥ r0, for every g ∈ G, we have

νo(Oo(go, r + 20α)) ≥ ε‖νgo‖e−ωHd(o,go)νo(Og−1o(o, r)).

According to our assumption, H is not virtually cyclic and contains a contracting element.
The conclusion now follows from Proposition 4.9 applied with the group H and the set
D0 = {ν}.
THEOREM 5.25. Let H be a commensurated subgroup of G. If the action of H on X is
divergent, then the following hold.

(i) Any H-invariant, ωH -conformal density is G-almost invariant when restricted to the
reduced horocompactification (X̄, R).

(ii) ωH = ωG.
(iii) The action of G on X is divergent.

Proof. Let ν = (νx) be an H-invariant, ωH -conformal density. We denote by μ = (μx)

its restriction to the reduced horocompactification (X̄, R). Let g ∈ G. By definition of
commensurability, the intersectionH0 = Hg ∩H has finite index in H. In particular,H0 is
divergent and ωH0 = ωH . Recall that νg is the image of ν under the right action of g ∈ G.
It is an Hg-invariant, ωH -conformal density, and thus an H0-invariant, ωH0 -conformal
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density. Similarly, ν is an H0-invariant, ωH0 -conformal density. Since H0 is divergent,
Proposition 5.22 tells us that:
• there is C ∈ R+ such that μg ≤ Cμ;
• the action of Hg ∩H on (X̄, R, μo) is ergodic.
Note that C depends a priori on Ho and thus on g. Nevertheless, it still proves that μ is
G-quasi-invariant. Consequently, μ is C0-almost fixed by G for some C0 ∈ R

∗+ (Lemma
4.5). We deduce from Proposition 5.24 that (G, ν) satisfies the shadow principle. Point (ii)
now follows from Corollary 4.26. Recall that PH (s) ≤ PG(s) for every s ∈ R+. Since the
action of H on X is divergent, PG(s) diverges at s = ωH = ωG. Hence the action of G on
X is divergent as well, which proves point (iii).

We already know that μ is almost-fixed by G, so that the map χ : G → R sending
g to ln ‖μgo‖ is a quasi-morphism (Lemma 4.4). We are left to prove that μ is actually
G-almost invariant, that is, χ is bounded. Recall that (G, ν) satisfies the shadow principle.
It follows from Proposition 4.23 that the critical exponent of the series

∑
g∈G

eχ(g)e−sd(o,go) =
∑
g∈G

‖νgo‖e−sd(o,go)

is exactly ωH . Hence, ω−χ = ωχ = ωH . Note also that since ν is H-invariant, χ(hg) =
χ(g) for every h ∈ H and g ∈ G. Using Proposition 4.3, with the quasi-morphism −χ ,
we produce an H-invariant, ωH -conformal density ν∗ = (ν∗

x ) satisfying the following
additional property: there is C1 ∈ R

∗+ such that for every g ∈ G, for every x ∈ X, we have

1
C1
νx ≤ eχ(g)g−1∗νgx ≤ C1νx .

Denote by μ∗ its restriction to the reduced horocompactification (X̄, R). According to
Proposition 5.22(v), there is C2 ∈ R+ such that μ ≤ C2μ

∗. Recall that μ is C0-almost
fixed by G. Consequently, for every g ∈ G, we have

eχ(g)μo ≤ C0(g
−1∗μgo) ≤ C0C2(g

−1∗μ∗
go) ≤ C0C1C2(e

−χ(g)μ∗
o).

Since μo and μ∗
o are probability measures, χ is bounded, whence the result.

Remark 5.26. As we noticed in the introduction, every finite index and every normal
subgroup of G is commensurated. More generally, consider a subgroup H of G and N
a normal subgroup of G. If H and N are commensurable (that is, H ∩N has finite
index in both H and N), then H is commensurated. However, there are plenty of other
examples. Here is a construction suggested by Bader [3]. Consider the free group F2

and morphism φ : F2 → M , where M is a topological group. Let K be an open compact
subgroup of M. Then H = φ−1(K) is commensurated. Now if φ has dense image, then
H is commensurable with a normal subgroup of F2 if and only if K is commensurable
with a normal subgroup of M. Consider now, for instance, a prime p and a morphism
φ : F2 → PSL2(Qp) with dense image. Then φ−1(PSL2(Zp)) provides an example of a
commensurated subgroup of F2 that is not commensurable with a normal subgroup of F2.
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A. Appendix. Strongly positively recurrent actions
A.1. Definition. Let G be a group acting properly, by isometries on a proper, geodesic,
metric space X. Given a compact subsetK ⊂ X, we define a subsetGK ⊂ G as follows: an
element g ∈ G belongs toGK if there exist x, y ∈ K and a geodesic γ joining x to gy such
that the intersection γ ∩GK is contained in K ∪ gK . Although GK is not a subgroup of
G, its exponential growth rate ω(GK , X) is defined in the same way as for the one of G.

Definition A.1. The entropy at infinity of the action of G on X is

ω∞(G, X) = inf
K
ω(GK , X),

where K runs over all compact subsets of X. The action of G on X is strongly positively
recurrent (or statistically convex co-compact) if ω∞(G, X) < ω(G, X).

We refer the reader to [19, 44] for examples of strongly positively recurrent actions in
the context of hyperbolic geometry. Arzhantseva, Cashen, and Tao [1, §10] also observed
that the work of Eskin, Mirzakani, and Rafi [21, Theorem 1.7] implies that the action of
the mapping class group on the Teichmüller space endowed with the Teichmüller metric is
strongly positively recurrent.

A.2. Divergence

PROPOSITION A.2. If the action of G on X is strongly positively recurrent, then it is
divergent.

The statement was proved by Yang [50]. We give here an alternative approach in the
spirit of Schapira and Tapie [44]. The idea is to build a G-invariant, ωG-conformal density
which gives positive measure to the radial limit set. Indeed, according to Proposition 4.23,
this will imply that the action of G on X is divergent. As we explained in Remark 4.24, this
part of Proposition 4.23 does not require that G contains a contracting element.

First, we give a description of the complement of the radial limit set. To that end, we
introduce some notation. Given a compact subset K ⊂ X and ε ∈ R

∗+, we denote by AK ,ε

the set of all cocycles c ∈ ∂X with the following property: there is a point x ∈ K such
that for every ε-quasi-gradient ray γ : R+ → X for c starting at x, for every u ∈ G, if the
intersection γ ∩ uK is non-empty, then d(K , uK) ≤ 1.
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LEMMA A.3. The radial set of G satisfies the following inclusion:

∂X \�rad(G) ⊂
⋂
K⊂X

G

( ⋃
ε>0

AK ,ε

)
,

where K runs over all compact subsets of X.

Proof. The proof is by contraposition. Consider a cocycle c ∈ ∂X that is not in the set

⋂
K⊂X

G

( ⋃
ε>0

AK ,ε

)
.

There is a compact subset K ⊂ X such that for every g ∈ G and ε > 0, the cocycle c does
not belong to gAK ,ε . Fix ε ∈ (0, 1) and x0 ∈ K . In addition, we let g0 = 1. We are going to
build, by induction, a sequence of points x1, x2 . . . in X, a sequence of elements g1, g2, . . .
in G, and a sequence of rays γ1, γ2, . . ., such that for every i ∈ N \ {0}, the following hold.

(i) xi belongs to giK .
(ii) c(x0, xi) ≥ i/2.

(iii) For every i ∈ N \ {0}, the path γi is a 2−iε-quasi-gradient ray of c starting at xi−1

and passing through xi .
Let i ∈ N. Assume that xi ∈ X, gi ∈ G have been defined. By assumption, c does not
belong to the set

giAK ,2−(i+1)ε .

Hence, there exists a 2−(i+1)ε-quasi-gradient ray γi+1 : R+ → X for c starting at xi
and an element ui ∈ G such that γi+1 ∩ giuiK is non-empty and d(giK , giuiK) > 1.
We let gi+1 = giui and denote by xi+1 a point in γi+1 ∩ giuiK . Since xi ∈ giK and
xi+1 ∈ giuiK , we have d(xi , xi+1) > 1. However, γi+1 is a quasi-gradient line. Hence,

c(xi , xi+1) ≥ d(xi , xi+1)− 2−(i+1)ε ≥ 1/2.

Using the induction hypothesis, we get

c(x0, xi+1) ≥ c(x0, xi)+ c(xi , xi+1) ≥ (i + 1)/2.

Consequently, xi+1, gi+1, and γi+1 satisfy the announced properties.
Note that the sequence (xi) is unbounded. Indeed otherwise, c(x0, xi) should be

bounded as well. Thus, we can build an infinite path γ by concatenating the restriction of
each γi between xi−1 and xi . It follows from the construction that γ is an ε-quasi-gradient
line for c, see Remark 3.3. Moreover, γ intersects giK for every i ∈ N. One proves using
the triangle inequality that c belongs to the radial limit set.

Let K ⊂ X be a compact subset and ε ∈ R
∗+. For every compact subset F ⊂ X, we

define UK ,ε(F ) to be the set of cocycles b ∈ X̄ for which there is a cocycle c ∈ AK ,ε

satisfying ‖b − c‖F < ε. Observe that UK ,ε(F ) is an open subset of X̄ containing AK ,ε .
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LEMMA A.4. Let K ⊂ X be a compact set and ε ∈ R
∗+. Fix a base point o ∈ K . There

exist r ∈ R+ and a finite subset S ⊂ G such that for every T ≥ ε, if F stands for the closed
ball of radius T + 2r centered at o, then

UK ,ε(F ) ∩Go ⊂ S

( ⋃
k∈GK

d(o,ko)≥T

Oo(ko, r)
)

.

Proof. Since the action of G on X is proper, the set

S = {u ∈ G : d(K , uK) ≤ 1}
if finite. We fix r > 2 diam K + 1. Let T ≥ ε and F be the closed ball of radius
R = T + 2r centered at o. Let g ∈ G such that go belongs toUK ,ε(F ). We write b = ι(go)

for the corresponding cocycle. By definition, there is c ∈ AK ,ε such that ‖b − c‖F < ε.
Observe first that d(o, go) > R − ε. Indeed, the map x �→ b(x, go) admits a global
minimum at go, while there exists a c-gradient line starting at go. We cannot have at
the same time d(o, go) ≤ R − ε and ‖b − c‖F < ε. In particular, g /∈ S.

Since c ∈ AK ,ε , there exists x ∈ K , such that for every ε-quasi-gradient ray
γ : R+ → X for c, starting at x, if γ intersects uK for some u ∈ G, then u ∈ S. Consider
now a geodesic α : [0 , �] → X from x to go. We denote by s ∈ [0 , �] the largest time
such that the point y = α(s) belongs to SK . We now denote by t ∈ [s , �] the smallest
time such that the point z = α(t) lies in hK for some h ∈ G \ S (such a time t exists since
α(�) belongs to gK). It follows from the construction that h can be written h = uk with
u ∈ S and k ∈ GK . Moreover, y ∈ uK . Observe that 〈y, go〉z = 0, while d(y, uo) ≤ r/2
and d(z, uko) ≤ r/2. The triangle inequality yields 〈uo, go〉uko ≤ r , that is, go belongs to
uOo(ko, r).

We are left to prove that d(o, ko) ≥ T . By construction, d(o, uo) ≤ r . Thanks to the
triangle inequality, it suffices to show that d(o, z) ≥ R. Assume on the contrary that
d(o, z) < R. In particular, both x and z belong to F. Since b and c differ by at most ε on F,
we get that c(x, z) ≥ d(x, z)− ε. Hence, any geodesic from x to z is an ε-quasi-gradient
arc for c. If we concatenate this path with a gradient ray for c starting at z, we obtain
an ε-quasi-gradient ray for c starting at x and intersecting hK with d(K , hK) > 1. This
contradicts the fact that c belongs to AK ,ε , and completes the proof.

PROPOSITION A.5. If the action of G on X is strongly positively recurrent, then there is a
G-invariant,ωG-conformal density which gives full measure to the radial limit set�rad(G).

Proof. By definition, there is a compact subset K ⊂ X such that ωGK < ωG. We fix once
and for all a base point o ∈ K . The argument relies on Patterson’s construction recalled
in the proof of Proposition 4.3 with H = G and χ the trivial morphism. In particular,
Q(s) stands for the weighted Poincaré series defined in equation (5). For every s > ωG,
we consider the density νs = (νsx) defined as in equation (6). As we explained, there is
a sequence (sn) converging to ωG from above such that νsn converges to a G-invariant,
ωG-conformal density ν supported on ∂X.

Let η > 0 such that ωGK < ωG − η. The weight θ used to construct ν is slowly
increasing. More precisely, according to property (P1), there exists t0 such that for every
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t ≥ t0 and u ∈ R+, we have θ(t + u) ≤ eηuθ(t). Let ε > 0. Let r ∈ R+ and S ⊂ G be the
data provided by Lemma A.4 applied with K and ε. For every T ∈ R+, we write FT for
the closed ball of radius R = T + 2r centered at o. Let s > ωG and T ≥ max{t0, ε}. In
view of Lemma A.4, we have

νso(UK ,ε(FT )) ≤ |S|
∑
k∈GK

d(o,ko)≥T

νso(Oo(ko, r)).

Let us estimate the measures of the shadows in the sum. Let k ∈ GK , such that
d(o, ko) ≥ T . Any element g ∈ G such that go ∈ Oo(ko, r) can be written g = ku with
u ∈ G and

d(o, ko)+ d(o, uo)− 2r ≤ d(o, go) ≤ d(o, ko)+ d(o, uo).

Unfolding the definition of νs , we get

νso(Oo(ko, r)) ≤ e2sr e−sd(o,ko)

Q(s)
∑
u∈G

θ(d(o, go))e−sd(o,uo). (A.1)

Observe that if d(o, uo) ≥ t0, then it follows from our choice of t0 that

θ(d(o, go)) ≤ θ(d(o, ko)+ d(o, uo)) ≤ eηd(o,ko)θ(d(o, uo)).

Otherwise, since d(o, ko) ≥ T ≥ t0, we have

θ(d(o, go)) ≤ θ(t0 + d(o, uo)+ d(o, ko)− t0) ≤ eηd(o,ko)θ(t0).

We break the sum in equation (A.1) according to the length of u and get

νso(Oo(ko, r)) ≤ e2sr e−(s−η)d(o,ko)

Q(s)
[θ(t0)�1(s)+�2(s)],

where

�1(s) =
∑
u∈G

d(o,uo)≤t0

e−sd(o,uo) and

�2(s) =
∑
u∈G

d(o,uo)>t0

θ(d(o, uo))e−sd(o,uo).

Note that �1(s) is a finite sum that does not depend on k, while �2(s) is the remainder of
the series Q(s). Hence,

νso(Oo(ko, r)) ≤ e2sr
[
θ(t0)

Q(s)
�1(s)+ 1

]
e−(s−η)d(o,ko).

Summing over all long elements k ∈ GK , we get

νso(UK ,ε(FT )) ≤ |S|e2sr
[
θ(t0)

Q(s)
�1(s)+ 1

] ∑
k∈GK

d(o,ko)≥T

e−(s−η)d(o,ko).
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Note that �1(s) is bounded, while Q(s) diverges to infinity. Since UK ,ε(FT ) is an open
subset of X̄, we can pass to the limit and get

νo(UK ,ε(FT )) ≤ |S|e2ωGr
∑
k∈GK

d(o,ko)≥T

e−(ωG−η)d(o,ko).

The sum corresponds to the remainder of the Poincaré series of GK at s = ωG − η.
However, ωG − η > ωGK . Hence, this series converges, and its remainder tends to zero
when T approaches infinity. Consequently, for every ε > 0,

νo

( ⋂
T≥0

UK ,ε(FT )

)
= 0.

By construction, the set AK ,ε is contained in UK ,ε(FT ) for every T ∈ R+. It follows from
Lemma A.3 that

∂X \�rad(G) ⊂ G

( ⋃
ε>0

⋂
T≥0

UK ,ε(FT )

)
.

Since G is countable, we conclude that νo(∂X \�rad(G)) = 0. Recall that νo is supported
on ∂X, thus νo(�rad(G)) = 1.
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