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RESTRICTING AND INDUCING ON INNER PRODUCTS 
OF REPRESENTATIONS OF FINITE GROUPS 

G. de B. ROBINSON 

1. I n t r o d u c t i o n . Of recent years the author has been interested in devel­
oping a representation theory of the algebra of representations [5; 6] of a finite 
group G, and dually of its classes [7]. In this paper Frobenius ' Reciprocity 
Theorem provides a s tar t ing point for the introduction of the inverses R~l and 
I~l of the restricting and inducing operators R and / . The condition under 
which such inverse operations are available is tha t the classes of G do not split 
in the subgroup G. When this condition is satisfied the application of these 
operations to inner products is of interest. In particular we show tha t 

R({\] X {M}) = RM X R{n] and R"1^} X {M}) - R~l{\] X R-^n} 

as one might expect, bu t more surprisingly: 

/ ({M X {£}) = tf-MM X /{£} and J - i ({ \} X /{?}) = R{\] X {fl}. 

I to [2] has already observed tha t the inducing operation holds without the 
restriction on splitting classes when we write: 

I(R{\\ X (£}) = {Xj X/{j t t} . 

T h e obvious illustration of the ideas is obtained by setting G = Sn,G = Sm 

(m < n). One can only hope tha t Young's machinery will eventually be 
generalized so tha t representation theory could become explicit. 

Again I would express my thanks to R. C. King for his helpful comments and 
suggestions, in particular, for drawing I to 's work to my at tent ion. 

2. Y o u n g ' s ra is ing operator . Long ago Alfred Young [8] introduced a 
raising operator Rij} defined as raising a node from the 7th row to the ith row 
of a diagram [X]. If the identity representation of the subgroup S\{ is denoted by 
the ith row [Xj of [X], then the permutat ion representation of Sn induced by the 
identi ty representation of S\l X S\2 . . . is given by [3] 

[X:] . [X2] . . . = n (1 - *„ ) - i [X] 

and conversely 

M = r i( i - K ^ M . t x * ] . . . 
Note tha t Rtj is applicable subject to its viability. If we use the suffix 0 to 

Received October 15, 1974. 

1349 

https://doi.org/10.4153/CJM-1975-137-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-137-2


1350 Ci. DE B. ROBINSON 

denote a non-row of [X] we may factor R0i = RnRn to obtain the restricting 
operator which removes a node in all possible ways: 

R = Roi + i?o2 + • • • = i?oi(l + Rn + R1Z + •••) 

and the inducing operator which adds a node: 

/ = R10 + i?2o + • • • = (1 + R21 + Rn + . . O.R10. 

Similarly we can define lowering operators Stj applied to the columns instead 
of the rows. We define the inverses of the operators R and I thus: 

R-1 = (1 + Rn + RU + .. .)~lRio, I'1 = Roi (1 + Rn + Rn + • • . ) _ 1 

It is worth illustrating these operators in the following 

Example 2.1. R[3, 2, 1] = [22, 1] + [3, l2] + [3, 2] and using the above 
factorization of R~l we have: 

R-'R[3, 2,1] = R~l([22,1] + [3, l2] + [3, 2]) 

= ( 1 + Rlt + Ru)~l([3, 2,1] + [4, l2] + [4, 2]) 

= ([3,2,l] + [4,P] + [4,2]) 

- ([4, l2] + [4, 2] + 2[5, 1]) + (2[5, 1] + 2[6]) - 2[6] 

= [3,2, 1]. 

It should be noted that Rio is applicable to any [X], though RQi is not. 
Comparable restrictions apply to Ri0 and R0i; we illustrate other factorizations 
ofR in 

Example 2.2. 

^ [ 2 , 1] = (1 + R12)-iR10[2, 1] = [3, 1] - [4] 

= (1 + ^ 2 i ) - ^ 2 o [ 2 , 1] = [22] 

= (1 + 512)~1510[2, 1] = [2, P] - [V] 

and in each case RR~l[2, 1] = [2, 1]. 

THEOREM 2.3. Subject to the same factorization being applied to inverses 

R~lR = RR-1 = 1 = II-1 = I~lL 

3. The general theory. Also in paper [7] we have expressed Frobenius' 
Reciprocity Theorem in the matrix form 

(3.1) {X}7^= F(F{\}), F[\}F' = (F'{\}) 

where {X}, {X} are the matrices representing the irreducible representations X 
of G and X of G C G. The matrix F describes the restrictions of the representa­
tion {X} of G to G. Using Young's operator theory we can construct a left 
inverse F0 for Sn as illustrated in 
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Example 3.2. As in [7] we take G = 54 with G = 53 so that: 

F = 

1 0 0 1 0 0 0 0 1 0 0 0 0 
1 1 0 ^ 0 = 0 0 1 0 0 > - 1 1 0 0 0 
0 1 0 > _0 0 0 0 1_ _ 0 0 0 0 1 
0 1 1 
0 0 1_ 

1 0 0 0 0' 
or 0 0 1 0 0 

1 - 1 0 1 0 
etc. 

Each allowable factorization of R~l provides a choice for a row of FQ. The 
Young diagram makes these operations explicit in a remarkable way for Sn. 

The existence of such a left inverse of F requires that the rank of F is equal to 
its width. As pointed out elsewhere in [7], the matrix <p = x~lFx describes the 
splitting of the classes of G in G, so a left inverse F0 of F exists if and only if the 
classes of G do not split in G. In such case: 

R : Fo{\}F = (F{M), F{%}F = (F'{\\) : / 

/ith 

(3.3) 
(Fo(F[X})) 

(F'WM)) 
{%] : R~lR = 1 
(XI : II-' = 1 

so that the reciprocity theorem holds not only for R and / but also for R~l and 
I~l. Correspondingly by multiplication: 

(3.4) 
Fo(FQ{\})F = {%} = FoF{\\FoF: RR~' = 1 

W(M)/V FoF{X}FF0
/ : I-1! = 1. 

We summarize these operations on representations of representations as 
follows: 

R: FQ . . . F or (F), R~l : F . . .FQ or (F0), 

I : F . . . F' or ( F ) , I'1 : F0 . . . F0
r or (/Y). 

It is worth noting the subtlety of the matrix interpretation of the relation 
R~XR = 1. From (3.1) we have 

FF0{\}F = F(F{\}) = \\}F = FFo{\}FFQF 

so that the best we can say in general, using (3.4), is that 

LEMMA 3.5. 

FFQ{\\FFo = {X}, F{\}Fo = (FQ{\}) 

as left multipliers of F. 
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On the other hand, from (3.4) 

(3.6) FFo(F'{\})Fo'F' = F{\} F' = (F'{\J) 

without the restriction in the lemma. We turn now to an interesting applica­
tion of these ideas. 

4. Restricting inner products. It is worth remarking that inner product 
multiplication, denoted here by X, simply amounts to ordinary multiplication 
of the {X} and {/*}. Thus from (3.1) we have immediately that 

(4.1) {X} X IrfF = {\}F(F\H\) = F(F{\})(F\Ji}) 

which we can write in operator form: 

(4.2) R([\) X {MD =RM XR{n\. 

(4.2) is valid whether or not the classes of G split in G. However, with this 
assumption, we can use the Lemma to write 

(4.3) F0{\] X {n}F = Fo{X}F X FQ{v}F. 

Once again we have 

(4.4) F{\] X\riF0 = F{\}F, X F{^}FQ 

so that 

(4.5) R^({\\ x M ) = R-'M X £ - ' { M ! . 

Thus we can write 

FoF{\] X {»}F0F = F0F{\}FOFX FOF{H}FOF 

and using (4.3) 

FFo{\\ X {n\FFo = FFo{\}FFo X FF0{ti}FF0 

so that both RR*1 and R~lR factor similarly over the inner product. 
In illustrating these processes we recall the general expression for an inner 

product [3] 

(4.6) (X |G) X M = ( ( M | G ) X X ) | G 

which yields for Sn 

(4.7) [a] X [/3] = I l (1 - RtJ)[ai] . [a2] . . . X M 

= 11(1 -Rt])([fï]lÔ)ÎSn, 

with G = Sai X 5a2 X . . . In particular we have 

Example 4.8. 

i?([4,1] X [3, 2]) = £([4, 1] + [3, 2] + [3, I2] + [22,1] 
= (M + [3,1]) X ([3,1] + [22]) 

i?->([4, 1] X [3, 2]) = ([5,1] - [6]) X ([4, 2] - [5,1] + [6]) 
= [32] + [3, 2, 1] + 2[o, 1] - [4, 2] - 2[6] 
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with 
RR-i([4,1] X [3, 2]) = [4,1] + [3, 2] + [3, P] + [22, 1] 

= [4 ,1]X[3,2] 

as expected. These relations can be written using representation matrices as in 
Example 3.2, but we leave this to the reader. 

5. Inducing on inner products. For any subgroup G C G in which the 
classes of G do not split 

F{%) X {fi}F' = F{\}Fo X F{n}F' 

so that we have the somewhat surprising result 

(5.1) /({Xj X U!) = R~lW X /{Ai = R-'M X I{\) 

which we illustrate in the following 

Example 5.2. Utilizing Example 4.8 we have 

/([4, 1] X [3, 2]) = ([5, 1] + [4, 2] + [4, 1*]) X ([4, 2] - [5, 1] + [6]) 
= ([5, 1] - [6]) X ([4, 2] + [32] + [3, 2, 1]) 
= [5, 1] + 2[4, 2] + 2[4, P] + [32] + 3[3, 2, 1] 

+ [3,l ' ] + [2'] + [22,12]. 

Again referring to (3.1) we have 

(5.3) 1(1%} X i?{M}) = F{%] X (F{fi})F' = F(F\H\) X (X)F 

= \»\F{\\F' = I{\\ X (M! 

for any subgroup G of G. This version of (5.1) is attributed by Lomont 
[2, p. 226] to I to, but no specific reference is given. It follows without difficulty 
that 

(5.4) I-U({\} X UÎ) = I-lI{\] X RR-^n] = {\} X {/x}. 

Reversing the order of the operators / and J - 1 is more difficult: 

(5.5) J-i({„} X I{\\) = FoM X (F'{X})7V 
= F„. \n\ X FFo(F'{\\)F0'F'.FV 

= F„. FFoMFFo X FF0(F'{\})Fn'F'. F0' 

= #M XZ-U/IM) 

= -R{M} X {X}. 

We use Lemma 3.5 and (3.6) again to yield: 

(!M! x (F'(xl)) = M x F W M ) W 
= FFo{n)FFo X FF«(F'{X})/VF' 

= i?-17?|MJ X//- i (F '{X}), 
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so tha t , reversing the order of the factors we obtain 

(5.6) II-l(I{%] X W ) = H-KF'W) X R-lR{m\ 
= / | M X ( M ) . 

Note tha t we are using here the multiplications in (3.4) ra ther than (3.3) so 
tha t reversing the order of / and I~l is the cause of the trouble. 

6. Operat ions o n c lasses . In order to complete the story we write the 
corresponding operations on classes of G and G as developed in [7]. Using the 
same notation, we have 

v = x~lFx, 12 = rvr ' - 1 with ^ = r ^ ' x , fii = rVir'-1 

so tha t we may calculate the inverses to satisfy the equations 

12012 = 1 and 12il2i0 = 1. 

Corresponding to the relations in § 3 we write: 

R : 120{C}12 = ({C}12'), S2{C}fii = ({C}12/) : / 

with 

(( |C|Q')Qo') = {C\ :R-Ui = 1, 
1 0 , 1 ' (({C}Q10 ')Oi') = {Q: II-1 = 1. 

Here the reciprocity theorem is complicated by transformation but does relate 
12' to 12/ and their inverses 12o' to 12K/. Again, 

12o({C}120')12 = î ^ î = 1W2{C}12012 : RR-1 = 1, 
1 ; GoGCJOiOOio = {£} = n0Û{£}QiÛio : I " 1 / = 1, 

so t ha t 

R : 120 . . . 12 or (12'), 7?"1 : 12 . . . , 120 or (120'), 

/ : 12 . . . 12x or (12/), I~l : 120 . . . 12i0 or (1210'), 

as before, with corresponding formulae for operations on products of classes 
which we shall not consider in detail. 
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