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Abstract

Introduction: Missing data are inevitable in medical research and appropriate handling of missing
data is critical for statistical estimation and making inferences. Imputation is often employed in
order to maximize the amount of data available for statistical analysis and is preferred over the
typically biased output of complete case analysis. This article examines several types of regression
imputation of missing covariates in the prediction of time-to-event outcomes subject to right
censoring. Methods: We evaluated the performance of five regression methods in the imputation
of missing covariates for the proportional hazards model via summary statistics, including pro-
portional bias and proportional mean squared error. The primary objective was to determine
which among the parametric generalized linear models (GLMs) and least absolute shrinkage
and selection operator (LASSO), and nonparametric multivariate adaptive regression splines
(MARS), support vector machine (SVM), and random forest (RF), provides the “best” imputation
model for baseline missing covariates in predicting a survival outcome. Results: LASSO on an
average observed the smallest bias, mean square error, mean square prediction error, and median
absolute deviation (MAD) of the final analysis model’s parameters among all five methods con-
sidered. SVM performed the second best while GLM and MARS exhibited the lowest relative
performances. Conclusion: LASSO and SVM outperform GLM, MARS, and RF in the context
of regression imputation for prediction of a time-to-event outcome.

Introduction
Background

Clinical studies are often plagued by missing data. Unique patterns of missing data can occur
due to dropout, singular missed follow-up visits, or missing singular data items during a study
visit [1,2]. Rubin [3] established a classification of three types of incomplete data: missing
completely at random when nonresponse is purely random; missing at random (MAR) when
nonresponse is related to measured covariates; and non-ignorable missing where missing data
are incomplete due to some association with unmeasured confounders [4-8].

There are various methods for handling missing data [9]. The simplest technique to handle
missing data is the “complete case” analysis where only those observations with no missing
records are included in the final analysis, which is the default in several packages. The complete
case deletion approach may produce biased results, unless the missingness mechanism is miss-
ing completely at random [10]. In addition, it has the serious drawback of dropping a significant
proportion of the original sample size and compromising the statistical power of the study.

Maximal data usage can lead to a more precise point and interval estimates with less bias,
exclusion of fewer covariates and observations, and more representative analyses if the correct
mechanism of missingness is assumed [4,5,11]. Simple imputation methods have been suggested
(that is, replacing the missing value with the mean, median, mode, or last value carried forward),
but these have the caveat of reducing standard error of the covariates. There are several
approaches for handling missing data that offer better estimates and measures of uncertainty.
These include regression [12], maximum likelihood methods, including the expectation-
maximization (EM) algorithm, Bayesian methods [13], matching approaches (such as aug-
mented inverse probability weighting [14], and multiple imputations [15,16]). Several authors
provide general guidelines on how to handle missing data in clinical trials [17,18] and methods
that impute longitudinal covariates and outcomes [19]. The reader is referred to these references
for additional details [4,5,11,20,21].

Motivating Example

We were interested in developing a prognostic model of overall survival (OS) based on baseline
covariates of patients enrolled on the pivotal Phase III TROPIC trial that led to the Food and
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Drug Administration and European Medicines Agency approval of
cabazitaxel for treating men with advanced prostate cancer [22,23].
Seven-hundred and fifty-five patients on the TROPIC trial were
randomized with equal probability to either cabazitaxel or mitox-
antrone groups. The study was designed to detect a hazard ratio of
0.75in the cabazitaxel compared to the mitoxantrone groups,
assuming 0.90 power, a two-sided significance level of 0-05, and
amedian OS of 8 months in the mitoxantrone group. Patients were
followed until the target of 511 deaths had occurred. The primary
purposes of the model are to predict the probability of OS at differ-
ent time points and to identify prognostic risk groups in men
who failed first-line chemotherapy. The clinical trial had a 67%
event rate (32% of patients were censored) on the primary outcome
(OS). However, several established prognostic factors of OS were
incomplete with missing proportions exceeding 15% in 6 of the
23 covariates that were considered for development of the prog-
nostic model. This presented a substantial challenge as a complete
case approach would have resulted in an almost 30% loss in
the number of patients included in constructing the prognostic
model of OS.

Regression imputation has not been extensively studied and
the lack of certainty in the most efficient imputation technique
served as motivation for this simulation study. In particular,
the choice of regression model or algorithm to impute missing
values of incomplete covariates warrants further investigation.
Regression imputation is a procedure to predict an incomplete
covariate’s missing values based jointly on the outcome of interest
and the complete explanatory covariates. Generalized linear
model (GLMs) are extensions of the classical linear model to
non-normal response variables and can be used to model broad
types of response distributions [24,25], handle both categorical
and continuous variables, provide a straightforward model inter-
pretation of regression coefficients, and incorporate commonly
known variable selection procedures [26]. The least absolute
shrinkage and selection operator (LASSO) is a linear regression
model that uses /; penalty for subset selection [27], and shrinking
parameters f = (3}, f,) for overcoming the problem of overfitting
[28-30]. The multivariate adaptive regression splines (MARS) is a
flexible regression procedure for the modeling of high-dimen-
sional data [31-33]. The nonparametric support vector machine
(SVM) is a learning method that has been applied for classifica-
tion of binary outcomes or regression of continuous outcomes or
to make predictions and has been shown to be effective in some
pattern recognition and other applications [34-39]. Lastly, ran-
dom forests (RFs) are a learning method for classification, among
other applications. The classification is conducted by generating
numerous decision trees, which are randomly sampled from the
training data, and identifying the most popular class for a given
input [40]. Several RF approaches exist to impute missing data
and their strengths include handling mixed data types, nonline-
arity, and high dimensions [41].

We chose these five methods because they are popular
and have been used extensively in machine learning and the
medical literature. We compare these five specific regression
approaches or algorithms in imputing missing baseline covari-
ates. The remainder of this article is organized in the following
manner. We describe the simulation of data and imputation
of missingness in the methods section. We then apply the
regression imputation methods to our motivating example
and, lastly, we conclude the paper with summarizing remarks
and recommendations.
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Methods

Complete datasets were generated, a missingness mechanism was
applied, and the resulting incomplete observations were imputed
under each regression method. The study was conducted under
the assumptions of non-informative censoring, MAR data,
and an outcome variable that adheres to the proportional
hazards model. All simulations and analyses were performed in
R version 3.4.4.

Complete Datasets

The true failure and censoring times T; and C; were drawn from the
Weibull distribution [42,43]. It is not uncommon in cancer trials to
observe OS times fit a Weibull distribution. In fact, investigation of
survival curves following an exponential distribution or a Weibull
distribution confirmed that the TROPIC data can be matched to a
Weibull distribution with appropriate parameters; draws from a
Weibull distribution with appropriate parameters closely followed
the observed the TROPIC survival curves. Thus, we used the
Weibull distribution since it matched the distributions observed
in the motivating TROPIC data. The censoring distribution was
independent and non-informative. The observed time and censor-
ing indicators were defined as Y; = min(T}, C;) and 6, = I(T; < C)).
These times achieve pre-specified median survival times on each
equally proportioned strata of the primary predictor, treatment
arm (ARM). Specifically, the experimental arm and control were
simulated to have a median survival time of 15months and
11 months, respectively.

The covariates from the TROPIC trial (training set) were
chosen to serve as the basis for the distributions of the simulated
explanatory variables (Table 1). These predictors were chosen pri-
marily because they are established prognostic factors of OS
[44,45] in prostate cancer patients and because of their proportion
of missingness. They included categorical variables’ Eastern
Cooperative Oncology Group performance status (ECOG € {0,
1, 2}), an indicator of whether progression occurred < 6 months
since the last Taxotere session (PROG € {0, 1}), pain at baseline
(PAIN € {0, 1}), an indicator of White race (WHITE € {0, 1}), indi-
cator of chemotherapy treatment (CHEMO € {0, 1}), indicator of
measurable disease (MEAS_DIS € {0, 1}). Continuous variables
included age (AGE), hemoglobin concentration (HGB), the log
of the concentration of alkaline phosphatase (LALP), log of the
concentration of prostate-specific antigen (LPSA), time on hormone
(TIME_HORMONE), years since diagnosis (YRSINCEDIAG),
and body mass index (BMI).

Simulation of Data

All simulated covariates were drawn from a multivariate normal
(MVN) distribution in order to induce correlation among them
(the covariance matrix can be found in the Supplementary
Materials). Inverse transform sampling was applied to those
MVN draws corresponding to categorical variables in order to con-
vert them from continuous values to binary or categorical factors.
The specific event probabilities for each categorical variable’s levels
are listed in the Supplementary Materials, as are the means and
variances of the continuous covariates.

Simulations were conducted under combinations of each of the
following characteristics: sample size (N = 200, 500, or 1000), per-
cent censoring (C=10% or 30%), and percent missing data
(M = 5%, 10%, or 15%). These aspects result in a total of 6 complete
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Table 1. Distribution of chosen baseline covariates from the TROPIC trial

Discrete variables % No (0) % Yes (1) % (2)* % Missing
ARM 0.5 0.5 0.0
ECOG 0.34 0.58 0.08 0.0
PROG 0.11 0.89 0.0
CHEMO 0.68 0.32 0.0
PAIN 0.49 0.51 16.2
WHITE 0.16 0.84 0.0
MEAS_DIS 0.47 0.53 0.0
Continuous Variables Mean Stdev Range
AGE 67.3 7.9 47.0-92.0 0.0
HGB 120.9 14.0 76.4-185.0 1.6
LALP 5.07 0.91 0.67-8.94 2.6
LPSA 4.86 1.59 0.47-8.97 1.8
BMI 27.85 4.65 17.48-46.79 0.20
TIME_HORMONE 4.32 2.81 0.20-16.30 34
YRSINCEDIAG 5.8 4.0 0.1-23.6 7.7
*Defined only for ECOG category =2

Table 2. Parameter settings for simulation studies
Parameter Levels
N 200 500 1000
C 10% 30%
M 5% 10% 15%

N, sample size; C, censoring percentage; M, missing percentage.

datasets (combinations of N and C), 18 incomplete datasets (com-
binations of N, C, and M), and, after applying the 5 imputation
regression methods, 90 imputed datasets (Table 2).

The sample sizes and censoring proportions were chosen fore-
most for their realistic values in oncology trials. A sample of 500
patients is not an uncommon size of a (training) dataset; in fact,
the basis of this simulation study is the 507 observations
from a training subset of the TROPIC trial. The smallest size of
200 patients was included to demonstrate each method’s perfor-
mance in a smaller sample size context. The larger censoring pro-
portion was chosen to approximate TROPIC while the smaller
value was chosen to allow for performance comparisons under
“ideal” circumstances. The N and C levels considerably differ in
size to make obvious any differences in performance across these
dataset characteristics. The levels of M were chosen to represent
favorable (5%) [46], average (10%), and undesirable (15%) rates
of missing data [47].

Incomplete Datasets

Three copies of each complete dataset were created upon which
each of the three pre-specified levels of missingness were applied.
This produced 18 incomplete datasets from the combinations
of sample size, percent censoring, and percent missing. Of the
13 explanatory variables at baseline, three were chosen to be miss-
ing at random: those variables that represent progression shortly
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after Taxotere administration (PROG), hemoglobin (HGB), and
alkaline phosphatase (LALP). Missing values were imposed by
constructing logistic models to regress the probability of missing-
ness on all of the complete variables. These probabilities were then
used as the event rate of random Bernoulli draws to indicate miss-
ing or not missing, thereby creating a MAR pattern. This process
was repeated 5000 times for each of the 18 characteristic combina-
tions to obtain sampling distributions of the statistics of interest.
More information is available in the Supplementary Materials
Sect. 2 on the missingness mechanism.

Choice of Imputation Model

The key to a successful regression analysis is the assumption that
the model used to link the outcome to the explanatory covariates
fits the data well. White and Royston conducted simulation studies
to determine the most efficient form by which survival should be
incorporated into a regression imputation model [12]. They
assessed several representations of survival time T including
linear T, polynomial T2 log(T), the cumulative baseline hazard
Hy(t), among others [12]. Moreover, they endorsed regression
of the incomplete covariate X, j = 1,2,3, on the complete covariates
Z, the remaining 10 TROPIC covariates previously mentioned and
ARM, and on survival represented by the event indicator & and the
Nelson-Aalen estimate of the baseline cumulative hazard function
Hy(t). This model performed at least as well as the other regression
forms studied, often with the lowest bias and highest power [12].

Following the suggestion of White and Royston [12], we con-
sider the following model where the incomplete covariate X; is
regressed on the complete covariates Z and on survival represented
by both the event indicator 6 and the estimated baseline cumulative
hazard function H,(t):

i = E[x;lz;] = g7 (w; ), (1)

where y; is the mean of the response for patient 4, g is identity when
X; is continuous or is the inverse logit transformation when X; is
binary, w; = [z;, J;, ﬁo(ti)], and f is the vector of unknown regres-
sion coefficients. This general form of regression imputation model
is adopted for our simulation study herein, and employs the
Kalbfleisch and Prentice estimate Hy(t). The Nelson-Aalen esti-
mate [48,49] Hy(t) is ideal in an active clinical trial but the lack
of ties in the simulated data supports the use of the Kalbfleisch
and Prentice estimate [50].

Imputation

For each of the 18 sets of incomplete data, imputation models were
fitted based on Eq. 1. This model was incorporated into each of the
five regression algorithms of interest; i.e., the formula used for each
regression method’s imputation was Eq. 1. First, the baseline
cumulative hazard Hy(t) was iteratively calculated for each dataset
conditioning on complete covariates, as described in White and
Royston [12]. Logistic regression models were then fitted for the
incomplete binary covariate and linear regression models for the
incomplete continuous covariates. Specifically, the GLM and
LASSO models utilized a logit link for the binary incomplete cova-
riate and the identity link for the continuous incomplete covariates.
The difference between these ultimately comes down to penaliza-
tion and shrinking of model coefficients by LASSO, thereby
employing a potentially smaller model for imputation. The tuning
parameter for LASSO was fit by 10-fold cross-validation and
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selection of the parameter which was within one standard error of
the parameter that minimizes the mean cross-validated error. The
tuning of SVM was achieved using tune.svm to conduct 10-fold
cross-validation and identify the best regularization parameter
and best kernel coefficient via a grid search across a range of
sampling space; in this case, “best” refers to those parameters that
yielded the most accurate model. We chose to use this “one-
standard-error” rule in order to select a more parsimonious impu-
tation model that still controls cross-validation error [27]. The RF
method was tuned to identify the optimal number of variables to
randomly choose as model candidates at each split, which mini-
mizes the out-of-bag estimated error rate.

For each model, the 11 complete covariates, represented by Z,
the event indicator &, and Hy(¢) acted as predictors of the missing
variable X; to be imputed:

E[X|Z,5, Hy(t)] ~ g~'(JARM, ECOG, PAIN, BMI, WHITE,
CHEMO, MEAS_DIS, AGE, LPSA, TIME_HORMONE,
YRSINCEDIAG, 5, Hy(1)] ).

Function g is as defined in Sect. 2.2. The GLM, LASSO, MARS,
SVM, and RF models were fitted in R via the functions glm,
cv.glmnet, earth, svm, and impute.rfsrc, respectively [51-55]. All
the programs were written by the first author in R version 3.4.4
and are available at: https://duke.box.com/s/5bn0f5gk5xmh
30va92rg9nzn9slrsnil.

These fitted models then provided the predicted values for
the missing observations of each incomplete covariate. To avoid
underestimation of the variability in the prediction procedure,
a residual error term was drawn from a normal distribution
with mean 0 and standard deviation equal to that of the
incomplete covariate’s observed values, e ~ N(0, sd(X)), and
added to the predicted imputation value. In this manner, a total
of 90 imputed datasets were obtained, each containing 5000
simulations.

Assessment of Imputed Data

Each of the five regression method’s imputed datasets was utilized
to fit the Cox proportional hazards model predicting the time to
death or censoring using six covariates: the three imputed covari-
ates X = (PROG, HGB, LALP) and three complete covariates Z =
(ARM, ECOG, AGE):

h(t; X, Z) = hy(t) exp(BX + f:2).

The methods were then compared by evaluating the six esti-

mated regression coefficients f = (Bx,ﬁg). Generalized summary
statistics were chosen to assess each method’s global performance,

specifically any error in the estimation of ,/B\ To represent each
method’s efficiency across the 6 (V) covariates and 5000 (S) sim-
ulation runs, the average absolute proportional bias, the average
proportional mean square error (MSE), the average mean square
prediction error (MSPE), the average median absolute deviation
(MAD), and the average minimum 95% probability coverage
(mPCOV) were computed in the following manner:
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1. Average absolute proportional bias:

BIAS = Z{

V*l =1

ﬁsv

11—

2. Average proportional MSE:
First, define MSE per Rubin’s rules for multiple imputations
[56]:

MSE, = V(B,) + (1 + é) Vi (A)

_ éi{f/s(ﬁw)} + (1 +é> (ﬁi (A —ﬁv)2)7

s=1

or

VEE — VZ{MSE }

v=1 V(ﬂv)

3. Average mean squared prediction error (MSPE):

S N
m_;z{;zw ) - n(w,->>2},

=1

where n(w) = HR = exp(w!p),
4. Average MAD:

1&g
MAD—V;{S; }

5. Average minimum 95% probability coverage (mPCOV):

MPCOV — mvin{éi:lﬂ{ﬁv eI (A)}}

where the confidence interval is a standard 95% confidence
interval.

The results of each of the 5 regression methods for the 18 com-
binations of sample size, percent censoring, and percent missing
were averaged across the 5000 simulated datasets for each perfor-
mance statistic. Furthermore, to heuristically compare the meth-
ods’ performances, each regression method was assigned a rank
within each level of missing percentage, for each statistic.

B\s,v - medians (Bs,v)
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Hence, a total of 75 ranks were assigned for each combination
of N and C, across the 3 levels of missingness, the 5 summary sta-
tistics, and the 5 imputation methods. The mode of these ranks was
then taken across missing percentage for a total of 25 final ranks
per combination of N and C. That is, each of the 5 regression meth-
ods was given a single rank for each of the 5 statistics within the
6 combinations of sample size and censoring proportion. Thus,
a total of 30 final rankings were assigned to each method. The
number of times a method ranked 1% or 2°¢ was considered “good”
performance.

Results
Simulation Results

The relative ranking of each regression method for each summary
statistic and each combination of N and C is presented in Table 3.
The results therein are based on summary statistics averaged across
the 5000 simulations executed for each simulation scenario. When
N =200 and C = 30%, with the least number of events (140), SVM
had the lowest bias followed by LASSO, MARS, RF, and GLM.
LASSO ranked number 1 in terms of every summary statistic with
the exception of bias and mPCOV (Table 3). SVM and LASSO
most frequently achieved “good” ranks of 1 or 2 with frequencies
24/30 and 23/30, respectively (Table 3).

It is worth noting that all methods performed poorly with
respect to bias, regardless of percent missing, as all methods
overestimated the model parameters considerably (Table 4).
Increasing percent of missingness caused a decrease in perfor-
mance in GLM and MARS in some statistics. LASSO was robust
to increasing the proportion of missingness at both levels of
censoring (C=30, 10%). GLM and RF remained constant in
relative performance of MAD. SVM improved in MSPE with
increasing percent missingness (Table 4).

When N =500, LASSO ranked first in all summary statistics
across both levels of censoring (C=10%, 30%) except for
mPCOV, where it continued its poor relative performance seen
at N= 200, and for MSE when C = 10%. As missingness improved
at C=30%, all methods excluding MARS improved in bias and
all methods maintained their relative rank in MSE and MAD.
At C=10% the relative ranking for LASSO, MARS, and SVM
remained constant or improved in all summary statistics as the
level of missingness increased. GLM either worsened or remained
constant in all summary statistics. Overall, SVM outperformed
MARS in all performance statistics. MARS demonstrated the worst
absolute proportional bias and MSE.

Lastly, LASSO came in the top rank for the relative performance
of bias, MSPE, and MAD in the N=1000 datasets. SVM and
LASSO were the best approaches at both C=30% and 10% but
MARS overtook SVM in bias with the 900 events at C=10%.
In fact, SVM ranked second for all statistics at N = 1000 except bias
at C=10%. GLM took top rank in mPCOV. As observed in the
smaller datasets, GLM’s performance was otherwise consistently
poor across summary statistics and censoring proportions. All
methods maintained constant relative rank in MSPE and MAD
at C=30% and in MSE, MSPE, and MAD at C= 10%. GLM failed
to improve in rank in any statistic at C = 10% while MARS did not
fall in rank in any statistic.

In general, LASSO never fell below the first ranking in relative
performance of bias, MSPE, and MAD for most combinations of
sample size and censoring proportion. However, it consistently
was the worst in relative performance of minimum probability
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Table 3. Relative rank of regression imputation methods by simulation scenario
(number of events)

Dataset Statistic  GLM LASSO MARS  SVM RF
140 events Bias 5 2 3 1 4
N =200 C=30%
MSE 4 1 2 3
MSPE 4 1 3 2 5
MAD 4 1 3 2 5
mPCOV 3 5 4 1 2
180 events Bias 4 1 5 2 3
N=200 C=10%
MSE 4 1 5 3 2
MSPE 3 1 4 2 5
MAD 4 1 3 2 5
mPCOV 3 2 4 1 5
350 events Bias 4 1 5 3 2
N =500 C=30%
MSE 4 1 5 2 3
MSPE 4 1 3 2 5
MAD 4 1 3 2 5
mPCOV 1 5 4 3 2
450 events Bias 5 1 3 2 4
N =500 C=10%
MSE 4 3 5 1 2
MSPE 3 1 4 2 5
MAD 5 1 3 2 4
mPCOV 3 5 4 2 1
700 events Bias 3 1 5 4 2
N =1000 C=30%
MSE 4 2 5 1 3
MSPE 4 1 3 2 5
MAD 4 1 3 2 5
mPCOV 1 5 4 3 2
900 events Bias 4 1 5 3 2
N=1000 C=10%
MSE 4 1 5 2 3
MSPE 4 1 3 2 5
MAD 4 1 3 2 5
mPCOV 2 5 4 3 1
(Freq. in Top 2)/30 3 24 0 23 10
(Freq. in Bottom 2)/30 21 5 18 1 15
(Freq. in Bottom 3)/30 27 6 12 7 20

MSE, mean squared error; MSPE, mean squared prediction error; MAD, median absolute
deviation; mPCOV, minimum 95% probability coverage.

coverage (Table 3). LASSO is the most sensitive to rising missing per-
centages in terms of largest reduction in mPCOV; at N =500,
C=30% it falls from 0.792 coverage at M=5% to 0.633 at
M =15% compared to GLM which falls only from 0.786 to 0.731
(Table 4). Additionally, SVM never fell below second rank in MSE,
MSPE, and MAD. MARS consistently performed poorly. GLM never
rose above fourth rank in relative performance of MSPE and MAD,
and always demonstrated the highest mPCOV rank.

It should be noted that the age covariate was exceptionally
biased by all methods on average under all simulation parameters.
When age is excluded from the calculation of average proportional
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Table 4. Summary statistics of simulations by regression imputation method and percent missing
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5% 10% 15%
% Missing GLM LASSO  MARS SVM RF GLM LASSO  MARS SVM RF GLM LASSO  MARS SVM RF
(a) 140 events (N =200 C =30%)
P.Bias 2.125 2.056 1.963 1.896 2.061 2.274 2.093 2.357 2.063 2.191 2471 2.099 2.159 2.051 2.230
P.MSE 2.171 2.148 2.191 2.144 2.150 2.244 2.122 2.297 2.178 2.184 2.283 2.131 2.453 2.210 2.216
MSPE 2.122 2.051 2.113 2.083 2.159 2.104 1.963 2.046 2.029 2.173 2.073 1914 2.019 1.981 2.187
MAD 0.470 0.442 0.460 0.458 0.472 0.470 0.424 0.447 0.445 0.477 0.473 0.409 0.437 0.431 0.479
mPCOV 0.768 0.772 0.765 0.764 0.769 0.763 0.752 0.762 0.771 0.768 0.758 0.721 0.743 0.769 0.767
(b) 180 events (N =200 C =10%)
P.Bias 1.819 1.670 1.699 1.804 1.741 1.738 1.672 1.779 1.734 1.771 1.850 1.540 2.074 1.739 1.789
P.MSE 2.188 2.144 2.209 2.147 2.150 2.203 2.143 2.334 2.156 2.154 2.239 2.133 2.379 2.186 2.180
MSPE 2.008 1.983 2.039 1.995 2.081 1.974 1.893 1.980 1.925 2.087 1.930 1.808 1.950 1.882 2.094
MAD 0.480 0.456 0.473 0.469 0.486 0.473 0.435 0.455 0.452 0.484 0.472 0.419 0.448 0.439 0.482
mPCOV 0.761 0.763 0.756 0.763 0.758 0.761 0.764 0.761 0.768 0.760 0.760 0.729 0.759 0.760 0.761
(c) 350 events (N =500 C=30%)
P.Bias 1.175 1.096 1.116 1.122 1.071 1.124 1.038 1.389 1.109 1.081 1.185 1.063 1.264 1.079 1.068
P.MSE 2.127 2.143 2.180 2.124 2.120 2.172 2.108 2.527 2.143 2.141 2.194 2.136 2.770 2.157 2.192
MSPE 1.783 1.758 1.787 1.775 1.834 1.751 1.688 1.735 1.726 1.849 1.720 1.632 1.701 1.666 1.868
MAD 0.454 0.434 0.444 0.439 0.455 0.448 0.410 0.429 0.424 0.455 0.446 0.392 0.418 0.410 0.456
mPCOV 0.784 0.783 0.780 0.789 0.785 0.782 0.734 0.752 0.778 0.788 0.789 0.654 0.722 0.745 0.776
(d) 450 events (N =500 C =10%)
P.Bias 7.268 5.901 6.515 5.946 6.653 4.722 5.013 2.435 2.494 2.678 7.694 3.671 4311 4.976 4.140
P.MSE 2.189 2.152 2.248 2.146 2.149 2.190 2.155 2.599 2.181 2.179 2.229 2.172 3.052 2.168 2.190
MSPE 1.719 1.694 1.728 1.711 1.770 1.672 1.630 1.680 1.661 1.782 1.642 1.574 1.628 1.604 1.794
MAD 0.459 0.437 0.450 0.444 0.459 0.452 0.414 0.438 0.432 0.460 0.447 0.398 0.424 0.416 0.459
mPCOV 0.754 0.767 0.759 0.759 0.756 0.757 0.733 0.742 0.758 0.761 0.748 0.662 0.684 0.734 0.757
(e) 700 events (N =1000 C =30%)
P.Bias 0.964 0.941 0.983 0.872 0.948 0.948 0.908 1.166 0.987 0.939 1.003 0.947 1.313 1.033 0.955
P.MSE 2.082 2.070 2.131 2.081 2.065 2.131 2.095 3.012 2.092 2.115 2.178 2.100 3.722 2.120 2.156
MSPE 1.701 1.680 1.705 1.694 1.754 1.671 1.628 1.647 1.641 1.769 1.646 1.569 1.614 1.603 1.787
MAD 0.451 0.428 0.440 0.436 0.453 0.446 0.406 0.427 0.422 0.454 0.445 0.390 0.417 0.408 0.454
mPCOV 0.786 0.780 0.786 0.783 0.782 0.782 0.664 0.735 0.758 0.781 0.755 0.560 0.712 0.690 0.744
(f) 900 events (N =1000 C = 10%)
P.Bias 0.915 0.975 1.027 0.987 0.979 1.118 0.843 1.365 1.010 0.942 1.138 0.821 1.100 1.067 0.849
P.MSE 2.221 2.169 2.268 2.188 2.173 2.208 2.160 3.570 2.184 2.221 2.272 2.176 4,770 2.208 2.250
MSPE 1.646 1.629 1.659 1.640 1.709 1.606 1.573 1.601 1.588 1.725 1.569 1.521 1.566 1.533 1.741
MAD 0.443 0.425 0.438 0.433 0.448 0.439 0.404 0.423 0.417 0.450 0.436 0.386 0.411 0.403 0.448
mPCOV 0.750 0.755 0.753 0.754 0.754 0.753 0.665 0.723 0.744 0.755 0.726 0.507 0.690 0.665 0.730

absolute bias, the average bias for all methods at N = 1000 was closer
t0 0.20, at N = 500 it was approximately 0.30, and at N = 200, it aver-
aged at 0.9 for C=10% and 1.0 for C=30%.

Overall trends in performance of each method were observed
with decreasing censoring (Table 4). When contrasting the scenar-
ios with lower event rates (C=30%) versus higher event rates
(C=10%), it can be seen that all methods observed a drop in bias
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and otherwise approximately constant performance in MSE,
MSPE, MAD, and mPCOV. The one exception is MARS which
observed increases in MSE at C = 10% versus 30%, primarily when
M =15%. LASSO’s mPCOV was higher at C=30% compared
to C=10%.

The trend in relative performance with an increasing sample
size can be seen at C=30%, M =15%, and C=30%, M=10%
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Fig. 1. Performance of regression imputation methods for each summary statistic in simulations where C=30% and M = 15%.

in Figs. 1 and 2, respectively. The trend was of decreases in bias,
MSPE, MAD, and mPCOV, and small increases in MSE for all
methods. MARS demonstrated a noticeable rise in MSE with
increasing N. The trend of decreasing mPCOV with increasing
sample size is due to the narrowing of the confidence intervals.

Lastly, holding both sample size and censoring percentage fixed
resulted in similar performance by all methods as missingness
increases: approximately constant performance in MAD and
MSE - excluding SVM which saw higher MSEs at higher missing
rates — and drops in MSPE and mPCOV (Table 4). For the bias
statistic, SVM and LASSO typically were constant or improved,
GLM improved for all but the C=10% and N = 500, 1000 scenar-
ios, and MARS often worsened in relative performance. Overall, all
methods became less sensitive to missingness, especially in MSE,
MSPE, and MAD, as the sample size increased.

Trends in behavior of each statistic were also noted. As
expected, bias improved and decreased with increasing sample size
for all five methods, while MSE remained constant; i.e., variability
increased. MAD was fairly robust to all three simulation parame-
ters; for any value of any parameter, it was near 0.47 for any of
the five imputation methods. mPCOV was approximately constant
for any sample size or censoring proportion. As expected, the
remaining statistics improved with increasing N. Within a fixed
sample size MSPE and MAD were robust to changing censoring
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proportions while bias and MSE improved with higher event
counts; i.e., with lower C.

Motivating Example

Our first step was to assess the mechanism of missingness so an
appropriate imputation method can be applied. This is one of
the most challenging tasks as data that aid in determining the type
of missingness are often not collected in studies. This is not a
unique problem to the TROPIC trial, as such information is
often overlooked in clinical trials and studies. The underlying
missing covariate data mechanism was not missing completely
at random, but rather was missing at random. This was a reason-
able assumption as missing completely at random is highly
unlikely to hold in all but the simplest experimental settings since
missingness in one variable is frequently related to whether
another variable is also missing. MAR can be empirically con-
firmed by assessing the correlation between the missingness in a
given covariate and the observed values of another covariate.
Thus, we assumed the covariate values are MAR because the cor-
relation between missing values of given covariates and the
observed values of other covariates was substantial. For example,
missing values of baseline hemoglobin and observed values of
measurable disease had a correlation of approximately 40%.
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Fig. 2. Performance of regression imputation methods for each summary statistic in simulations where C =30% and M = 10%.

Non-ignorable missingness was deemed unlikely due to the cap-
ture of an extensive set of covariates which considerably improve
the efficiency of imputation procedures.

We imputed the missing data based on 12 baseline variables in a
manner identical to the methods described above; the baseline
cumulative hazard was estimated and then included with the set
of complete covariates in a regression model to predict and impute
the missing values of the incomplete variables. This was done once
for each of the five regression techniques. The incomplete variables
in the TROPIC training set were: PAIN, HGB, LALP, LPSA, BMI,
TIME_HORMONE, and YRSINCEDIAG. The complete variables
used to impute the missing values were: ECOG, WHITE (for race),
MEAS_DIS, AGE, CHEMO, VISCMET, §, and Hy where VISCMET
is an indicator for whether the patient had metastases in so-called
“visceral” locations - not in the lung, liver, bone, lymph node, etc.
When we fit a model with the complete records, the time-depen-
dent area under the curve is 0.77 (95% CI = 0.51, 0.78). When we fit
amodel with the imputed data, the time-dependent areas under the
curve are 0.75 (95% CI =0.51, 0.77 95% CI), 0.76 (95% CI =0.51,
0.77), 0.77 (95% CI=0.51, 0.77), 0.77 (95% CI=0.51, 0.77), and
0.77 (95% CI=0.51, 0.77) for the SVM, LASSO, RF, GLM, and
MARS approaches, respectively.
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Since the results of these simulations were unavailable at the
time of model building for the TROPIC dataset, SVM was chosen
for imputing the missing variables in the prognostic model of OS
due to its superiority in some application of pattern recognition
and machine learning methods [22].

Discussion

In this article, we investigated the performance of five different
regression methods, GLM, LASSO, MARS, and SVM, when
applied for the purpose of single imputation of missing baseline
covariates in predicting survival outcomes and estimating covari-
ate effects. Linear and logistic models were constructed under these
modeling methods for the purpose of imputing missing values of
normal and binary explanatory variables respectively. This process
was completed in the context of time-to-event outcomes that are
subject to right censoring.

We focused on the survival outcome as this was our motivation
example and we adopted the White and Royston approach [12].
The simulations conducted here were based on the assumption
of missing at random. Through our simulation studies, we have
demonstrated the feasibility of applying regression imputation
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approaches for missing baseline covariates that predict survival
outcomes that are subject to right censoring. The results of the sim-
ulation show that SVM and LASSO outperformed GLM and
MARS. This can be attributed to LASSO’s ability to both efficiently
estimate regression parameters as well as shrink the parameters.
This provided more accurate predictions of missing observations
than the other methods and so led to more accurate results in
the fitted Cox proportional hazards model.

On an average, LASSO and SVM were robust regardless of sam-
ple size, censoring percentage, and missing percentage. We note
also that none of the regression or classification methods appeared
to differ in summary statistic performance between continuous
and categorical covariates. They produced the most efficient statis-
tic value for the majority of performance settings. The one excep-
tion was mPCOV which could be due to LASSO’s shrinkage;
relative to the other methods it applies a greater magnitude
of shrinkage to some covariates and so has tighter confidence inter-
vals. Across the six combinations of sample size and censoring,
MARS had the least impressive performance relative to the other
regression methods. Though differences in performance were
observed, the differences were not large in magnitude. It is possible
that an adjustment to the signal-to-noise ratio may improve the
apparent performance of the flexible nonparametric models
MARS and RF. Additional research could investigate this further.

All simulations were run in parallel and so GLM, LASSO, and
MARS took very little time to complete the 5000 simulations for
each scenario; less than 4 min for even the largest sample size of
1000. Computationally, as expected, GLM took the least time to
complete the simulations - less than 15 min for all 18 scenarios,
with MARS requiring little additional time comparatively - less
than 20 min. Each of these two methods took less than a minute
to run all of the simulations for any given set of simulation param-
eters. LASSO took more time than MARS or GLM combined but
was still very quick overall; each scenario required at most 4 min to
complete all 5000 simulations. SVM was considerably slowed
down by the tuning step and even when run in parallel across a
multi-core processor required significantly more time than the
other three methods combined; each scenario took more than
1 h. RF took less time to run than SVM, but more than the other
three methods; anywhere from 8 to 30 min per scenario.

The study presented herein has several limitations. First, sim-
ulations were conducted only on a low-dimensional dataset that
included 14 covariates. Performance of the five regression methods
may have varied more significantly in a high-dimensional dataset.
Second, only three incomplete variables were imputed. Third, we
have not compared the regression approaches with multiple impu-
tations nor maximum likelihood methods. Nonetheless, this sim-
ulation study is important as it has shown that SVM and LASSO
are the preferred options for regression imputation in the context
of baseline covariate that is missing in predicting survival outcome
under Eq. 1 and the simulation assumptions. LASSO is recom-
mended for both its higher predictive accuracy and computational
efficiency. Future research should study: the effects of stronger and
weaker correlations among the covariates, impact of mixed distri-
butions of binary, categorical and continuous covariates, the per-
formance in a high-dimensional dataset with numerous covariates,
the performance under multiple imputation rather than single
imputation, and longitudinal measures of the covariates and
outcomes.

Missing data is inevitable in data in medical and other areas of
research. Handling missing data is a complex and a challenging
task. This is due both to the fact that the type of missingness
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mechanism is usually unknown and that the assumptions one
makes about the missingness and the mechanism cannot be defini-
tively checked from the observed data. It is highly recommended
that data elements that help assess the type of mechanism be
collected at the design stage so that data can be carefully assessed
and assumptions checked before one embarks on an imputation
approach. Investigators are encouraged to thoroughly check their
data and assumptions, implement appropriate methods for imput-
ing the missing data, and perform sensitivity analysis so valid infer-
ences can be made.

Supplementary Material. To view supplementary material for this article,
please visit https://doi.org/10.1017/cts.2020.533.
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