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COVERING THEOREMS FOR UNIVALENT FUNCTIONS 
MAPPING ONTO DOMAINS BOUNDED BY 

QUASICONFORMAL CIRCLES 

DONALD K. BLEVINS 

1. Introduction. Let r be a Jordan curve in the extended complex plane C. 
T is called a quasiconformal circle if it is the image of a circle by a homeo-
morphism / which is quasiconformal in a neighborhood of that circle. If 
q(zi, £2) is the chordal distance from z\ to 22, the chordal cross ratio of a 
quadruple Zi, 22, 23, 24 in C is 

, . g (Zl,Z2) g(g3,Z4) 
Xv2i, 22, 23, 24) = —7 v—} r . 

g (21, 23) g (22, 24) 

Ahlfors [2] has shown that a Jordan curve T is a quasiconformal circle if and 
only if 

SUp {x(2l , 22, 23, 24) + X f e , 23, 24, 2i)} 

is finite, where the supremum is taken over all ordered quadruples on T. 

Definition 1. For k G [0, 1], a Jordan curve T in C is a k-circle if 

(1) x (2 l , 22, 23, 24) + x(22, 23, 24, 2i) ^ 1/fe 

for all ordered quadruples of points on T. 

For k = 0, condition (1) is vacuous, so a 0-circle is an arbitrary Jordan 
curve, while if k > 0, a ^-circle is a quasiconformal circle. Since the chordal 
cross ratio is invariant under Môbius transformations, it is easily verified that 
a 1-circle is a Euclidean circle or straight line. Thus as k runs from 0 to 1, the 
class of ^-circles interpolates between arbitrary Jordan curves and the simplest 
Jordan curves. For each k £ (0, 1], the curve consisting of the two rays arg (z) 
= =b arcsin (k) is a ^-circle. 

Aharanov and Kirwan [1] solved the following covering problem for the 
class ^ of normalized analytic univalent functions, / , which map U — 
{2 : \z\ < 1} onto a convex domain. Let R(<p) — {w : arg w = <p] and let l(cp) 
denote the linear measure of R(<p) P \ / ( i7) . What is the minimum of /(<£>i) • 
1(<PÏ) (0 ^ (pi S <P2 < 2w) fo r / G ^ ? We will consider the same problem for 
different classes of functions y \ k Ç [0, 1], the class of functions f(z) = 
2 + Jln=20>nZn analytic and univalent in U such that/(C7) is bounded by a 
^-circle. We note S^ki C ¥ m if k2 < ki and the uniform closure of j ^o is the 
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full class Sf. A map / Ç ¥ is in ¥\ for some k > 0 if and only if / can be 
extended to a quasiconformal mapping of the whole plane [7, p. 98]. 

If D is a simply connected domain,/ analytic and univalent in U,f(U) = D 
and /(0) = so, the iwwer mapping radius of D at z0, rD(zo), is defined by 

rD(so) = l / ' (0 ) | -

If D* is obtained from D by circular symmetrization with respect to a ray 
from so then rD(z0) ^ rD*(zo) [5, p. 81] and equality holds if and only if D* is 
obtained from D b y a rotation around ZQ [6]. 

2. A symmetrization lemma. 

LEMMA 1. Let D be a domain bounded by a k-circle, 0 £ D, oo Ç dZ}. If dZ) 
contains a point z' with \z'\ = a then the circular symmetrization D* of D with 
respect to the positive real axis is contained in the domain Dka = {z : |arg (z + a) | 
< 7T — arcsin (k)}. 

Proof. For r > a the circle \z\ = r separates s' from oo, hence contains a 
subarc separating z' from oo in C — D. The endpoints a. and /3 of this arc 
separate z' from oo on dD. Thus inequality (1) may be applied to the quadruple 
a, z', 0, oo. We thus obtain 

|« - z'| + |2' - /3| ^ | |a - 0|. 

Hence zf must be inside an ellipse with foci at a and 0 and eccentricity &. 
If we let 2c = \a — /3| and 6 be the semi-minor axis of the ellipse, we have 
b = (c/k)(l — k2)1/2. In order to satisfy \a\ = \/3\ = r, \z'\ = a and z' inside 
the ellipse, we must have (a + b)2 ^ r2 — c2 which leads to 

c ^ k((r2 - k2a2)1/2 - a{\ - k2)l/2). 

Thus the complement of D* includes the arc 

{z : \z\ = r, |arg (z)\ ^ TT - arcsin (k/r((r2 - a2k2)1'2 - a ( l - k2)1/2))\ 

which is more easily described as 

{z : \z\ = r, |arg(s + a)\ ^ w — arcsin (k)}. 

3. Covering of radial segments. We first obtain a boundary distortion 
result. 

LEMMA 2. If D is a domain bounded by a k-circle, 0 G D and f i, f 2 G d£> ^ e n 

.. • ltm-f < —7^7 — (7T — arcsin k). 
fi N " ri>(0) 7T 
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Proof. The Môbius transformation 

(2) T(z) = « f ' ~ f l 

maps D onto a ^-domain Z>* and rD*(0) = rD*(T(0)) = rD(0)\T'(0)\ so 

^ ( 0 ) = % ^ ^ ( 0 ) . 
I f 2 | |S XJ 

Since oo = Z(fi) G dZ>* and 1 = Z(f2) G dZ>*, the symmetrization, D**, of 
Z>* is contained in the domain Dktl of Lemma 1. A branch of the function 

( 1 i » \ 2(x—arc sin k) 

T^J • - 1 

maps U onto £>*,! with /(0) = 0 so r^ .^O) = | / / ( 0 ) | = (4/7r) (TT — arcsin &). 
Thus 

Ifo — fil -̂ /^\ 4(7r — arcsin &) 
(4) rD(0) l\l | , / ' = rD*(0) ^ ^**(0) ^ '»M(0) = ^ L 

Ifll |f2| V 
We note in passing that Lemma 2 implies the following known covering 

theorem [3, Corollary 2.3]. 

THEOREM 1. The Koebe region for the class ^k is a disk of radius 7r/4 (T — arcsin 

Proof. We must find 

inf I min \f(eid)\) . 

By composing / with an appropriate Môbius transformation we see that the 
infimum is attained for the case when f(U) is unbounded. Then we apply 
Lemma 2 with D = f(U) so that rD(0) = 1 by the normalization of / , and 
let f2 -* oo . The function Fk(z) = fk(z)/'(/*''(0)), where/,(z) is defined by (3), 
is in S^k and 

F / c ( _ 1 ) = 4 ( T T - arcsin *) * 

Thus the bound is sharp. 
Let / Ç S^ki R(<p) ~ fw : arg w = <p} and /(<p) denote the linear measure 

of R(<p) H f(U). We wish to minimize l(<pi) • 1(<PÎ) (0 ^ <pi ^ <p2 ̂  27r) over 
the class5*%. Equivalently we wish to minimize /(<p) • l( — <p) for 0 ^ <p ^ 7r/2. 

THEOREM 2. Z , ^ / G ^ awd <? £ [0, TT/2]. If TT/6 ^ <p ^ TT/2 /Ae» 

'">•'<-*>* L i t ! J ' 
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while if 0 ^ <p < ir/6 then 

IM . / ( - * , ) ^ ( - ? ^ - . - 7 T ) 2 . 
\4(7r — arcsin &)/ 

For cp ^ 7T — arcsin fe/2, equal i ty is a t ta ined only for the function 

F(z) = T-\-fk{i*)) 

where fk is the function denned in Equa t ion (3) and T is the function (2) with 

7T sin <p e . IT sin <p %, 
f i = 777 r—7T and f 2 = ;77 ~—rr e • 

2(7T — arcsin #) 2(ir — arcsin &) 
Proof. Let zi = r i ^ , s2 = r 2 £ - ^ be points on the boundary of f(U) such 

t h a t the segments [0, rxe
iip), [0, r2e~i(p) are in / ( [ / ) . Then l(<p) • l( — <p) ^ rir2. 

By Lemma 2, 

g — (7T — arcsin #) . 
Y\Y2 IT 

For notat ional convenience we let K = (4:/T)(TT — arcsin k) and so 

-L + _L__2_ 
2 T 2 

f i r 2 r i r 2 

cos 2<p ^ K , 

1 cos 2<p 

ri = r2 

cos22<? 1 ^2~]1 / 2 

2 — 2 -r- A , 
L r 2 ?-2 J 

thus 

(5) v - ' 2 (5) 1 - cos 2<p + [(Kr2)
2 - sin2 2^] 1 / 2 

and 

(6) Kv) • / ( -*>) è 

2 
7-2 

(6) Kv) • / ( -*>) è , ™ O L [VïTv .N 2 ^ 2 O .1 /2 2 = A ( f î ) . 
i^u» £<p ~r LV/^f 2,/ — s i n ZJÇ?J 

By Theorem 1, r2 è l/K, so we wish to minimize the function h(x) on the 
interval [1/K, oo ). Since lim h(x) = oo we have a finite minimum. T h e substi
tut ion *~>0° 

(Kx)2 = f2 - 2f cos2«p + 1 

replaces fe(#) by ( l / i £ 2 ) ( f + 1/f — 2 cos 2<p) which expression we wish to 
minimize for f G [cos 2<£> + |cos 2<p|, oo). For <̂  > 7r/6, the minimum occurs 
for f = 1 while if <p ^ 7r/6 the minimum occurs a t f = cos 2<£> + |cos 2<p|. T h u s 
for <p > 7r/6 we have 

l(<p) • Z ( - p ) ^ A ^ sin <pj = ~ 2 sin2 <p 
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as claimed. For <p ^ 7r/6 we have 

^)./(-,)^(i)=-2^-. 
However, by Theorem 1, we know l{<p) and l{ — <p) are separately greater than 
or equal to l/K so we have the bet ter est imate 

In order for the minimum to be at ta ined we must have r2 = {2/K) sin ç and 
ftfi = h {{2/K) sin <p) which requires r\ = r2, and we must have equali ty a t 
each step in Inequali ty (4). This occurs if and only if D* is a rotat ion of D** 
and £>** = Dkil. This will occur if and only if f{U) = D = T~l{-Dk<l) 
where T is defined as above. This is possible if and only if co G T~1{ — Dk>i) or 

e-2tip _ i Q j)k x w h ich means T — arcsin k ^ 2<p. In this case, an extremal 
function F must map t / o n t o the image of U under the map T~1{—fk{z)) hence 
F{z) = T~1{—fk{S{z))) for some self map, 5, of U. Normalization of F then 
requires S{z) = iz and the proof is finished. 

T h e inequality (5) which was used in the proof of Theorem 2 has the follow
ing interesting interpretat ion. 

T H E O R E M 3. If f ^ $fk and f G d{f{U)) then f{U) contains the disk with 
center at - f / ( i £ 2 | f | 2 - 1) and radius X | f | 2 / ( ^ 2 | f I 2 ~ 1), where K = 4 ( T T -
arcsin k)/ir. 

Proof. Wi th r2 constant , r\ — r, and 2<p = 6, the equation corresponding to 
inequality (5) is the polar coordinate equation of such a circle. 

COROLLARY 1. If f G J^V and \f{z)\ S M for all z G U, then f{U) contains 
a disk, containing the origin, with radius KM/{K2M2 — 1) where K = 4(7r — 
arcsin k)/w. 
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