COVERING THEOREMS FOR UNIVALENT FUNCTIONS MAPPING ONTO DOMAINS BOUNDED BY QUASICONFORMAL CIRCLES

DONALD K. BLEVINS

1. Introduction. Let Γ be a Jordan curve in the extended complex plane \mathbf{C}. Γ is called a quasiconformal circle if it is the image of a circle by a homeomorphism f which is quasiconformal in a neighborhood of that circle. If $q\left(z_{1}, z_{2}\right)$ is the chordal distance from z_{1} to z_{2}, the chordal cross ratio of a quadruple $z_{1}, z_{2}, z_{3}, z_{4}$ in \mathbf{C} is

$$
\chi\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{q\left(z_{1}, z_{2}\right) q\left(z_{3}, z_{4}\right)}{q\left(z_{1}, z_{3}\right) q\left(z_{2}, z_{4}\right)} .
$$

Ahlfors [2] has shown that a Jordan curve Γ is a quasiconformal circle if and only if

$$
\sup \left\{\chi\left(z_{1}, z_{2}, z_{3}, z_{4}\right)+\chi\left(z_{2}, z_{3}, z_{4}, z_{1}\right)\right\}
$$

is finite, where the supremum is taken over all ordered quadruples on Γ.
Definition 1. For $k \in[0,1]$, a Jordan curve Γ in \mathbf{C} is a k-circle if
(1) $\chi\left(z_{1}, z_{2}, z_{3}, z_{4}\right)+\chi\left(z_{2}, z_{3}, z_{4}, z_{1}\right) \leqq 1 / k$
for all ordered quadruples of points on Γ.
For $k=0$, condition (1) is vacuous, so a 0 -circle is an arbitrary Jordan curve, while if $k>0$, a k-circle is a quasiconformal circle. Since the chordal cross ratio is invariant under Möbius transformations, it is easily verified that a 1 -circle is a Euclidean circle or straight line. Thus as k runs from 0 to 1 , the class of k-circles interpolates between arbitrary Jordan curves and the simplest Jordan curves. For each $k \in(0,1]$, the curve consisting of the two rays $\arg (\mathrm{z})$ $= \pm \arcsin (k)$ is a k-circle.

Aharanov and Kirwan [1] solved the following covering problem for the class \mathscr{C} of normalized analytic univalent functions, f, which map $U=$ $\{z:|z|<1\}$ onto a convex domain. Let $R(\varphi)=\{w: \arg w=\varphi\}$ and let $l(\varphi)$ denote the linear measure of $R(\varphi) \cap f(U)$. What is the minimum of $l\left(\varphi_{1}\right)$. $l\left(\varphi_{2}\right)\left(0 \leqq \varphi_{1} \leqq \varphi_{2}<2 \pi\right)$ for $f \in \mathscr{C}$? We will consider the same problem for different classes of functions $\mathscr{S}_{k} k \in[0,1]$, the class of functions $f(z)=$ $z+\sum_{n=2}^{\infty} a_{n} z^{n}$ analytic and univalent in U such that $f(U)$ is bounded by a k-circle. We note $\mathscr{S}_{k_{1}} \subset \mathscr{S}_{k_{2}}$ if $k_{2}<k_{1}$ and the uniform closure of \mathscr{S}_{0} is the

[^0]full class \mathscr{S}. A map $f \in \mathscr{S}$ is in \mathscr{S}_{k} for some $k>0$ if and only if f can be extended to a quasiconformal mapping of the whole plane [7, p. 98].

If D is a simply connected domain, f analytic and univalent in $U, f(U)=D$ and $f(0)=z_{0}$, the inner mapping radius of D at $z_{0}, r_{D}\left(z_{0}\right)$, is defined by

$$
r_{D}\left(z_{0}\right)=\left|f^{\prime}(0)\right| .
$$

If D^{*} is obtained from D by circular symmetrization with respect to a ray from z_{0} then $r_{D}\left(z_{0}\right) \leqq r_{D^{*}}\left(z_{0}\right)$ [5, p. 81] and equality holds if and only if D^{*} is obtained from D by a rotation around $z_{0}[\mathbf{6}]$.

2. A symmetrization lemma.

Lemma 1. Let D be a domain bounded by a k-circle, $0 \in D, \infty \in \partial D$. If ∂D contains a point z^{\prime} with $\left|z^{\prime}\right|=a$ then the circular symmetrization D^{*} of D with respect to the positive real axis is contained in the domain $D_{k, a}=\{z:|\arg (z+a)|$ $<\pi-\arcsin (k)\}$.

Proof. For $r>a$ the circle $|z|=r$ separates z^{\prime} from ∞, hence contains a subarc separating z^{\prime} from ∞ in $\mathbf{C}-D$. The endpoints α and β of this arc separate z^{\prime} from ∞ on ∂D. Thus inequality (1) may be applied to the quadruple $\alpha, z^{\prime}, \beta, \infty$. We thus obtain

$$
\left|\alpha-z^{\prime}\right|+\left|z^{\prime}-\beta\right| \leqq \frac{1}{k}|\alpha-\beta|
$$

Hence z^{\prime} must be inside an ellipse with foci at α and β and eccentricity k. If we let $2 c=|\alpha-\beta|$ and b be the semi-minor axis of the ellipse, we have $b=(c / k)\left(1-k^{2}\right)^{1 / 2}$. In order to satisfy $|\alpha|=|\beta|=r,\left|z^{\prime}\right|=a$ and z^{\prime} inside the ellipse, we must have $(a+b)^{2} \geqq r^{2}-c^{2}$ which leads to

$$
c \geqq k\left(\left(r^{2}-k^{2} a^{2}\right)^{1 / 2}-a\left(1-k^{2}\right)^{1 / 2}\right)
$$

Thus the complement of D^{*} includes the arc

$$
\left\{z:|z|=r,|\arg (z)| \geqq \pi-\arcsin \left(k / r\left(\left(r^{2}-a^{2} k^{2}\right)^{1 / 2}-a\left(1-k^{2}\right)^{1 / 2}\right)\right)\right\}
$$

which is more easily described as

$$
\{z:|z|=r,|\arg (z+a)| \geqq \pi-\arcsin (k)\} .
$$

3. Covering of radial segments. We first obtain a boundary distortion result.

Lemma 2. If D is a domain bounded by a k-circle, $0 \in D$ and $\zeta_{1}, \zeta_{2} \in \partial D$ then

$$
\frac{\left|\zeta_{1}-\zeta_{2}\right|}{\left|\zeta_{1}\right|\left|\zeta_{2}\right|} \leqq \frac{1}{r_{D}(0)} \frac{4}{\pi}(\pi-\arcsin k)
$$

Proof. The Möbius transformation
(2) $T(z)=\frac{z}{z-\zeta_{1}} \frac{\zeta_{2}-\zeta_{1}}{\zeta_{2}}$
maps D onto a k-domain D^{*} and $r_{D^{*}}(0)=r_{D^{*}}(T(0))=r_{D}(0)\left|T^{\prime}(0)\right|$ so

$$
r_{D^{*}}(0)=\frac{\left|\zeta_{2}-\zeta_{1}\right|}{\left|\zeta_{2}\right|\left|\zeta_{1}\right|} r_{D}(0)
$$

Since $\infty=T\left(\zeta_{1}\right) \in \partial D^{*}$ and $1=T\left(\zeta_{2}\right) \in \partial D^{*}$, the symmetrization, $D^{* *}$, of D^{*} is contained in the domain $D_{k, 1}$ of Lemma 1. A branch of the function
(3) $f_{k}(z)=\left(\frac{1+z}{1-z}\right)^{\frac{2(\pi-\arcsin k)}{\pi}}-1$
maps U onto $D_{k, 1}$ with $f(0)=0$ so $r_{D k, 1}(0)=\left|f_{k}{ }^{\prime}(0)\right|=(4 / \pi)(\pi-\arcsin k)$. Thus

$$
\begin{equation*}
r_{D}(0) \frac{\left|\zeta_{2}-\zeta_{1}\right|}{\left|\zeta_{1}\right|\left|\zeta_{2}\right|}=r_{D^{*}}(0) \leqq r_{D^{* *}}(0) \leqq r_{D_{k, 1}}(0)=\frac{4(\pi-\arcsin k)}{\pi} \tag{4}
\end{equation*}
$$

We note in passing that Lemma 2 implies the following known covering theorem [3, Corollary 2.3].

Theorem 1. The Koebe region for the class \mathscr{S}_{k} is a disk of radius $\pi / 4(\pi-\arcsin$ $k)$.

Proof. We must find

$$
\inf _{f \in \mathscr{Y}_{k}}\left(\min _{0 \leqq \theta<2 \pi}\left|f\left(e^{i \theta}\right)\right|\right)
$$

By composing f with an appropriate Möbius transformation we see that the infimum is attained for the case when $f(U)$ is unbounded. Then we apply Lemma 2 with $D=f(U)$ so that $r_{D}(0)=1$ by the normalization of f, and let $\zeta_{2} \rightarrow \infty$. The function $F_{k}(z)=f_{k}(z) /\left(f_{k}^{\prime}(0)\right)$, where $f_{k}(z)$ is defined by (3), is in \mathscr{S}_{k} and

$$
F_{k}(-1)=\frac{\pi}{4(\pi-\arcsin k)}
$$

Thus the bound is sharp.
Let $f \in \mathscr{S}_{k}, R(\varphi)=\{w: \arg w=\varphi\}$ and $l(\varphi)$ denote the linear measure of $R(\varphi) \cap f(U)$. We wish to minimize $l\left(\varphi_{1}\right) \cdot l\left(\varphi_{2}\right)\left(0 \leqq \varphi_{1} \leqq \varphi_{2} \leqq 2 \pi\right)$ over the class \mathscr{S}_{r}. Equivalently we wish to minimize $l(\varphi) \cdot l(-\varphi)$ for $0 \leqq \varphi \leqq \pi / 2$.

Theorem 2. Let $f \in \mathscr{S}_{k}$ and $\varphi \in[0, \pi / 2]$. If $\pi / 6 \leqq \varphi \leqq \pi / 2$ then

$$
l(\varphi) \cdot l(-\varphi) \geqq\left(\frac{\pi \sin \varphi}{2(\pi-\arcsin k)}\right)^{2}
$$

while if $0 \leqq \varphi<\pi / 6$ then

$$
l(\varphi) \cdot l(-\varphi) \geqq\left(\frac{\pi}{4(\pi-\arcsin k)}\right)^{2}
$$

For $\varphi \geqq \pi-\arcsin k / 2$, equality is attained only for the function

$$
F(z)=T^{-1}\left(-f_{k}(i z)\right)
$$

where f_{k} is the function defined in Equation (3) and T is the function (2) with

$$
\zeta_{1}=\frac{\pi \sin \varphi e^{-i \varphi}}{2(\pi-\arcsin k)} \quad \text { and } \quad \zeta_{2}=\frac{\pi \sin \varphi}{2(\pi-\arcsin k)} e^{i \varphi} .
$$

Proof. Let $z_{1}=r_{1} e^{i_{\varphi}}, z_{2}=r_{2} e^{-i_{\varphi}}$ be points on the boundary of $f(U)$ such that the segments $\left[0, r_{1} e^{i \varphi}\right),\left[0, r_{2} e^{-i \varphi}\right)$ are in $f(U)$. Then $l(\varphi) \cdot l(-\varphi) \geqq r_{1} r_{2}$. By Lemma 2,

$$
\frac{\left|r_{1} e^{i \varphi}-r_{2} e^{-i \varphi}\right|}{r_{1} r_{2}} \leqq \frac{4}{\pi}(\pi-\arcsin k) .
$$

For notational convenience we let $K=(4 / \pi)(\pi-\arcsin k)$ and so

$$
\begin{aligned}
& \frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}-\frac{2}{r_{1} r_{2}} \cos 2 \varphi \leqq K^{2}, \\
& \frac{1}{r_{1}} \leqq \frac{\cos 2 \varphi}{r_{2}}+\left[\frac{\cos ^{2} 2 \varphi}{r_{2}^{2}}-\frac{1}{r_{2}^{2}}+K^{2}\right]^{1 / 2},
\end{aligned}
$$

thus
(5) $\quad r_{1} \geqq \frac{r_{2}}{\cos 2 \varphi+\left[\left(K r_{2}\right)^{2}-\sin ^{2} 2 \varphi\right]^{1 / 2}}$
and
(6) $l(\varphi) \cdot l(-\varphi) \geqq \frac{r_{2}{ }^{2}}{\cos 2 \varphi+\left[\left(K r_{2}\right)^{2}-\sin ^{2} 2 \varphi\right]^{\overline{1} / \overline{2}}}=h\left(r_{2}\right)$.

By Theorem $1, r_{2} \geqq 1 / K$, so we wish to minimize the function $h(x)$ on the interval $[1 / K, \infty)$. Since $\lim _{x \rightarrow \infty} h(x)=\infty$ we have a finite minimum. The substitution

$$
(K x)^{2}=\zeta^{2}-2 \zeta \cos 2 \varphi+1
$$

replaces $h(x)$ by $\left(1 / K^{2}\right)(\zeta+1 / \zeta-2 \cos 2 \varphi)$ which expression we wish to minimize for $\zeta \in[\cos 2 \varphi+|\cos 2 \varphi|, \infty)$. For $\varphi>\pi / 6$, the minimum occurs for $\zeta=1$ while if $\varphi \leqq \pi / 6$ the minimum occurs at $\zeta=\cos 2 \varphi+|\cos 2 \varphi|$. Thus for $\varphi>\pi / 6$ we have

$$
l(\varphi) \cdot l(-\varphi) \geqq h\left(\frac{2}{K} \sin \varphi\right)=\frac{4}{K^{2}} \sin ^{2} \varphi
$$

as claimed. For $\varphi \leqq \pi / 6$ we have

$$
l(\varphi) \cdot l(-\varphi) \geqq h\left(\frac{1}{K}\right)=\frac{1}{2 K^{2} \cos 2 \varphi}
$$

However, by Theorem 1 , we know $l(\varphi)$ and $l(-\varphi)$ are separately greater than or equal to $1 / K$ so we have the better estimate

$$
l(\varphi) \cdot l(-\varphi) \geqq 1 / K^{2}
$$

In order for the minimum to be attained we must have $\varphi_{2}=(2 / K) \sin \varphi$ and $r_{1} r_{2}=h((2 / K) \sin \varphi)$ which requires $r_{1}=r_{2}$, and we must have equality at each step in Inequality (4). This occurs if and only if D^{*} is a rotation of $D^{* *}$ and $D^{* *}=D_{k, 1}$. This will occur if and only if $f(U)=D=T^{-1}\left(-D_{k, 1}\right)$ where T is defined as above. This is possible if and only if $\infty \notin T^{-1}\left(-D_{k, 1}\right)$ or $e^{-2 i \varphi}-1 \notin D_{k, 1}$ which means $\pi-\arcsin k \leqq 2 \varphi$. In this case, an extremal function F must map U onto the image of U under the map $T^{-1}\left(-f_{k}(z)\right)$ hence $F(z)=T^{-1}\left(-f_{k}(S(z))\right)$ for some self map, S, of U. Normalization of F then requires $S(z)=i z$ and the proof is finished.

The inequality (5) which was used in the proof of Theorem 2 has the following interesting interpretation.

Theorem 3. If $f \in \mathscr{S}_{k}$ and $\zeta \in \partial(f(U))$ then $f(U)$ contains the disk with center at $-\zeta /\left(K^{2}|\zeta|^{2}-1\right)$ and radius $K|\zeta|^{2} /\left(K^{2}|\zeta|^{2}-1\right)$, where $K=4(\pi-$ $\arcsin k) / \pi$.

Proof. With r_{2} constant, $r_{1}=r$, and $2 \varphi=\theta$, the equation corresponding to inequality (5) is the polar coordinate equation of such a circle.

Corollary 1. If $f \in \mathscr{S}_{k}$ and $|f(z)| \leqq M$ for all $z \in U$, then $f(U)$ contains a disk, containing the origin, with radius $K M /\left(K^{2} M^{2}-1\right)$ where $K=4(\pi-$ $\arcsin k) / \pi$.

References

1. D. Aharanov and W. E. Kirwan, Covering theorems for classes of univalent functions, Can. J. Math. 25 (1973), 412-419.
2. L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301.
3. D. K. Blevins, Conformal mappings of domains bounded by quasiconformal circles, Duke Math. J. 40 (1973), 877-883.
4. -Harmonic measure and domains bounded by quasiconformal circles, Proc. Am. Math. Soc. 41 (1973), 559-564.
5. W. K. Hayman, Multivalent functions (Cambridge University Press, Cambridge, 1958).
6. J. A. Jenkins, Some uniqueness results in the theory of symmetrization, Ann. of Math. (2) 61 (1955), 106-115.
7. O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane (Springer-Verlag, Berlin, 1973).

University of Florida,
Gainesville, Florida

[^0]: Received July 25, 1975 and in revised form, December 15, 1975.

