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1. Particle Collisions in the Rings 

1.1. T H E PHYSICAL MEANING OF THE O U T E R BOUNDARY OF THE W E A K SELF-

GRAVITATING RINGS 

Let us consider two particles of the same radius α on the neighbouring orbits (i.e. 

with radii R and R -f 2a, R » a, Fig.l). The relative velocity of the centers of 

particles is Avc = (GMpi/A)1/2 - [GMpi/(Ä + 2 α ) ] 1 / 2 « Ωα. The velocities of small 

particles AV relative to the colliding particles A and Β are dependent on AVC. Let 

AV = ctAVç, where α is a numerical coefficient obtained by the experiment. If this 

velocity A V is more than the first space velocity ^/Gmja on the surface of each 

colliding particle A and Β with the mass m (G is the gravitating constant), 

aUa > W — , (1) 

then small particles will go out from colliding particles A and B. Hence, as a result 

of each collision, masses of colliding particles will decrease, i.e., colliding particles 

will be destroyed. The inequality (1) can be transformed identically in the following 

inequality: 

Ä < Ä c r = 7 ( ^ L ) l / 3 ( 2 ) 

Ρ τ m 

where 

7 = 0 . 6 2 a 2 / 3 / ? - 1 / 3 , (3) 

β is the packing inside every particle, i.e., β — pj pm, ρ is the volume density of 

the particle in the rings, pm is the density of the material of the composition of 

the rings, Mpi the mass of the central planet. The unknown numerical coefficient 

7 can be found from the formula (2), where the magnitude of the density of the 

material in the Saturn's ring was obtained by means of Voyager's spectral analysis: 

PmSat « 0.9g/cm 3 . Putting 

Rcr = Rr (4) 

we find 7 for the rings of Saturn: 

7 = 1.59. (5) 

If we assume that 7 is the universal number for all rings, we can calculate pm for 

the rest of the rings (see Table I). The calculated value of p m corresponds to the 

75 

S. Ferraz-Mello (ed.), Chaos, Resonance and Collective Dynamical Phenomena in the Solar System, 75-82. 
© 19921AU. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900090963 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900090963


76 

p l a n e t 

Fig. 1. Collision of two particles of the typical size α in the rings. The velocity of the 

movement of the colliding particles A and Β and of small particles appeared as a result of 

the collision of A with Β are shown by arrows. 

T A B L E I 

Planet Mass of Radius of Density of Composition Albedo 

planet rings Rr the material of rings 

Mpi in Μ φ in 10 3 km in the rings. 

= 6 .10 2 T g p r m 111 g/cill 

Jupiter 317.83 129.2 3.6 stone 0.1 

Saturn 95.147 136.78 0.9 ice 0.6 

Uranus 14.54 51.1.56 2.6 carbon 0.05 

chondrites 

Neptune 17.23 62.9 1.7 ? ? 

Voyager's observational data. The physical meaning of the equality (4) consists in 

the fact that the area inside the rings is characterized by the strong destroy of 

particles as a result of collisions. The traditional point of view for the region of the 

rings as being in the Roche zone is a misunderstanding (Gor'kavij and Fridman, 

1990). 

1.2. T H E SIZE DISTRIBUTION OF THE PARTICLES 

Let us consider the accretion growth of a particle having the size a and the density 

of the material p m . Let it be moving in the medium of particles of the size r and 

the integral surface density of the medium be σ. Then, the velocity of the growth 

of the radius of the particle is (Gor'kavij and Fridman, in preparation): 

. da x , <τΩ . ν « 
(6) 
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n(a) = Αα~ β (1 + - ) 2 , where A % 0.03 

We may neglect the factor (1 + ^ ) 2 at -f- » 1 and then obtain η(α) ~ a" e , 

which corresponds to the observational data. 

In the region a < acr, the time of the accretion growth t a of particles from 0 

to aCT must be equal to the time of the collisional destruction ta at a > acr. Using 

this condition of the stationary spectrum, Ta ^ we may write 

ta ~ td 2̂  icon - [2Ωη(α € 1.)πα 2

1.]~ 1. 

We find t a integrating the formula (6) and assuming r ~ aCT: 

—ta ^ 0.1a c r . 

Substituting in (7) the definition σ(α) = m(a)n(a) where n(a) = no(a/ao)q we 
obtain the equality for q: 

( a c r ' ) - 0 . 6 ( 4 + g ) n ( a c , ) 

do noaCT 

where 

/»«moe 
σ — Ι σ(α)άα. (7) 

Jo 

<τ(α) is the differential density of the disk. The collisional destruction of particles 

in tangential collisions may be described by the following formula (Gor'kavij and 

Fridman, 1990): 

( ^ ) - « 9 . 6 ( ^ ) 3 / W n ( a ) (8) 

where Ev is the energy needed to fragment a unit volume of a particle, n(a) is the 

surface differential concentration of the disk. 

We can see from formulae (6),(8) that there is the equality 

< £ > • - < £ > - <°> 
at the same size of particles a = aeTj which is equal to several meters for Sv « 

1 0 " 2 erg/cm 3 (Gor'kavjj and Fridman, 1990). Hence, the size distribution may be 
represented in the sum of the two parts: 

1) at a < acr the accretion dominates and one may account 

/da , ,da 

< * > » ( * > ; 

2) at a > acr the accretion growth is compensated by the collisional destruction -

as a result, the equality (9) is fulfilled for every a. 

For large particles we obtain from (6)-(8) 
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whence we find 

q ~ - ( 2 . 7 - 3.1) (10) 

for 
n(aer) = 1 0 " 3 - 1 0 - 4 m - 2 / m 

n 0 ~ 3 .10 3 m~ 2 /m 

acr — 5m 

a 0 = 0.01m. 

2. Collective Phenomena 

Now we shall qualitatively consider the following instabilities: 
a) gravitational, 

b) instability of waves with negative energy, 

c) negative diffusion, 

d) accretion, 

e) ellipse. 

The instabilities a)-c) cause a short scale structure in rings: the typical scale is 

of the order of a few thicknesses of the ring, i.e., ~ 100 meters (for Saturn's rings). 

The accretion instability causes a large scale structure (~ 800 km for Saturn's 

rings). The ellipse instability causes the eccentricity of the narrowest ringlets. 

2.1. GRAVITATIONAL INSTABILITY 

Let the original disk be infinitely thin. We choose one of the rings into which we 

broke up the originally uniform disk of particles. Let a test particle of unit mass be 

located at a distance δ from the closest point of the ring with width d, a moreover, 

δ » d. Then one can consider the ring as an infinitely thin gravitating filament 

whose potential is Φ ~ ln(l /6) , and the attractive force for the test particle is: 

ΘΦ/θδ ~ Ι/δ —• oo, δ —• 0. Obviously, the last condition can be fulfilled only for 

infinitely narrow ring, d —• 0, which is, in principle, allowed by the approximation 

of an infinitely thin disk. However, if the disk has the original thickness to, then 

(09/θδ) max ~ the thinner the disk, the larger is the destabilizing force. Con-

sequently, the dimensionless destabilizing factor is r/h, where r is the radius of the 

disk, and the dimensionless stabilizing factor is M / m r , where M and mr are the 

masses of the central body and the disk, respectively. The meaning of the stabiliz-

ing factor M/mr lies in the fact that, as it increases, the relative influence of the 

central body also increases. When the force of attraction of the particles towards 

the central mass exceeds the force of the particle's mutual attraction, the system is 

stable for the same reason which insures that a point revolving in a central field is 

stable (here we do not allow for other interactions besides gravitational). In other 

words, a system turns out to be unstable if the destabilizing factor exceeds the 

stabilizing factor, i.e., 
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The parameter Q is called the Tooter margin coefficient. The condition of disk 

instability in the form of expression (11) is valid for very short wavelength pertur-

bations with wavelength λ ~ h. In this case, the disk is broken up into rings with 

widths of d ~ h. But if λ ~ d > h, then it follows from our arguments that one 

must replace h by d in condition (11); the larger the widths of the rings, the more 

difficult it is to fulfill the instability criterion Q(d) = (M/mr)(d/r) < 1. According 

to the results of processing the Voyager data, Q « 2 for the Β ring of Saturn, i.e., 

the Β ring is near the limit of gravitational instability. 

2.2. INSTABILITY OF WAVES W I T H NEGATIVE ENERGY 

As was shown by Fridman and Polyachenko (1984), the energy Εκ of the kth 

harmonic of the perturbed gravitating solid-body rotating disk, Ωο =const, is 

ï ^ - i W p ^ l - ï ' , ; ) ^ , , 1 2 , 

where ω% = 4Ω§ — 2ποσο\Κ\ -f K2cf ) , σο is the surface density, c, is the sound 

speed, Κ is the wave vector, G is the gravitational constant, Φ is the gravitational 

potential. 

In the simplest case, the growth rate of the slow dissipative instability is (Mo-

rozov et al, 1985) 

w 0 

where ν is viscosity coefficient. Comparing (12) and (13), we can see that the 

condition of the dissipative instability 

2wGa0\K\- K2cf > 0 (14) 

corresponds to the negative energy. The condition (14) may be more easily fulfilled 

than the condition of the gravitational instability, as in the latter case the "self-

gravitating" term 2nG&o\K\ must be larger than 

which is large at the presence of the central mass. 

2.3. INSTABILITY OF NEGATIVE DIFFUSION 

Let us create a sinusoidal surface density perturbation the disk: σ ~ σο€θ8Α!#. Let 

us examine Region 1 with an increased density σ\ (for 0 < χ < xo) and region 

2 with decreased density σ 2 (for x0 < x < xi) . The density is unchanged on 

the boundary at the point x$. The following amount of material flows across a 

unit length of the boundary separating Regions 1 and 2: σχνχ — σ2ΐ>2> where νχ 

and V2 are the diffusion velocities, which are proportional to the mean thermal 

velocities of the particles in Regions 1 and 2 respectively. Instability sets in when 
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Fig. 2. 

the particle density in Region 1 is increased due to migration of particles from 
Region 2 , i.e., σχνχ — σ2ΐ>2 < 0 . Since σ\ > σ<ι then the condition for instability is 
fulfilled, for example, when ν ~ σα~χ where α < 0 . The last condition indicates 
that the particle velocity must decrease with increasing density of the disk. This is 
possible in the case of inelastic particles when the frequency of collisions increases 
with increasing density of the medium and the outflow of kinetic energy increases; 
the chaotic velocity of the particle decreases. The boundary between Regions 1 and 
2 corresponds to the inflection point XQ of the function σ(χ), i.e., θ2σ(χ)/θχ2 = 0 
at the point χ = x0l. θ2σ(χ)/θχ2 < 0 in Region 1 and 82σ(χ)/θχ2 > 0 in Region 
2 . It follows from the diffusion equation θσ/di = Dd2a/dx2 that, if the diffusion 
coefficient is negative (D < 0 ) in both regions, the density will increase in Region 
1 (δσι/dt > 0 ) and will decrease in Region 2 (da2/dt < 0 ) . Now it is understood 
why the instability examined above has the name "negative diffusion instability". 

2 . 4 . A C C R E T I O N INSTABILITY 

The instabilities examined above lead to the growth of short-scale structure. The 

large-scale structure of the rings can arise as a result of accretion instability con-

nected with the accretion of "external" material, for example, with the flow of the 

fine dust through the ring system to the planet (because of the Poynting-Robertson 

effect). 

The mechanism of this instability is related to the mechanism for forming sandy 

dunes in a desert. 

Accretion instability generates large scale layering of the rings, since small scale 

fluctuations do not succeed in gathering into a "dune" as a consequence of rapid 

diffusion spreading over a time t ~ X2 ( λ is the scale of perturbations). 

2 . 5 . ELLIPSE INSTABILITY 

Let us consider a disk with circular orbit of particles v<i(r) ~ r - 1 / 2 . Let us assume 

that, as a result of a perturbation, one of the circular orbit 2 was transformed in 

a slightly elliptic orbit 2 ' (see Fig. 2 ) . The change of the rotation velocity of a 
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test particle vt in the elliptical trajectory according to the conservation of linear 

momentum is: vt(r) ~ r~l. We can see that the velocity of the test particle vt(r) 

changes with radius more sharply than the velocity of the disk particles. It means 

that at a point A the test particle will be decelerated by the slower disk particles 

and will approach the planet even closer. At the point Β the test particle will 

be accelerated interacting with more quick disk particles and tend to move even 

further from the planet. One more similar example is the classical Laplace-Maxwell 

problem of the stability of an absolute solid ring revolving around a planet. At the 

displacement of the ring all its parts continue to revolve with the same velocity. 

Therefore, the gravitational force begins to dominate for the parts of the ring closer 

to the planet and centrifugal forces dominates for the distant part of the ring. As 

a result, the solid ring at the condition c2/v2 » 1 (where c is the speed of sound 

oscillations in the ring) will fall onto the planet. 

Let us note that Maxwell's conclusion on a fall of a hypothetical solid ice ring 

onto the planet is incorrect, as in this case we have the opposite inequality (c « 3.3 

km/s, ν « 16 — 20km/s) c2/v2 « 1,; therefore such a ring must be torn to pieces 

before its fall because of a small-scale instability (Fridman et al, 1984). But the 

Maxwell's corollary that rings of Saturn have the meteoritic structure turned out 

to be true. 

3 . Resonance nature of Uranian rings 

In 1985 Gor'kavij and Fridman put forwards a hypothesis on the resonance nature of 

the Uranian rings. According to this hypothesis, a number of undiscovered satellites 

must exist outside the boundary of the ring area. The localization of these satellites 

must be connected with the rings localization by means of the following resonance 

condition 

σ Ω , - ( σ + 1)Ω, = 0 , σ = 1,2,3, 

where Ω τ , Ω, are angular velocities of rings and unknown satellites correspondingly. 

The comparison of the predictions of Gor'kavij-Fridman's hypothesis (1985) and the 

Voyager-2 discoveries are in table II (next page). 
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T A B L E II 

The hypotheses (Gorkavij and Fridman, 

1985) 

The Voyager-2 observations (198(5) 

1. A series of small satellites exist beyond 

the outer boundary of the rings of Uranus. 

2. Satellites are not formed inside the ring 

zone. 

3. Ring positions are determined by 1 : 2, 

2 : 3 and 3 : 4 type resonances from undis-

covered satellites (situated in the 50,000 

to 82,500 km zone). 

4. Each of the 5 predicted satellites deter-

mine the positions of two rings simultane-

ously. 

1. 9 of 10 new satellites of Uranus are dis-

covered beyond the outer boundary of the 

rings. 

2.Only one smallest satellite is discovered 

in the intermediate zone (near the outer 

edge of the rings). 

3. 8 of 10 new satellites are discovered in 

this zone and have resonances of this type 

in the region of the rings. The correlation 

coefficient between ring positions and the 

resonances is very high, « 0.84 (Gor'kavij, 

Taidakova, Fridman, 1988). 

4. Each of the 4 discovered satellites de-

termines the positions of two rings simul-

taneously; their orbits agree well with the 

orbits of predicted satellites. 

The satellites with two resonances 

Predicted, Rh, km 6(5450 62470 (51860 58600 

Discovered, km 66090 62680 (51780 59170 

Accuracy of Agreement, Rh — Rê, km +3(50 -210 + 8 0 -570 

5. The features of the outer ring are 

explained by the presence of "shepherd" 

satellites. 

6. The satellites diameters are ~ 100 km. 

5. The c ring is the only one near which 

"shepherd" satellites have been discov-

ered. 

(5. The average diameter of the satellites is 

« 70 km 

Discussion 

P.Goldreich - I can't resist pointing out that the outer 6-ring shepherd also shep-

herds the 7 ring through its 6:5 resonance and the inner e ring shepherd shepherds 

the δ ring by means of its 23:22 resonance. 

A.M.Fricfrnan - Indeed, we can't argue proceeding from the data of Voyager-2 only, 

that shepherds with the sizes less than 10 km are absent inside the Uranian rings. 

But the account of the aerodynamic drag makes problematic the existence of small 

satellites inside the ring. 

P.Goldreich - I agree that atmospheric drag is a problem when considering the a 

and β ring. 
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