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Abstract

We show that every orbital measure, µx, on a compact exceptional Lie group or algebra has the property
that for every positive integer either µk

x ∈ L2 and the support of µk
x has non-empty interior, or µk

x is singular
to Haar measure and the support of µk

x has Haar measure zero. We also determine the index k where the
change occurs; it depends on properties of the set of annihilating roots of x. This result was previously
established for the classical Lie groups and algebras. To prove this dichotomy result we combinatorially
characterize the subroot systems that are kernels of certain homomorphisms.
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1. Introduction

This paper was motivated by a classical result of Ragozin, which states that
whenever G is a compact, connected, simple Lie group, then the convolution of
dimension of G, continuous, G-invariant measures is absolutely continuous with
respect to Haar measure. In a series of papers, culminating in [4–6], one of the
authors, with various coauthors, found the minimum number of convolution powers
which gives the absolute continuity property for such measures. The number depends
on the Lie type of G, but is roughly the rank of G.

The proof of this result involved the study of orbital measures, the continuous, G-
invariant measures supported on conjugacy classes in the group G or on adjoint orbits
in the associated Lie algebra g. A striking L2-singular dichotomy was discovered
for these measures in the case of the classical Lie groups and algebras: for every x
belonging to G (or g) there is an integer k(x) such that if µx is the orbital measure
supported on the conjugacy class Cx ⊆G (respectively, the adjoint orbit Ox ⊆ g)
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generated by x, then µk
x ∈ L2 for all k ≥ k(x); while µk

x is purely singular to Haar
measure if k < k(x). Moreover, the k-fold product of Cx, denoted Ck

x (respectively,
the k-fold sum, (k)Ox), has non-empty interior when k ≥ k(x) and the Haar measure of
Ck

x (or of (k)Ox) is zero when k < k(x). The value of k(x) was also determined.
In this paper we complete this investigation, showing that the same L2-singular

dichotomy holds for all the orbital measures on all the exceptional compact, connected,
simple Lie groups and algebras. We also find the value of k(x).

A new ingredient in the proof, which may be of independent interest, is a
combinatorial characterization of the subroot systems that are kernels of certain
homomorphisms of the root systems of the Lie groups or algebras (and this includes
all the maximal subroot systems of the classical root systems). Our characterization is
in terms of properties of the nodes of the extended Dynkin diagram which are removed
to produce a base for the subroot system. This characterization is relevant to the L2-
singular dichotomy problem because the answers for k(x) depend upon combinatorial
properties of the subroot systems consisting of the roots αwith α(x) = 0 (in the algebra
case) or belonging to Z (in the group case).

Other methods have been used to study sums of orbits and convolutions of orbital
measures in [1, 3, 12, 14], for example.

2. Characteristic of a subroot system

Let Φ be an irreducible root system in the Euclidean space E, as defined in
[8, Section 9.2], with base ∆ = {α1, . . . , αn} and rank n. Let α0 be the highest root
in Φ with respect to ∆ and write

α0 =

n∑
i=1

hiαi.

The extended base, ∆̃, is defined as ∆ ∪ {−α0}, and the Dynkin diagram determined by
this extended base is called the extended Dynkin diagram of Φ. It is well known that
if Φ is an irreducible root system of rank n, then the Dynkin diagram of Φ is one of
type An, Bn, Cn, Dn, E6, E7, E8, F4 or G2. For the convenience of the reader these
Dynkin diagrams and some of the basic facts about irreducible root systems can be
found in the Appendix. Other basic properties of roots and root systems are discussed
in [8, 10].

Every proper subset ∆′ of ∆̃ is the base for a subroot system1 Ψ, a subset of Φ that
is a root system in its own right. Just take Ψ = spanZ(∆′) ∩ Φ and check that every
element of Ψ can be written as either all positive or all negative linear combinations
of roots in ∆′. We will say that Ψ is obtained by deleting roots D from the extended
base, where D = ∆̃�∆′. The type of Ψ is determined by its Dynkin diagram, which is
a subdiagram of the extended Dynkin diagram.

1 We use the terminology from [9]. Others say ‘root subsystem’.
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We denote the usual inner product on E by (·, ·). Every subroot system of the form
Ψ = Φ(t), where

Φ(t) = {α ∈ Φ : (α, t) ∈ Z}, (2.1)

is Z-closed, meaning spanZ Ψ ∩ Φ = Ψ, and is known to be Weyl conjugate to one
obtained by deleting roots from the extended base as described above [9, Section 12.4].

The Borel–de Siebenthal theorem (see [9, Section 12.1]) implies that, up to Weyl
equivalence, all the maximal Z-closed subroot systems are those with bases of the form

(1) {α1, α2, . . . , α̂i, . . . , αn} when hi = 1, or
(2) {−α0, α1, . . . , α̂i, . . . , αn} when hi is prime,

where ˆ denotes elimination. This motivates the following definition.

D 2.1. Suppose that Ψ is a subroot system of Φ that is Weyl conjugate to one
obtained by deleting roots D from the extended base {−α0, α1, . . . , αn} of Φ.

(i) If D = {−α0, αi1 , . . . , αir }, then Ψ is said to have characteristic (0, hi1 , . . . , hir )
and we write charΦ Ψ = (0, hi1 , . . . , hir ).

(ii) If D = {αi1 , . . . , αir } with i j , 0, then Ψ is said to have characteristic
(hi1 , . . . , hir ) and we write charΦ Ψ = (hi1 , . . . , hir ).

The characteristic of a subroot system need not be unique, but this will not present
a serious complication.

Note that in this language, the Borel–de Siebenthal theorem states that the maximal
Z-closed subroot systems are those of characteristic (0, 1) or (p) for p prime.

If Ψ is characteristic (0, hi1 , . . . , hir ), then {α1, . . . , α̂i1 , . . . , α̂ir , . . . , αn} is a base
for Ψ, and any root x ∈ Ψ can be written uniquely as x =

∑n
j=1 t jα j, with t j ∈ Z and

t j = 0 if j ∈ {i1, . . . , ir}. We call t j the α j-coefficient of x and denote it by [x] j. Thus
x ∈ Ψ if and only if [x] j = 0 for all j ∈ {i1, . . . , ir}.

If Ψ is characteristic (hi1 , . . . , hir ), then {−α0, α1, . . . , α̂i1 , . . . , α̂ir , . . . , αn} is a base
for Ψ, and any root x ∈ Ψ can be written uniquely as x = −mα0 +

∑n
j=1 t jα j, with

m, t j ∈ Z and t j = 0 if j ∈ {i1, . . . , ir}. But −mα0 = −m
∑

hiαi, hence the αi j -coefficient
of x is [x]i j = −mhi j . Since hi j is the αi j -coefficient of the highest root, m can only equal
0 or ±1. This shows that if x ∈ Ψ, either [x]i j = +

(−) hi j for all j = 1, . . . , r, or [x]i j = 0
for all j = 1, . . . , r. One can easily see that the converse is also true.

Given Ψ of characteristic (0, hi1 , . . . , hir ) or (hi1 , . . . , hir ), we define ρΨ on E by

ρΨ(x) = ρ(x) = [x]i1 + [x]i2 + · · · + [x]ir .

Since any root has the property that all [x] j are of the same sign, these arguments show
the following characterization of Ψ.

P 2.2.

(i) A root x belongs to the subroot system Ψ with characteristic (0, hi1 , . . . , hir ) if
and only if ρΨ(x) = 0.

(ii) A root x belongs to Ψ with characteristic (hi1 , . . . , hir ) if and only if either
ρΨ(x) = ±(hi1 + · · · + hir ) = ±ρΨ(α0) or ρΨ(x) = 0.

This will be a useful criterion for determining whether a given root belongs to Ψ.
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Given φ ⊆ Φ, we let Zφ denote the Z-span of φ and Qφ = ZΦ/Zφ, the quotient of
abelian groups. For Z-closed subroot systems Ψ, ZΨ ∩ Φ = Ψ. Of course, ZΦ =

Zα1 + · · · + Zαn. If Ψ has characteristic (0, hi1 , . . . , hir ), then

ZΨ = Zα1 + Ẑαi1 + · · · + Ẑαir + · · · + Zαn

(where, as usual, ˆ denotes omission), hence QΨ ' Z
r. If Ψ has characteristic

(hi1 , . . . , hir ), then

ZΨ = Zα1 + Ẑαi1 + · · · + Ẑαir + · · · + Zαn + Z(hi1αi1 + · · · + hirαir ),

so
QΨ ' Z

r/Z(hi1 , . . . , hir ) ' Z
r−1 × Zm,

where m = gcd(hi1 , . . . , hir ).

E 2.3. There are two subroot systems of type A7 contained in a root system of
type E8, one of which has characteristic (0, 3) and the other characteristic (2, 4). These
cannot be Weyl conjugate as the one has a torsion-free quotient, while the other has a
quotient with Z2 as its torsion subgroup.

Subroot systems of characteristic (0, hi1 , . . . , hir ) are well behaved as they are
obtained by deleting roots from the original (unextended) base ∆ of Φ. The above
observation shows the quotient space, QΨ, is torsion-free (we say that Ψ is torsion-
free). The converse is true as well. To prove this, we first record a useful fact about
extending bases that was shown to us by Wright.

We will say that Ψ is R-closed if spanR Ψ ∩ Φ = Ψ.

L 2.4. If Ψ is R-closed, then any base of Ψ can be extended to a base for Φ.

P. Without loss of generality, we may assume Ψ is of codimension one, for
otherwise we proceed by induction.

As Ψ is R-closed, we may choose y ∈ E such that (α, y) = 0 for all α ∈ Ψ, but (β, y) ,
0 for any β ∈ Φ \ Ψ. Let ε = minβ∈Φ\Ψ |(β, y)| > 0. Choose x ∈ E with 0 < |(α, x)| < ε/2
for all α ∈ Φ.

If z = x + y, then (α, z) = (α, x) , 0 for α ∈ Ψ, while if α ∈ Φ \ Ψ, then
|(α, z)| ≥ |(α, y)| − |(α, x)| ≥ ε/2. Hence if we let Φ+

z = {α ∈ Φ : (α, z) > 0}, then the
indecomposable elements of Φ+

z (those which are not the sum of two elements of Φ+
z )

form a base of Φ [8, page 48].
The choice of z ensures that if α ∈ Ψ and β ∈ Φ \ Ψ, then |(β, z)| ≥ |(β, y)| − |(β, x)| >

ε/2, while |(α, z)| = |(α, x)| < ε/2. In particular, if α ∈ Ψ and β ∈ Φ+
z \ Ψ, then (α, z) <

(β, z). This shows that if α ∈ Ψ is the sum of two roots in Φ+
z \ Ψ, then both

of these roots belong to Φ+
z ∩ Ψ = Ψ+

z . Thus the indecomposable roots of Ψ+
z are

also indecomposable roots of Φ+
z , and therefore the base of Ψ consisting of the

indecomposable roots of Ψ+
z extends to the base of Φ consisting of the indecomposable

roots of Φ+
z . �
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E 2.5. The set {α ∈ Φ : (α, t) = 0} is R-closed and hence a base can be found by
removing roots from a base for Φ.

P 2.6. Suppose that Ψ is Z-closed and QΨ is torsion-free. Then Ψ has
characteristic (0, hi1 , . . . , hir ).

P. From the previous lemma, it will be enough to check that Ψ is R-closed. We
first verify that the torsion-free assumption implies Ψ is Q-closed. So assume that
there is a root x ∈ Φ which can be written as a Q-linear combination of βi ∈ Ψ, say
x =

∑N
j=1(p j/q j)β j, where p j, q j ∈ Z. Put q = q1 · · · qN . Then qx ∈ ZΨ and the element

x + ZΨ in the quotient space QΨ satisfies q(x + ZΨ) = 0. Since QΨ is torsion-free, this
implies x + ZΨ = 0 in QΨ, hence x ∈ ZΨ ∩ Φ = Ψ.

Now we check that any root in the R-span of Ψ is also in the Q-span. To see this,
choose a base ∆′ = {β1, . . . , βn} of Ψ and let {λi} be the base of E dual to {2βi/(βi, βi)}.
Given x ∈ spanR Ψ ∩ Φ, let x =

∑
i aiλi with ai ∈ R. The dual basis property ensures

that ai = (x, 2βi/(βi, βi)), and this is an integer since both x and βi are roots.
The Cartan matrix is the transition matrix from the basis {β1, . . . , βn} to the basis

{λ1, . . . , λn}. By applying the inverse of the Cartan matrix, which has rational
coefficients, to the tuple (a1, . . . , an) ∈ Zn, it follows that x ∈ spanQ{β1, . . . , βn} ⊆

spQΨ. Hence spRΨ ∩ Φ = spQΨ ∩ Φ = Ψ. �

E 2.7. One can see from the extended Dynkin diagram of type E6 that, up to
Weyl conjugacy, there are at most three subroot systems of type A5 in E6 that are
obtained by deleting roots from the extended Dynkin diagram. Two have characteristic
(1, 2) and the third, characteristic (0, 2). But all three are torsion-free and as there is
only one class of characteristic (0, 2), they must coincide.

3. Intersections of subroot systems

D 3.1. Let Ψ ⊆ Φ and H be an abelian group. We say that Ψ is an H-kernel in
Φ if there is a homomorphism π : ZΦ→ H, with ker π ∩ Φ = Ψ.

An H-kernel is always a Z-closed, subroot system, and Weyl conjugates of H-
kernels are again H-kernels.

L 3.2. Suppose that Ω ⊆ Φ is an irreducible subroot system. If Ψ is an H-kernel
in Φ, then Ψ ∩Ω is an H-kernel in Ω.

P. Let π : ZΦ→ H be a homomorphism with ker π ∩ Φ = Ψ. Then ker π|ZΩ
∩

Ω = ker π ∩Ω = (ker π ∩ Φ) ∩Ω = Ψ ∩Ω. Thus π|ZΩ
: ZΩ→ H provides the desired

homomorphism. �

E 3.3. If charΦ Ψ = (2), then Ψ is a Z2-kernel. To see this, suppose that
Ψ is obtained by deleting the root αi ∈ ∆ with hi = 2. Define π(x) = [x]i mod 2 =

ρΨ(x) mod 2. By Proposition 2.2, the root x belongs to Ψ if and only if ρ(x) = 0 or ±2.
As |[y]i| ≤ hi = 2 for all y ∈ Φ, ρ(y) = 0, ±2 if and only if π(y) = 0, hence Ψ = ker π ∩ Φ.
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E 3.4. If Ψ is a Z2-kernel, then Ψ has the property that the sum of two roots
belongs to Ψ if and only if either both roots belong to Ψ or neither root belongs to
Ψ. The converse is also true. To see this, let ∆ = {αi}

n
i=1 be a base for Φ and define

π0 on ∆ by π0(α) = 0 if α ∈ Ψ and 1 otherwise. Extend π0 by linearity to ZΦ and put
π(x) = π0(x) mod 2. As ∆ is a base, this is a well-defined homomorphism. If x ∈ Φ, we
can write x as x = αi1 + · · · + αik , where all the partial sums, αi1 + · · · + αi j , j ≤ k, are
roots. An inductive argument can be applied to show that x ∈ Ψ if and only if π(x) = 0.

One example of a pair Ψ, Φ with the property described in the second example
is the set Ψ = {ei ± e j : i, j , 1, . . . , 8} in the root system Φ of type E8. The root
system Ψ is of type D8 and this has characteristic (2) in E8. Another example is
Ψ = {ei ± e j : i, j = 1, . . . , 4} in Φ of type D5. This Ψ is type D4 and has characteristic
(0, 1) in D5. We show in the next proposition that these two characteristics are the only
possibilities for a Z2-kernel.

P 3.5. The following are equivalent for a subroot system Ψ of Φ:

(1) Ψ is a Z2-kernel in Φ;
(2) Ψ = Φ or charΦ Ψ = (2) or (0, 1).

R 3.6. We observe that all the maximal Z-closed subroot systems of the classical
root systems are of this form. (See [9, page 136] for a complete list.)

P. (2⇒ 1) In Example 3.3 we saw that characteristic (2) subroot systems are Z2-
kernels. The argument is similar if Ψ has characteristic (0, 1). Assume that Ψ is
obtained by deleting {−α0, αi} from a base for Φ, with hi = 1. Define π : ZΦ→ Z2 by
π(x) = [x]i mod 2. Since |[x]i| ≤ 1, it follows that x ∈ Ψ if and only if ρΨ(x) = 0 if and
only if π(x) = 0.

Of course, if Ψ = Φ, just take the trivial homomorphism.
(1⇒ 2) Let π : ZΦ→ Z2 be a homomorphism with Ψ = ker π ∩ Φ. Suppose that

∆ = {α1, . . . , αn} is a base for Φ and let {λ1, . . . , λn} be the dual basis. Define ki by

ki =

0 if π(αi) = 0,

1/2 if π(αi) = 1,

and put t =
∑n

i=1 kiλi ∈ E. If x ∈ Φ, then x =
∑

[x]iαi and

π(x) =
∑

[x]iπ(αi) mod 2 =
∑

[x]i2ki mod 2 = 2(x, t) mod 2.

Thus (x, t) ∈ Z if and only if π(x) = 0. This shows Ψ is the root system Φ(t), as defined
in (2.1), and therefore is Weyl conjugate to one obtained by deleting roots D from the
extended basis ∆̃. There are two cases to consider.

Case 1. The highest root is one of the deleted roots, i.e., −α0 ∈ D.
If D = {−α0}, then Ψ = Φ. Otherwise, D = {−α0, αi1 , . . . , αir } with r ≥ 1 and

charΦ Ψ = (0, hi1 , . . . , hir ). By definition, ρΨ(α0) = hi1 + · · · + hir .

[6] L2-singular dichotomy 367
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Suppose, first, that ρ(α0) ≥ 2. Write the highest root as α0 = αk1 + · · · + αkN so
that each partial sum is a root. As ρ(α j) = 0 or 1, there must be a partial sum
x = αk1 + · · · + αkm ∈ Φ such that ρ(x) =

∑r
j=1[x]i j = 2.

Since Ψ = ker π ∩ Φ, we have π(αik ) = 0 for k = 1, . . . , r and π(α j) = 1 for α j ∈

∆̃�D. Consequently,

π(x) =

r∑
j=1

[x]i j mod 2 = ρ(x) mod 2 = 0.

As x ∈ Φ, this implies x ∈ Ψ. But the fact that ρ(x) = 2 contradicts Proposition 2.2(i).
As ρ(α0) is integer-valued, this implies ρ(α0) ≤ 1, and since each hi ≥ 1 it follows

that r = 1 and hi1 = 1. In other words, charΦ Ψ = (0, 1).

Case 2. α0 < D, say D = {αi1 , . . . , αir } and char Ψ = (hi1 , . . . , hir ) for some r ≥ 1.
If ρ(α0) ≥ 3, the same reasoning as above shows there is some x ∈ Φ with ρ(x) = 2.

But then π(x) = 0, so x ∈ Ψ. But ρ(x) is neither 0 nor ±ρ(α0) and that contradicts
Proposition 2.2(ii).

Hence ρ(α0) ≤ 2. As hi j ≥ 1, r ≤ 2. If r = 2 then hi1 = hi2 = 1, ρ(α0) = 2 and
charΦ Ψ = (1, 1). In this case, QΨ is torsion-free and by Proposition 2.6 it also has
characteristic (0, h j1 , . . . , h jk ). This reduces to the first case.

If, instead, r = 1, then hi1 = 1 or 2. If hi1 = 1, again we conclude that QΨ is torsion-
free and we reduce to the first case. Otherwise charΦ Ψ = (2). �

C 3.7. Suppose that Ω ⊆ Φ is an irreducible subroot system. If charΦ Ψ = (2)
or (0, 1), then either Ω ⊆ Ψ or charΩ(Ψ ∩Ω) = (2) or (0, 1).

P. Combine Lemma 3.2 and the previous proposition. �

This can be improved when charΦ Ψ = (0, 1).

C 3.8. If charΦ Ψ = (0, 1), then either Ω ⊆ Ψ or charΩ(Ψ ∩Ω) = (0, 1).

P. We just need to show that charΩ(Ψ ∩Ω) , (2). We proceed by contradiction
and assume that Ψ ∩Ω is obtained from Ω by deleting the root βk from a base
{β1, . . . , βm} of Ω, where the highest root β0 of Ω has 2 as its βk coefficient.

As charΦ Ψ = (0, 1), we can assume that Ψ is obtained from Φ by deleting −α0

and αi, from the extended base of Φ, with hi = 1. Since βk < Ψ and β j ∈ Ψ for j , k,
[β j]i = 0, while [βk]i , 0. Thus |[β0]i| = 2|[βk]i| ≥ 2. But this contradicts the fact,
implied by hi = 1, that |[x]|i ≤ 1 for all roots x ∈ Φ. �

C 3.9. Suppose that Ω ⊆ Φ is irreducible, charΦ Ψ1 = (2) and charΦ Ψ2 =

(0, 1). Lower bounds on the cardinalities of Ψ1 ∩Ω and Ψ2 ∩Ω are as given below,
where the notation bsc denotes the least integer greater than or equal to s.
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Type Ω An Bn or Cn Dn E6 E7 E8

min|Ψ1 ∩Ω|

⌊
n2 − 1

2

⌋
n2 − n n2 − 2n 32 56 112

min|Ψ2 ∩Ω|

⌊
n2 − 1

2

⌋
n2 − n n2 − n 40 72 −

P. The subroot system Ψ1 ∩Ω is either equal to Ω or has characteristic (2) or
(0, 1) in Ω. By looking at the extended Dynkin diagrams it is easy to determine what
the possibilities are for Ψ1 ∩Ω. For instance, when Ω is type Dn, the characteristic (2)
subroot systems are type Dk × Dn−k with k, n − k ≥ 2 (where D2 means type A1 × A1)
and the characteristic (0, 1) subroot systems are type Dn−1 or type An−1. When Ω

is type An, they are type An−1 and A j × An− j−1 for j, n − j − 1 ≥ 1. For Ω = E6 the
only possibilities are type A5 × A1 and D5. The other types are similar. It is a simple
calculus exercise to determine the minimal cardinality in each case.

The arguments for Ψ2 are similar. �

We will also characterize Z3-kernels. First, we state two elementary combinatorial
facts.

L 3.10.

(i) If (α j1 , . . . , α jr ) is a connected string of nodes in a Dynkin diagram, then
α j1 + · · · + α jr ∈ Φ.

(ii) Suppose that some nodes of a connected diagram are coloured 1, some 2 and the
rest (possibly none) are coloured 0. Then there is a connected string of nodes
such that one of the end nodes of the string is coloured 1, the other end node is
coloured 2 and the interior of the string are nodes coloured 0.

P. (i) We prove this by induction on the length r of the string. It is clearly true if
r = 1. Assume that the result is true for length r − 1; hence α j1 + · · · + α jr−1 ∈ Φ. Since
a Dynkin diagram contains no cycle and an edge between two nodes means a negative
inner product between the two simple roots, we see that

(α j1 + · · · + α jr−1 , α jr ) < 0,

and this implies that their sum belongs to Φ.
(ii) Just pick one node of colour 1 and the other of colour 2, and connect them. If

there is any node of colour 1 or 2 in the interior of the string, pick the string with that
endpoint as one node and the original endpoint of the other colour as the other node.
This string has shorter length than the original. Repeat this process until we get the
desired string after finitely many applications. �

P 3.11. Let Ψ be a subroot system of Φ. The following are equivalent:

(1) Ψ is a Z3-kernel in Φ;
(2) Ψ = Φ or charΦ Ψ = (3), (0, 2), (0, 1, 1) or (0, 1).
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P. (2⇒ 1) Take π(x) = ρΨ(x) mod 3 (or π to be the trivial homomorphism if
Ψ = Φ). In each case one can check that π(x) = 0 if and only if x ∈ Ψ by arguments
similar to those used in the proof of Proposition 3.5.

(1⇒ 2) We begin in a similar fashion to the proof of Proposition 3.5. Let π : ZΦ→

Z3 be a homomorphism with Ψ = ker π ∩ Φ, suppose that ∆ = {α1, . . . , αn} is a base
for Φ and let {λ1, . . . , λn} be the dual base. Define ki by

ki =


0 if π(αi) = 0,

1/3 if π(αi) = 1,

2/3 if π(αi) = 2,

and put t =
∑n

i=1 kiλi ∈ E. As before, Ψ = Φ(t) and hence can be obtained by deleting
roots D from the extended base for Φ.

Case 1. −α0 ∈ D. If D = {−α0}, then Ψ = Φ. Otherwise, D = {−α0, αi1 , . . . , αir } with
r ≥ 1. First, suppose that π is not constant on {αi1 , . . . , αir }. Think of colouring each
α ∈ ∆ by the value of π(α). Since π(αi j ) , 0 we are in the situation of Lemma 3.10(ii)
and we choose a connected string whose endpoints are not in Ψ, but all of whose
interior nodes are. By the first part of Lemma 3.10, the sum of the nodes is a root
z. Notice that π(z) = 1 + 2 + 0 ≡ 0 mod 3, so z ∈ Ψ. But ρΨ(z) = 2 since precisely two
deleted simple roots appear in the expression for z. This contradicts Proposition 2.2.

Thus π is constant on {αi1 , . . . , αir }, say π(αi j ) = c for all j. Of course, c = 1 or 2.
If ρ(α0) ≥ 3, then as in the proof of Proposition 3.5, there must exist some root x ∈ Φ,
such that ρ(x) = 3. Proposition 2.2 implies x < Ψ. But π(x) = cρ(x) mod 3 ≡ 0 mod 3,
which implies x ∈ Ψ.

Hence ρ(α0) ≤ 2 and this gives only the possibilities charΦ Ψ = (0, 2), (0, 1) or
(0, 1, 1).

Case 2. −α0 < D, say D = {αi1 , . . . , αir }. As in Case 1, if π is not constant on D we
can obtain a root z ∈ Ψ with ρ(z) = 2. Proposition 2.2 requires ρ(z) = ±ρ(α0) or 0, so
we must have ρ(α0) = hi1 + · · · + hir = 2. Notice that r ≥ 2 as π takes on two different
values on D. Thus r = 2 and hi1 = hi2 = 1. But then QΨ is torsion-free and this reduces
the problem to Case 1.

Hence we can assume that π is constant on D. If ρ(α0) ≥ 4, there exists a root y such
that ρ(y) = 3. But then π(y) = 0, so y ∈ Ψ and this is a contradiction as ρ(y) , ±ρ(α0) or
0. Hence ρ(α0) ≤ 3. If any hi j = 1, then QΨ is torsion-free and this reduces to the first
case. Otherwise, r = 1 and hi1 = 2 or 3. However, if hi1 = 2, then π(α0) ≡ 2π(αi1 ) ≡ 2
or 4 mod 3, implying α0 < Ψ. As this is false, we must have charΦ Ψ = (3). �

C 3.12. Suppose that Ψ, Ω are subroot systems of Φ and Ω is irreducible.
Assume that Ψ ∩Ω ,Ω.

(i) If charΦ Ψ = (3), then charΩ(Ψ ∩Ω) = (3), (0, 2), (0, 1, 1) or (0, 1).
(ii) If charΦ Ψ = (0, 2), then charΩ(Ψ ∩Ω) = (0, 2), (0, 1, 1) or (0, 1).
(iii) If charΦ Ψ = (0, 1, 1), then charΩ(Ψ ∩Ω) = (0, 1, 1) or (0, 1).
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P. (i) is immediate from the previous result.

For (ii), assume that Ψ is obtained from Φ by deleting the roots {−α0, αi} with
hi = 2, and that charΩ(Ψ ∩Ω) = (3). Then Ψ ∩Ω is obtained from Ω by deleting one
root, βs, from the extended base {−β0, β1, . . . , βm} for Ω (with highest root β0) where
the βs-coefficient of β0 is equal to 3. Since β j ∈ Ψ if and only if j , s, [β j]i = 0 for
j , s and [βs]i , 0. Thus |[β0]i| = 3|[βs]i| ≥ 3 and that contradicts the fact that hi = 2.

The arguments for (iii) are similar. �

From this we can also deduce the following corollary that will be useful later.

C 3.13. Suppose that Ω ⊆ Φ is irreducible and charΦ Ψ = (0, 2) or (0, 1, 1).
Lower bounds on the cardinality of Ψ ∩Ω are given below.

Type Ω An Dn E6 E7 E8

min |Ψ ∩Ω|

⌊n2 − n − 2
3

⌋ ⌊2(n2 − 2n)
3

⌋
22 42 84

P. The subroot system Ψ ∩Ω either is equal to Ω or is a Z3-kernel in Ω. If Ω

is type An, charΩ Ψ = (0, 1) or (0, 1, 1). Those having characteristic (0, 1) in An are
listed in Corollary 3.9, and those of characteristic (0, 1, 1) are type An−2, A j × An− j−2,
or A j × Ak × An− j−k−2 where all indices are positive. It is a routine exercise to check
the minimal cardinality. The other types are similar. �

One can check that all the choices listed in Corollary 3.12 can be obtained; some
examples are given below.

E 3.14. Take Φ = {ei ± e j : i, j = 1, . . . , 6} of type D6 and Ψ = {e1 − e2, ei ± e j :
i, j = 3, . . . , 6} a subroot system of Φ of type A1 × D4. Then charΦ Ψ = (0, 2).

(a) If Ω = {ei ± e j : i, j = 2, . . . , 6} is of type D5, then Ω ∩ Ψ = {ei ± e j :
i, j = 3, . . . , 6} is of type D4 and charΩ Ω ∩ Ψ = (0, 1).

(b) If Ω = {ei ± e j : i, j = 1, 2, 4, 5, 6}, then Ω ∩ Ψ is type A1 × D3 and charΩ Ω ∩

Ψ = (0, 2).

(c) Finally, if Ω is type A5 with base {e1 + e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6}, then
Ω ∩ Ψ is type A3 and charΩ Ω ∩ Ψ = (0, 1, 1).

E 3.15. Take Φ of type E8. If the node e2 − e1 is removed from the standard
base of E7 (in the notation of [8, page 65]), a type A5 × A2 is obtained. Adding the
additional root 1

2 (e8 + e7 −
∑6

i=1 ei) gives an A8 in E8. Since E7 is not a subsystem of A8

and A5 × A2 is maximal in E7, this A5 × A2 must be A8 ∩ E7. Thus charE7 (A8 ∩ E7) =

charE7 (A5 × A2) = (3) and charE8 A8 = (3).
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4. L2-singular dichotomy

4.1. Terminology and statement of the dichotomy. In this section we will use the
results on intersections of subroot systems to prove that the L2-singular dichotomy
holds for the exceptional Lie groups and algebras. Throughout this section, G will
denote a compact, connected, simple Lie group, with centre Z(G) and Lie algebra g.
We let T denote the maximal torus of G and let t be its Lie algebra. The set of roots of
the complexification of g with respect to the complexified torus will be denoted by Φ.
These sets Φ are irreducible root systems and any two semisimple Lie algebras with
the same root system are isomorphic.

The notation AdG(·) will denote both the adjoint action of G on g and the
conjugation action of G on itself; the meaning will be clear from the context. We
let OX ⊆ g and Cx ⊆G denote the orbits of X ∈ g or x ∈G respectively, under the
(appropriate) action of AdG. Of course, Cx is the conjugacy class of x ∈G. Being
proper submanifolds, every orbit has zero Haar measure. Moreover, every orbit
contains a torus element.

D 4.1. Given X ∈ g, the orbital measure, µX , is the Borel measure on g defined
by the rule

p
∫
g

f dµX =

∫
G

f (AdG(g)X) dmG(g)

for any continuous, compactly supported function f on g. (Here mG denotes the Haar
measure on G.)

The orbital measure µX is G-invariant, that is, µX(E) = µX(AdG(g)E) for all g ∈G
and Borel sets E ⊆ g. When X , 0, µX is the unique G-invariant, probability measure,
compactly supported on the adjoint orbit OX . One can similarly define the orbital
measure µx, for x ∈G as the unique G-invariant, probability measure, supported on
the conjugacy class Cx. Since adjoint orbits and conjugacy classes have measure zero,
orbital measures are purely singular with respect to Haar measure.

D 4.2. We will say that the root α ∈ Φ annihilates element X ∈ t or x ∈ T if
(α, X) = 0 or (α, x) ∈ Z. By the type of X or x we will mean the type of its set of
annihilating roots.

Except when X = 0 ∈ t or x ∈ Z(G), the set of annihilating roots is a proper subroot
system of Φ. When x ∈ T, the set of annihilating roots is the subroot system Φ(x)
in the notation of the previous section, and thus is Weyl conjugate to one obtained
by deleting roots from the extended base for Φ. When X ∈ t, the set of annihilating
roots is R-closed and hence by Lemma 2.4 is Weyl conjugate to one obtained by
deleting roots from the base for Φ. We will still use the notation Φ(X) for its
set of annihilating roots. Of course, all torus elements in the same orbit have the
same type.

Suppose that G is one of the compact, connected, simple, exceptional Lie groups,
those of Lie type E6, E7, E8, F4 or G2. Our dichotomy result can be stated in terms of
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the following constant. For z ∈ T�Z(G) or 0 , z ∈ t, put

k(z) =



4 if z is type B4 in F4

3 if z is type


E7 or E7 × A1 in E8

E6, D6 or D6 × A1 in E7

D5, A5 or A5 × A1 in E6

A2 in G2

2 otherwise.

We remark that there are no non-zero elements z ∈ t with Φ(z) of full rank. Hence z ∈ t
cannot be of type B4 in F4, E7 × A1 in E8, D6 × A1 in E7, A5 × A1 in E6 or A2 in G2.
All the other types do occur.

We use the notation µk to denote the k-fold convolution product of µ, Ck
x for the

k-fold product of Cx, and (k)OX for the k-fold sum of OX . With this notation we can
now state the L2-singular dichotomy.

T 4.3 (L2-singular dichotomy). Suppose that z ∈ T�Z(G) or 0 , z ∈ t, and k(z)
is as stated above.

(i) For all k ≥ k(z), the convolution product µk
z ∈ L2 and Ck

z (or (k)Oz) has non-empty
interior.

(ii) For all k < k(z), µk
z is purely singular to Haar measure m and m(Ck

z ) = 0 (or
m((k)Oz) = 0).

The measure µk
x is supported on Ck

x when x ∈G, thus µk
x is singular if the Haar

measure of Ck
x is zero. Conversely, if µk

x ∈ L2(G), then Ck
x has positive measure, and

it is well known that for these submanifolds positive measure implies non-empty
interior [11]. Consequently, for x ∈G it will be enough to prove µk

x ∈ L2(G) for all
k ≥ k(x) and mG(Ck

x) = 0 for all k < k(x). Analogous statements hold for (k)OX and µk
X .

If X = 0, then the orbit and the orbital measure are trivial, as are all k-fold sums
and convolution powers. If x ∈ Z(G), then Cx is a singleton and µx is the point mass
measure at x. Hence all convolution powers of µx are discrete measures, and therefore
singular, and all Ck

x are finite sets, hence of measure zero. We also call these trivial
orbital measures.

4.2. Proof of L2-singular dichotomy theorem, part (i): if k ≥ k(z), then µk
z ∈ L2.

Building on the work of [7], it was shown in [6] that µ4
z ∈ L2 for all non-trivial orbital

measures on F4 and µ3
z ∈ L2 for all non-trivial orbital measures on the other exceptional

Lie groups/algebras. Thus it will be enough to prove that µ2
z ∈ L2 for those z where we

claim that k(z) = 2. First, we remark that it will be enough to prove that µ2
x ∈ L2(G)

whenever x ∈ T�Z(G) and k(x) = 2 because transference arguments can then be used
to deduce the corresponding result on the Lie algebra, as explained in [5, Proof of
Theorem 8.2].
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4.2.1. Combinatorial criterion. To prove that µ2
x ∈ L2(G) when k(x) = 2, we rely

on a combinatorial criterion established in [5], which is valid for all simple, compact,
connected Lie groups G. As in the previous sections, assume that {α1, . . . , αn} is a
base for the root system Φ of rank n and {λ1, . . . , λn} is the dual base. Put

S j = {α ∈ Φ : (α, λ j) , 0}.

Observe that S j is the complement of the subroot system, S c
j, which is obtained by

removing root α j from the base of Φ and thus has characteristic (0, h j). A summary of
basic facts about the sets S j, when G is one of the five exceptional Lie groups, can be
found in the Appendix.

Given Ψ ⊆ Φ and a set of l integers i1, . . . , il satisfying n ≥ i1 > i2 > · · · > il ≥ 1, we
inductively define

T j = S i j

∖ j−1⋃
k=1

S ik =

{
α ∈ Φ

∖ j−1⋃
k=1

Tk : (α, λi j ) , 0
}

and

U j =

{
α ∈ Ψ

∖ j−1⋃
k=1

Uk : (α, λi j ) , 0
}

for j = 1, . . . , l. Let κ(i1, . . . , il, Ψ) be the minimum integer k such that

l∑
j=1

((k − 1)|T j| − k|U j|) > l.

or, equivalently,

k|Ψ ∩ S i1 ∪ · · · ∪ S il | < (k − 1)|S i1 ∪ · · · ∪ S il | − l. (4.1)

Let ri1,...,il denote the rank of S c
i1
∩ · · · ∩ S c

il
. Since l is the corank of S c

i1
∩ · · · ∩ S c

il
,

inequality (4.1) holds for k = 2 if and only if

2|Ψ| − |Φ| + n < 2|Ψ ∩ S c
i1 ∩ · · · ∩ S c

il | − |S
c
i1 ∩ · · · ∩ S c

il | + ri1,...,il . (4.2)

The combinatorial criterion for µk
x to belong to L2(G) is the content of the next

theorem. The proof, which can be found in [5], uses the Weyl character and degree
formulas, and the Peter–Weyl theorem.

T 4.4 ([5, Theorem 6.1]). Suppose that G is a compact, connected, simple Lie
group of rank n, x ∈ T and Φ(x) is the set of annihilating roots of x. Let κ0(x) =

max{κ(i1, . . . , il, Ψ)} where the maximum is taken over all l ∈ {1, . . . , n}, all sets of
indices n ≥ i1 > i2 > · · · > il ≥ 1 and all root subsystems, Ψ, that are conjugate under
the Weyl group to Φ(x). Then µκ0(x)

x ∈ L2(G).

Thus it will be enough to show that κ0(x) = 2 whenever k(x) = 2, and this is
equivalent to proving that (4.2) holds for all n ≥ i1 > i2 > · · · > il ≥ 1 and all subroot
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systems, Ψ, that are Weyl conjugate to Φ(x). Consequently, it will be helpful to have
good lower bounds on |Ψ ∩ S c

i1
∩ · · · ∩ S c

il
|. Whenever one of Ψ or S c

i1
∩ · · · ∩ S c

il
is

irreducible and the other is a Z2 or Z3-kernel in Φ, we will be able to use the results of
Section 3 to obtain such bounds.

It is clear that if (4.1) holds for Ψ ⊆ Φ, then it also holds for any Ψ′ ⊆ Ψ, thus it will
suffice to prove that inequality (4.2) is satisfied for the maximal subroot systems Φ(x),
other than those for which k(x) > 2, as well as for those which are maximal within the
Φ(x) with k(x) > 2.

We begin with a sufficient condition that can be applied to Z2-kernels, Φ(x), and is
easy to check.

P 4.5. Suppose that Φ is a root system of rank n > 1 and Φ(x) is a Z2-kernel
in Φ. If 2|Φ(x)| ≤ |Φ| − 2n, then κ0(x) = 2 and µ2

x ∈ L2(G).

P. Because 2|Φ(x)| − |Φ| + n ≤ −n, to prove that κ0(x) = 2, it will be enough to
show that

2|Ψ ∩C| − |C| + rank C > −n

whenever C = S c
i1
∩ · · · ∩ S c

il
and Ψ is Weyl conjugate to Φ(x). Of course, being Weyl

conjugate, Ψ will also be a Z2-kernel.
For any such subroot system C, let

σ(C) ≡ 2 min |Ψ ∩C| − |C| + rank C

where the minimum is taken over all Z2-kernels Ψ. When C is irreducible, then C is
either one of the four classical types, A j, B j,C j or D j with j < n, or C = E6 or E7. It
follows from Corollary 3.9 that

σ(A j) = 2 min |Ψ ∩ A j| − |A j| + rank A j

≥ 2
⌊ j2 − 1

2

⌋
− j( j + 1) + j = −1 > −n.

If C is not type A j, then similar calculations show that

σ(C) ≥ −rank C > −n.

The subroot systems C = S c
i1
∩ · · · ∩ S c

il
are obtained by removing roots from the

base of Φ and hence can only be of type A j1 × · · · × A jt or Ω × A j1 × · · · × A jt , where
Ω is one of type B j,C j, D j, E6 or E7 and t ≤ n − 1 − rank Ω. We note that if C is not
irreducible, say C = Ω1 ×Ω2, then σ(C) ≥ σ(Ω1) + σ(Ω2). Thus

σ(A j1 × · · · × A jt ) ≥ −t > −n

and

σ(Ω × A j1 × · · · × A jt ) ≥ σ(Ω) + σ(A j1 × · · · × A jt )

≥ −rank Ω − (n − 1 − rank Ω) > −n.

This completes the argument. �
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E 4.6. This can be used to give a new proof that if x is type Bn/2 × Dn/2 in Bn

or type An−1 in Bn or Cn, then µ2
x ∈ L2. (See [4, Theorem 9.1].)

We now consider each exceptional group separately.

4.2.2. The exceptional group E8. Since all the proper subroot systems of E7

are contained in maximal subroot systems of E7 × A1, it will be sufficient to prove
that (4.2) holds for the maximal subroot systems of E8 other than other than E7 × A1,
and the maximal subroot systems of E7 × A1. These are D8,

A8, E6 × A2, A4 × A4, E6 × A1, D6 × A1 × A1,

A7 × A1 and A5 × A2 × A1.
(4.3)

We remark that D6 × A1 × A1 , Φ(x) for any x ∈ E8 since it is not obtained by
removing roots from the extended Dynkin diagram of E8. However, we can still
formally verify that (4.2) is satisfied for Ψ = D6 × A1 × A1, and then (4.2) will also
hold for all Φ(x) that are subsets of D6 × A1 × A1.

Since charE8 D8 = (2) and D8 consists of 112 of the 240 roots in the root system of
type E8, Proposition 4.5 implies κ0(x) = 2 when x is type D8.

The basic facts about the sets S j summarized in the Appendix will be useful in
checking (4.2) in the remaining cases. Of course, if

2|Ψ| − |S i1 ∪ · · · ∪ S il | + l < 0, (4.4)

then (4.2) is clearly satisfied for Ψ; we call this the trivial inequality.
One can easily confirm that the trivial inequality holds for all choices of S i1 ∪ · · · ∪

S il if Ψ is either type A4 × A4 or A5 × A2 × A1 since |A4 × A4| = 40, |A5 × A2 × A1| = 38
and the minimum cardinality of S i1 ∪ · · · ∪ S il is 114. In fact, the minimum cardinality
of S i1 ∪ · · · ∪ S il , other than S 1 or S 8, is 166 and the maximum cardinality of any root
system of the types listed in (4.3) is |E6 × A2| = 78, so the trivial inequality also holds
for all the other subroot systems listed above, except when l = 1 and S i1 = S 1 or S 8.
Since S c

1 and S c
8 both have characteristic (0, 2), Corollary 3.13 provides lower bounds

on |Ω+ ∩ S c
j | whenever Ω is an irreducible subroot system. We summarize the relevant

information from that corollary in the chart below.

Type Ω A8 E6 D6 A7

min|Ω ∩ S c
j | 18 22 16 14

If Ψ is not irreducible, say Ψ = Ω1 ×Ω2, we obtain lower bounds on cardinalities
by noting that |Ω1 ×Ω2 ∩ S c

j | = |Ω1 ∩ S c
j | + |Ω2 ∩ S c

j |. With this we can quickly check
that (4.2) holds when Ψ is any of the remaining types from (4.3). For example, if Ψ is
type E6 × A2, then since S c

8 is type E7,

2|Ψ| − |E8| + 8 = 2(72 + 6) − 240 + 8 = −76
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while

2|Ψ ∩ S c
8| − |S

c
8| + 7 ≥ 2|E6 ∩ S c

8| − 126 + 7

≥ 2 · 22 − 126 + 7 = −75.

4.2.3. The exceptional group E7. It suffices to check that (4.2) holds for the
maximal subroot systems of E7 other than E6 or D6 × A1, and the maximal subroot
systems of E6 and D6 × A1, other than D6. These are

A7, A5 × A2, D5 × A1, D4 × A2 × A1, A3 × A3 × A1, A2 × A2 × A2. (4.5)

Since charE7 A7 = (2) and 2|A7| = |E7| − 2 · 7, we can appeal to Proposition 4.5 for
type A7.

For the other subroot systems listed in (4.5), we first observe that the trivial
condition (4.4) is satisfied for all S i1 ∪ · · · ∪ S il when Ψ is type A3 × A3 × A1 or
A2 × A2 × A2. (We refer the reader to the Appendix for helpful information.) For the
remaining cases, we will need to verify (4.2) for l = 1, with S i1 = S 1 or S 7. We also
need to verify that (4.2) is satisfied when Ψ = D5 × A1 for the cases S 2, S 6, S 1 ∪ S 7

and S 6 ∪ S 7.
For these, we use the fact that S c

1, S c
2 and S c

6 have characteristic (0, 2) in E7 and S c
7

has characteristic (0, 1) to obtain lower bounds on |Ψ ∩ S c
j |. Furthermore, D5 × A1 has

characteristic (0, 2) in E7, while S c
1 ∩ S c

7 and S c
6 ∩ S c

7 are both of type D5. Thus we
can appeal to Corollary 3.13 to obtain the estimates we need. For example,

2|D5 × A1 ∩ (S c
1 ∩ S c

7)| − |S c
1 ∩ S c

7| + rank(S c
1 ∩ S c

7) ≥ −15,

while 2|D5 × A1| − |E7| + 7 = −35.

4.2.4. The exceptional group E6. It suffices to show that (4.2) is satisfied for the
subroot systems D4, A4 × A1, A3 × A1 × A1 and A2 × A2 × A2. An appeal to the trivial
inequality shows we will only need to consider the cases S 1 or S 6 (for all the root
systems above), S 2 for the subroot systems D4 and A4 × A1, and S 1 ∪ S 6 for D4. As S c

1
and S c

6 are characteristic (0, 1), S c
2 is characteristic (0, 2) and S c

1 ∩ S c
6 is characteristic

(0, 1, 1), our standard arguments can be applied.

4.2.5. The exceptional group F4. The conclusion for Φ(x) of type A1 ×C3 follows
from Proposition 4.5, thus we only need consider the subroot systems A2 × A2,
A3 × A1, B3 and B2 × A1.

The trivial inequality is satisfied for all these subroot systems except for type B3

with l = 1 and the sets S 1, S 4. Since B3 has characteristic (0, 2) in F4, S c
1 is type C3,

and C3 contains no subroot systems with characteristic (0, 1, 1), it follows that S c
1 ∩ B3

has characteristic (0, 2) or (0, 1) in C3. Thus min |S c
1 ∩ B3| ≥ 4 and this is good enough

for (4.2).
For S 4 a slightly more delicate argument is required. Notice that the set of long

roots in any subroot system Ψ of type B3 are a subsystem of type A3. Since any
Weyl conjugate must preserve length, the long roots of Ψ are always contained in the
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set {ei ± e j : i, j = 1, . . . , 4} and this set is of type D4. Since A3 has characteristic (0, 1)
in D4, appealing to Corollary 3.9 it follows that the intersection of any two type A3s in
D4 will have cardinality at least four. Thus we can also conclude that min |S c

4 ∩ B3| ≥ 4.

4.2.6. The exceptional group G2. The annihilating sets Φ(x) are either A2, A1 × A1

or A1. Since both S c
1 and S c

2 are type A1 and G2 has 12 roots, the trivial inequality holds
with k = 2 for both the latter two subroot systems.

4.3. Proof of L2-singular dichotomy theorem, part (ii): if k < k(z), then m(Ck
z ) = 0

(or m((k)Ox) = 0). It is a well-known geometric fact (see [6, Lemma 1]) that if

|Φ| − |Φ(z)| < dim G/k,

then the measure of m(Ck
z ) = 0 (or m((k)Oz) = 0). With this property it is simple to

check that m(Ck
z ) = 0 (or m((k)Oz) = 0) whenever k < k(z), except if z is type A5 or

A5 × A1 in E6.
First, assume that X ∈ t is type A5 in the Lie algebra of type E6. It was noted in

Example 2.7 that all subroot systems Φ(X) of type A5 in E6 are Weyl conjugate, so
there is no loss of generality in assuming that Φ(X) is the subroot system with base
{α1, α3, α4, α5, α6} where α1 = 1/2(e8 + e1 −

∑7
j=2 ei) and α j = e j−1 − e j−2 for j ≥ 3.

We will take ω(Φ(X)) to be the subroot system of type A5 with base {α0, α2, α4, α5, α6}

where α2 = e1 + e2 and α0 = 1/2(e8 − e7 − e6 +
∑5

j=1 ei) is the highest root.
We will use the notation P j,k,l to denote the root 1/2(e8 − e7 − e6 +

∑5
j=1 siei) with

s j = sk = sl = 1 and si = −1 otherwise. It is straightforward to check that Φ(X)c∩

ω(Φ(X))c is contained in

Ψ = {e j ± ek, P1, j,k : 2 ≤ j < k ≤ 5} ∪ {α1, α0}.

Furthermore, Ψ is the subroot system of type D5 and corank one, with base {P1,2,4, e2 +

e4, −e2 − e3, e2 − e4, e3 − e5}. It follows from a result of Wright [14, Theorem 1.4] that
(2)OX does not contain an open set and this implies m((2)OX) = 0.

As A5 × A1 has full rank, there is no X ∈ t of type A5 × A1.
For the group case, we will make use the fact that if x = exp X, then C2

x ⊆ (2)OX

(see [2] or [13]). If x ∈ T is type A5 there is again no loss of generality in assuming
that Φ(x) has base {α1, α3, α4, α5, α6}. This implies that

x = exp(θ, . . . , θ, −θ + 2m/3, −θ + 2m/3, θ − 2m/3), (4.6)

where θ < Z/4 and m ∈ Z. If we let y = exp(0, . . . , 0, −2m/3, −2m/3, 2m/3), then
(α, y) ∈ Z for all roots α and thus y belongs to the centre of the group E6. Consequently,
C2

xy = y2C2
x, and therefore m(C2

x) = 0 if and only if m(C2
xy) = 0. But xy = exp X where

X = (θ, . . . , θ, −θ, −θ, θ). As α(X) = 0 if and only if α ∈ Φ(x), X is also of type A5

and so m((2)OX) = 0 by the previous part of the argument. It follows that m(C2
x) =

m(C2
xy) = 0.

Finally, suppose that x ∈ T is type A5 × A1. We claim that up to Weyl conjugacy
there is also only one subroot system Φ(x) of type A5 × A1. To see this, note
that if there are two, then their irreducible components of type A5 must be Weyl
conjugate and the Weyl element that gives the conjugation must map the unique
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positive root orthogonal to the first subsystem of type A5 to the root orthogonal to
the second type A5. Thus without loss of generality, we can assume that Φ(x) has base
{α0, α1, α3, α4, α5, α6} and therefore x is as in (4.6), but with θ = 1/4 or 3/4. Again we
argue that xy = exp X where X is type A5, and therefore m(C2

x) = 0.
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Appendix.

Basic facts about irreducible root systems

Type An Bn Cn Dn E6 E7 E8 F4 G2

|Φ| 2
(

n+1
2

)
2n2 2n2 4

(
n
2

)
72 126 240 48 12

Rank n n n n 6 7 8 4 2

The dimension of the associated simple Lie group or algebra is |Φ| + rank Φ.

(A`)
1

1

1 1 1 1 1

0

(` ≥ 1)

(B`) 1

1

2

2

2 2 2 1
0

(` ≥ 2)

(C`)
0 2

1

2 2 2 1
(` ≥ 2)

(D`)

0

1

1

2

2

2 2 2
1

–1
1

2
–2

(` ≥ 4)

(E6)

1

1

2

3

3

4

2 2

0

2

5

1

6
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(E7)
0 2

1

3

3

4

4

2 2

3

5

2

6

1

7

(E8)
0 2

8

3

7

4

6

5

5

6

4

2 3

4

3

2

1

(F4)
0 2

1

3

2

4

3

2

4

(G2)
0 2

2

3

1

Extended Dynkin diagrams showing coefficients of highest roots and base {α j}.

Information about sets S j for type E8

Ω S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 1 ∪ S 8

Type Ωc D7 A7 A6 × A1 A4 × A2 × A1 A4 × A3 A5 × A2 E6 × A1 E7 D6

charE8 Ωc (0, 2) (0, 3) (0, 4) (0, 6) (0, 5) (0, 4) (0, 3) (0, 2) (0, 2, 2)

|Ω| 156 184 196 212 208 194 166 114 180

|Ω| ≥ 198 for all other Ω = S i1 ∪ · · · ∪ S i` .

Information about sets S j for type E7

Ω S 1 S 2 S 3 S 4 S 5 S 6 S 7
S 1 ∪ S 7

S 6 ∪ S 7

Type Ωc D6 A6 A5 × A1 A3 × A2 × A1 A4 × A2 D5 × A1 E6 D5

charE7 Ωc (0, 2) (0, 2) (0, 3) (0, 4) (0, 5) (0, 2) (0, 1) (0, 2, 2)

|Ω| 66 84 94 106 100 84 54 86

|Ω| ≥ 96 for all other Ω = S i1 ∪ · · · ∪ S i` .

Information about sets S j for type E6

Ω S 1 S 2 S 3 S 4 S 5 S 6 S 1 ∪ S 6

Type Ωc D5 A5 A4 × A1 A2 × A2 × A1 A4 × A1 D5 D4

charE6 Ωc (0, 1) (0, 2) (0, 2) (0, 3) (0, 2) (0, 1) (0, 1, 1)

|Ω| 32 42 50 58 50 32 48

|Ω| ≥ 52 for all other Ω = S i1 ∪ · · · ∪ S i` .
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Information about sets S j for type F4

Ω S 1 S 2 S 3 S 4

Type Ωc C3 A2 × A1 A2 × A1 B3

charF4 Ωc (0, 2) (0, 3) (0, 4) (0, 2)
|Ω| 30 40 40 30

|Ω| ≥ 40 for all other Ω = S i1 ∪ · · · ∪ S i` .
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