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Abstract

Two local nilpotent properties of an associative or alternative ring A containing an idempotent are
shown. First, il A = Au + Al0 + AOI + Am is the Peirce decomposition of A relative to e then if a
is associative or semiprime alternative and 3-torsion free then any locally nilpotent ideal B of Au

generates a locally nilpotent ideal </»> of A. As a consequence L(AU) - Au n HA) for the Levitzlri
radical L. Also bounds are given for the index of nilpotency of any finitely generated subring of
{By. Second, if A(x) denotes a homotope of A then L(A) Q L(A(x>) and, in particular, if A(x) is an
isotope of A then L(A) « L(A(x)).

1980 Mathematics subject classification (Amer. Math. Soc.): 17 D 05.

1. Introduction

It is well known that if an associative or alternative ring A contains an
idempotent element e then A can be decomposed into a Peirce decomposition
A = Au + Al0 + A0l + Aw where AtJ = {x G A\ex = ix and xe =jx) and
that the Au are subrings of A. In [5] Kaplansky has shown that if b is a nilpotent
ideal of Au then the ideal of A generated by B is also nilpotent. From this it is
easy to see that if P denotes the prime radical then P(AU) = Au n P(A) for
/ = 0, 1. In the first part of this paper we demonstrate a similar result for local
nilpotence. Specifically, if B is a locally nilpotent ideal of Au then, if A is
associative the ideal of A generated by B is locally nilpotent, while if r is
semiprime alternative and 3-torsion free the same result holds. Thus, if L
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121 Some properties of the Levitzki radical 53

denotes the Levitzki radical it follows that L(Ah) = Au n L(A) if A is associa-
tive (a result of Anderson [2]) or if A is 3-torsion free alternative.

If x is an element of the alternative ring A then the x-homotope AM of A is
known to be the same additive group as A together with the multiplication
a- xb = (ax)b. If x is invertible in A then A(*> is called the x-isotope of A. It is
immediate from the characterization of J(A) in [6] that J(A) C J(A(x*) for all x
in A and if A w is an isotope of A then J(A) = J(A(**). In the second part of this
paper we will prove the analogous result for the Levitzki (locally finite) radical.
Specifically, L(A) is a locally nilpotent (finite) ideal of v4(jt) for all x in A, and if
x is invertible in A then L(A) = L(A(x)).

Recall that a non-associative ring A is called alternative if (x, x, y) — (y, x, x)
= 0 for all x, y G A where the associator (x, y, z) denotes (xy)z — x(yz). A
fundamental property of an alternative ring A is that (x^,), x^y x^^) =
(sgn oXX], x2, x3) for all x, in A and a G S3. The nucleus, N(A), of A and the
center Z(A), of 4̂ are defined by #04) = {« G A\(n, av a^) = 0 Va,, a2 £ A}
and Z(/l) = {z G iV(Z)|za = az Va G A). The Levitzki (locally finite) radical
of the ring (algebra) A is known to be the maximal locally nilpotent (finite) ideal
of A where an ideal is called locally nilpotent (finite) if every finitely generated
subring (subalgebra) is nilpotent (finite dimensional). It is known that L(A)
contains all locally nilpotent (finite) ideals of A and that L(A/L(A)) = 0.

In any alternative ring with an idempotent the following multiplication
relations hold among the Peirce subspaces [1], [5].

(1) AyA^ QAik for i,j, k = 0, 1.
(2) AyAyQAj, for i,j = 0,\.
(3) AyAkl = 0 if j * k and (i,j) * (k, I).
(4) If x, y, z are elements of the Peirce subspaces not all in the same subring

Au, then (x, y, z) = 0 except possibly when two of the elements are in some Atj

for i ¥=j.
Finally, in any alternative ring A the Moufang laws hold for all elements a, x,

y in A.
(5) (xax)y = x[a(xy)].
(6)y(xax) = [(^x)a]x.
(7) x(>>a)x =

2. The Levitzki radical and the Peirce decomposition

Albert [1] and Kaplansky [5] have noted that if R is an associative or
alternative ring and K is an ideal of /?,, then the ideal <̂ f > of R generated by K
is K + KRy + RMK + AjiKAy where i,j = 0, 1. Moreover if A" is nilpotent then
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so is <AT> [5]. In this section we derive a similar result in the case of local
nilpotence and show in the course of the proof how to find an upper bound to
the index of nilpotency of any finitely generated subring of (K}. Henceforth we
shall assume that A is an alternative ring.

LEMMA 1. Let K be a locally nilpotent {finite) ideal of Au such that <A"> = K +
KAtj + AyiK + Aj/KAjj C N(A). Then AjKAy is a locally nilpotent {finite) ideal of
A.

PROOF. For convenience we discuss the case of / = 1. The case / = 0 is
obtained by interchanging 0 and 1 throughout. It is immediate from (4) that
A0lKA ,0 is an ideal of A^. To see that it is locally nilpotent when K is, consider
an arbitrary finite subset B of A0lKAl0. It suffices to replace B by the finite set
B' of terms x0lkxw appearing in the various elements of B since the span of B'
contains B. Thus, we may as well assume that

B = {;#,>*,*$, 4?Mft • • •. 4 M ? }
for some ks e K, x^ e Ast. Consider the finite subset T = {k,x%$\i, j -
1, 2, . . . , / •} of K. Since K is locally nilpotent, T generates a nilpotent subring,
say of index n — 1. Then the subring generated by B is nilpotent of index at
most n. For, since KAl0 Q(K) C N{A) we have, by repeated application of (1)
and (4),

Therefore any product

of n elements of B reduces to

&M0) ( f e W K ] ^ = 0
since it contains a string of n — 1 elements of T. Therefore AmKAw is a locally
nilpotent ideal of A^. For the case in which K is given to be a locally finite ideal
of an algebra A note that the subalgebra generated by T is finite dimensional
with basis lx, l2, . • • , I, say. Then the argument just given shows that the
subalgebra generated by B is spanned by the elements x^ljX^ for some i,
k — 1, . . . , n and j = 1, 2, . . . , / . Therefore it is finite dimensional and
A0lKA l0 is locally finite.

LEMMA 2. If A is n-torsion free and L is the Levitzki radical then A = A/ HA)
is also n-torsion free.
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PROOF. Suppose that na = 0 for some a G A. Then na G L(A). We show that

the ideal (L, a) generated by L(A) and a is locally nilpotent, from which it

follows that a G L(A). Note that a typical element of (L, a) is of the form

/ + m(a) for some / G L(A) and m e M(A') where A' is the ring obtained after

adjoining an identity element to A and M(A') is the multiplication ring of A'.

Now if we pick any finite subset T = {tx, t2, • • . , ts) of (L, a) then, since

na G L(A), the subring generated by nT = {ntx, nt2, . . . , nts) is nilpotent, say

of index k. Thus, if we consider any product t = tn tjt . . . , f, of elements

/,- G T (regardless of the association) it follows that nkt = 0. But since A is

n-torsion free this means that t = t,^, . . . , t,k = 0. Hence, the subring gener-

ated by T is nilpotent of index k and (L, a) is locally nilpotent. Thus, (L, a) C

L(A) so that a G L(A) and a = 0. We have shown that A is /i-torsion free.

In the following L, will denote L(Ait) for / = 0, 1.

THEOREM 1. If A is a semiprime 3-torsion free alternative ring with an
idempotent element e and K is a locally nilpotent ideal of Au then <̂ A") is a locally
nilpotent ideal of A.

PROOF. We shall prove the theorem for the case / = 1. The case / = 0 is
obtained by interchanging the indices 0 and 1 throughout the proof. Since A is
semiprime and 3-torsior* free we may apply Corollary 7.7 of [9] to obtain that
either

(i)</O n ZC4)^0or
(ii) <AT> C N(A).

If (i) holds then there is a non-zero element k = kx + klQ + k0l + k0 G <(AT) n
Z(A). Since ek = ke it follows that kl0 = k0l = 0 so that k = A:, 4- k0. But then
kx G Z(AU) and since kx is nilpotent, kxAn is a non-zero nilpotent ideal of Au.
But then by [5] <&,/!,,>, the ideal of A generated by kxAn, is a non-zero
nilpotent ideal of A contradicting the fact that A is semiprime.

Assume then that (K) = K + KRl0 + ^K + R0lKRl0 C N(A). Then by
(1) and (3) (KRi0)

2 = (KRl0K)Rw = 0. Similarly (R0lK)2 = 0. Consider an
arbitrary finite set S of elements of the Peirce spaces of (K}. Then

s = {k\>\ k ? \ . . . , k f \ *$ •> , 4 2 \ . . .

with kf> G AT, /f> G Aip and A#° G RQXKRW Thus by Lemma 1 A:^ G L o for
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We wish to show that the subring [S] of A generated by S is nilpotent. To see
this first look at the set

of elements of K u LQ- Since KL0 = L0K — 0, K + LQ is locally nilpotent.
Therefore, the subring [£] generated by E is nilpotent, say of index n. Next
consider the set C where

U {M*Mtf'#i)|l < A < /> + w + 5, 1 < / < m, 1 < y < s)

U {*JF>^rJJ|l < g < n - 1, 1 < j < 5, 1 < i < m).

In view of Lemma 1, C is a subset of /T + Lo. Thus, [C], the subring
generated by C is nilpotent of index t for some / > n.

We now claim that [S] is nilpotent of index < Int. For suppose that u was a
non-zero monomial of [S] of degree 2nt in the generators of [S]. Then since
5 C N(A), u must take one of the forms:

(i) u = k^M,
(ii) u = sl0M,

(iii) M = Jfc^A/,

(iv) u = s0lM
for some Sy G Sy = S n AfJ and M £ [5]. Suppose that w is of the form (i).
Then, by (3), since Sy = 0 for i =̂ _/, u can be decomposed into a product of:
First a product of elements of Sn, then an element of Sl0, then a product of a
number (possibly none) of elements of S^, followed by an element of S0l, etc.
Since [E] is nilpotent of index n there is no sequence of n consecutive elements
of E in u. Thus,

u G SfiSloS&S0lSfiSl0 • • •

for 1 < </, < n — 1, 0 < dt, < n — 1 for i' > 1. Since u is of degree 2«f in S and
4 < n — 1 we are guaranteed that u begins with at least It blocks of the form
spy, that is,

u e Sf{Sl0S&S0lSfi • • • Sl0S&S0lN

with N £ [S]. Thus,

o.) • • • (SwS&S0l)N.
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If <4 > 1 f°r e a c n ' then u contains at least t consecutive factors from C. Thus,
u = 0-a contradiction. Assume then that d2i = 0 for some i. Then S10S&'S0i =
SiOSov Now a term of S^S1,,, is of the form fc^V^r^fcf0. Since the elements k^
and k\ V(,^i are all elements of C, it is clear that elements of Sl0S0l are also
generated by element of C. Therefore, here also u contains at least t consecutive
factors of C. Thus, u = 0.

Suppose then that u is of the form (ii). Then u e S10S&SmSfiS10S&S0l . . .
for 0 < a\ < n - 1. Since u is of degree 2nt in S it follows that

for some W G [5]. Thus,

u e (S.OS&SO.KKSIOS&SOI) • • • (Su>S&'S0l)SfrN.
Then, as in case (i) u must contain at least t consecutive factors from C. Thus,
u = 0. The cases (iii) and (iv) are treated similarly. Thus, any monomial of [S]
of degree 2nt reduces to zero so that [S] is nilpotent of index < Int. We have
thus shown that if K =£ 0 then (K) is a locally nilpotent ideal of A.

Since the whole point of our conditions that A be semiprime and 3-torsion
free is to insure that (K} C N(.4) we have immediately:

COROLLARY 1. If R is an associative ring with idempotent e and K is a locally
nilpotent ideal of Ru then (K} is a locally nilpotent ideal of R.

COROLLARY 2. If A is a 3-torsion free alternative ring with an idempotent
element and L is its Levitzki radical, then L(AU) = Au n L(A).

PROOF. TO begin, note that Au n L(A) is a locally nilpotent ideal of Au.
Therefore Au n L(A) C L(AU). For the reverse inclusion, assume first that A is
Levitzki semisimple. Now if AH is not Levitzki semisimple, L, ^ 0. But then, by
Theorem 1, <!,> is a locally nilpotent ideal A for a contradiction. Therefore, A
Levitzki semisimple implies that Au is Levitzki semisimple.

In the general case when L(A) ¥= 0 let A = A/L(A) so that A is Levitzki
semisimple. Also A is 3-torsion free by Lemma 2. Therefore H(A)U) — 0.
Now it is an easy exercise to see that (A)u ^Au/(Ait n L(A)). Therefore,
L(AU/AU n L(A)) = 0 and L(Aii) C Au n L(A) to complete the proof.

Finally, we note that Corollary 1 provides a direct proof to the result of
Anderson [2] that for associative rings R, L(Rii) = R^ n L(R).
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3. The Levitzki radical and homotopy

It is known that if AM is an isotope of A then J(A(xy) = J(A) [6] and
P(A^) = P{A) [3]. In this section we derive the same result for the Levitzki
radical by first analyzing the more general case of homotopy.

In the following, Rf, denotes the usual right multiplication operator, that is,
aRb = ab. Similarly aR£x) = (ax)b for all a, b e A.

LEMMA 3. If a, it, i2, . . . , / „ , x are arbitrary elements of A, then
aR«"R*R*>' ' ' ' R " - ^ tfn " "*"'

(ax)RisRxi2XRi3-..RxiniXRin if n is odd.

PROOF. The proof is by induction on n. The case n = 1 is obvious form the
definition of /*/*>. In the case n = 2 we have aRf-^RW = ([(ax)ii\x)i2 =
[a(xixx)]i2 by (6). Therefore aR}*)R}*) = aRxiiXRh. Assume then that the result is
true for k < n and let u = ORJ-^R,^ • • • R^l If w = aRf-^R,™ • • • R^] then
u = wRjWRjM — ([(wx)in_l]x)iH = [w(xin_tx)]in. By the induction hypothesis w
has the desired form. Since n and n — 2 have the same parity it follows that u
has the desired form. Thus, the lemma is true.

LEMMA 4. If a, iv i2, . . . , » ' „ , x are arbitrary elements of A and u =
Rff>Rff • • • R^x) then xux = (xax)RiiX • • • Rix.

PROOF. The result again follows by induction on n. In case n = 1, xux =
x[(ax)il]x = (xax)(ixx) by (7). Assume that the result holds for n — 1 and
u = aRiMRg) • • • Rlx). Let w = aR^ • • • /?£>. Then xux = x(wR£x>)x
= x((wx)in)x = (xwx)(inx). By the induction hypothesis xwx
= (xax)Ri]X • • • Rja lX- T h e r e f o r e x u x = ( x w x ) ( / n j c ) = (xax)RjiX • • • R i i X

to complete the proof.

LEMMA 5. / / a, /„ i2, . . . , / „ , x are arbitrary elements of A and u
W/J.^.W • • • /J.W then

UX

(ax)RiRxi^cRii • • • Ri^R^x if n is even,

aRxixXRhRxiyX • • • R^_RxinX if n is odd.
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PROOF. We once again proceed by induction on n. If n = 1 then ux =
(aR(x))x = ((ax)i])x = a(xixx) = aRxiiX by (6). Similarly if n = 2 then ux =
[aRl^R^^x = [[[(ax)/,]x]/2].x = [(ax)i\](xi2x) by (6) again. Therefore ux =
(ax)RiRxix as required. Assume that the rsult holds for k <n and that u =
* . « * . « . '. . ^ ) . AS i n Lemma 3 let w = aR,^R^ • • • /?£>. Then

ux =

Now, by the induction hypothesis wx has the desired form. Since n and n — 2
have the same parity it follows that ux has the desired form. Thus, the lemma
holds by mathematical induction.

In the following we shall denote by e the identity element of B(x) if it has one,
and, if not, e will denote the identity element of (2?w)' where (2?w)' is the ring
obtained after imbedding 2?w into a ring with identity in the usual way.

THEOREM 2. If X is an arbitrary element of the alternative ring A and I is a
locally nilpotent ideal of A, then /<x) is a locally nilpotent ideal of the homotope

PROOF. Let B(x) be a finitely generated subring of /( j t ) generated by the
elements /,, i2, . . . , in. Then, since / is a locally nilpotent ideal the set D = {/,,
i2, • • . , «„, i\X, i2x, . . ., inx, xixx, xi2x, . . . , xinx} generates a nilpotent subring
[D] of A. Assume that [D]k = 0. Now, by [7, Proposition 3] every element b of
B(x) is a linear combination of second degree monomials, so that without loss of
generality we may in the course of the proof assume that each element b of B(x)

is a second degree monomial in /„ i2, . . . , /„ (that is, b = eR^x)R^x) • • • R^\
where c, = e/tw/?,-w • • • R,(x) for some positive integers m, s, and t(s) and

' N/(l) '((2) '«») V ° V '

h s. Since b = cxR™ • • • R£\ bywhere
Lemma

(i)b-
(n)b

1
3

=

< t(J) <
either
C\Rxc^

• (clX)Rc

n for all

2 XCyX C4

j = 1

->*Rcm

• Rxc

, 2, . . . , :

or

xRxc x2 } t ] lXRCm depending on the parity of m.
Similarly, since ct = i^R^f • • • R£x) we have that either

ci = 'i(i)RxiaX
Ri " " ' jRx,;(,^-R.

or

In either case, c, is a monomial of / of degree 5 in the generators from D.
Since c, = /,fn/?,(jc) • • • R(x) it follows from Lemma 4 that

' ' ( ' ) </(2) ',(,)

xc.x = (;c/.nvx)/?, rR, _ • • • R: _.
' \ Hi) ' ^i(2^ 'toy* ln»x
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Therefore xctx is a monomial of / of degree s in the generators xi, x,
i,x, . . . , it(syX of D. Similarly, by Lemma 5, c,x is a monomial of / of degree s in
generators of D. Thus, in both cases (i) and (ii) if b is of degree u in the
generators {/,, i2, . . . , / „ } as an element of /(jc) then b is of degree u in the
generators D = {/,, i2, . . . , / „ , ixx,. . . , inx, xiix, . . . , xinx) as an element of / .
Since [D]k = 0 it follows that any element of 2?(x) of degree k in /,, i2, . . . , ' „
reduces to zero. Thus, BM is nilpotent of degree < A: and /(jc) is locally
nilpotent.

Since A is a homotope of A^x) when x is an invertible element of A we have:

COROLLARY. If AM is an isotope of A then L(AM) = L(A).

Note. The crux of the proof of the theorem is that 2?w C [D]. Thus, if A is an
algebra over a field F and [D] is finite dimensional then it follows that 2?(jt) is
finite dimensional. Therefore, if / is locally finite we conclude in the same way
that / w is locally finite.
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